
Stud. Univ. Babeş-Bolyai Math. 58(2013), No. 1, 97–105

The variation of curves length reported to cone
metric

Sorin Noaghi

Abstract. On a Lorentz manifold (M,g) we consider a timelike, parallel and uni-
tary vector field Z. We define the Z-length of a curve and we obtain their first
and second variation.
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1. Introduction

In 1988 Dan I. Papuc has started the study of differential manifold endowed
with a field of tangent cones. This mathematical structure includes also the Lorentz
manifold (M, g) with the cone of future directed, timelike vector fields. The future-
directed cone is defined by normalized vector field Z. So, we have in each point p ∈ M
the structure (TpM,Kp) where Kp = {v ∈ TpM | g(v, v) ≤ 0, g(v, Zp) < 0}. This
implies a Krein space where the following order relation is defined:

v ≤ w if and only if v − w ∈ Kp

Moreover, this order relation involves the definition of a norm [3], [4] named Z-norm
through:

|v|Zp = inf{λ ≥ 0 | − λZp ≤ v ≤ λZp}
The expression of the Z- norm is by [5]:

|v|Zp = |g(v, Zp)|+
√

g(v, v) + [g(v, Zp)]2

For a smooth curve λ : [a, b] → M , we define its Z- length the value:

LZ(λ) =
∫ b

a

|λ′(t)|Zp
dt

=
∫ b

a

{
|g(λ′(t), Zλ(t))|+

√
g(λ′(t), λ′(t)) + g2(λ′(t), Zλ(t))

}
dt
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We state that the curve λ : [a, b] → M is Z-global in x0 = λ(t0) if λ′(t0) and
Zλ(t) are collinear.
For the calculus of the first variation we need to consider some restrictive hypotheses:
A) The future-directed, normalized, timelike vector field Z is parallel, this meaning

∇XZ = 0, ∀X ∈ X (M).

B) The curve λ, λ : [a, b] → M is not Z-global in any of its points.
For this hypothesis we make the following remarks:

Remark 1.1. The necessary condition for B) hypothesis involves h(λ′(t), λ′(t)) 6= 0
where h(X, Y ) = g(X, Y ) + g(X, Z)g(Y,Z).

We have h(X, X) = 0 ⇔ Gram{X.Z} =
∣∣∣∣ g(X, X) g(X, Z)

g(Z,X) g(Z,Z)

∣∣∣∣ = 0 ⇔ {X, Z}

are collinear.

Remark 1.2. If φ : (−ε, ε)× [tp, tg] → M is a piecewise smooth variation of a timelike,
future directed curve λ which is not Z-global, then it exists δ > 0 with the property
that φ(u, . ) : [tp, tg] → M is timelike, future directed and not Z-global for every
|u| < δ.

Beem [2] (page 253) proved the previous statement for a geodesic segment λ.
Without any difficulty, we can give up on the restriction of geodesic segment, consider-
ing λ a piecewise smooth timelike future directed curve. It still remains to demonstrate
that φ(u, . ) : [tp, tg] → M is not Z-global for |u| < δ.

Firstly, the smooth differentiation of φ involves the fact that it exists ε1 < ε
as φ : [−ε1, ε1] × [tp, tg] → M is differentiable on compact. Consequently, we can
extend to an open set which contains [−ε1, ε1] × [tp, tg]. Because λ is timelike and
not Z-global, we have φ′(u, t+p ) , φ′(u, t−q ) timelike vectors which are not collinear
with Zφ(u,t+p ), respectively Zφ(u,t−q ) for ∀ |u| < δ1 . We assume that for any δ > 0,
φ(u0, . ) : [tp, tg] → M is not Z-global, for ∀ |u0| < δ1. So it exists a sequence un → 0
for which φ′(un, tn) is collinear with Zφ(un,tn). Hence (un, tn) ∈ [−ε1, ε1] × [tp, tq],
which is compact, it results that we have an accumulation point (0, t). So, φ′(0, t) is
collinear with Zφ(0,t), or λ′(t) is collinear with Zλ(t), that involves λ being Z-global
in x = λ(t), affirmation excluded by the hypothesis.

Secondly, we consider the case where φ : (−ε, ε) × [tp, tg] → M is a piecewise
smooth variation of piecewise smooth timelike, future directed and not Z-global curve
λ. There is a partition tp = t0 < t1 < ... < tk = tq so that φ|(−ε,ε)×[ti−1,ti] is a smooth
timelike not Z-global future directed variation of λ|[ti−1,ti], ∀i = 1, k. According to the
above results, we have δi, i = 1, k so that φ(u, ) : [ti−1, ti] → M is not Z-global and
φ′(u, t+i−1), φ′(u, t−i ) are not collinear with Zφ(u,t+i−1)

, respectively Zφ(u,t−i ) for |u| < δi.
Considering δ = min

i=1,k
δi, we obtain that φ(u, ) : [tp, tg] → M is not a Z-global curve

for |u| < δ.
C) We assume that λ : [tp, tq] → M is a timelike future directed curve, h-unitary
parametrized, this means h(λ′, λ′) = g(λ′, λ′) + g(λ′, Z)2 = 1.
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Remark 1.3. Obviously, the h-unitary condition implies that the λ curve is not Z-
global as stated in Remark 1.1.

Considering Φ : A → M , A := (−ε, ε)× [tp, tq] a proper smooth causal variation
of λ, the curves φ(u, ) : [tp, tq] → M , |u| < ε are not Z-global in any of their points.
So:

1. Φ(0, t) = λ(t), ∀t ∈ [tp, tq]
2. Φ(u, tp) = p, Φ(u, tq) = q
3. Φ ∈ C3(A)
4. g(V, V ) < 0, g(V,Z) < 0, g(V,Z)2 + g(V, V ) 6= 0 where V = φ∗( ∂

∂t )

We note the variation vector field by X = φ∗( ∂
∂u ) where { ∂

∂u , ∂
∂t} is a base in T(u,t)A.

We note LZ(u) = LZ(φ(u, )). Considering (A) and (B) hypotheses to be valid, we
have to demonstrate:

Lemma 1.4. The first variation of Z- length of λ is:

d

du
LZ(0) = −

∫ tq

tp

1√
h(λ′.λ′)

h(λ′′, Ph
(λ′)⊥X)|(0,t)dt

where Ph
(Y )⊥X = X − h(X,Y )

h(Y,Y ) Y is the X projection, respecting the bilinear form h on
Y ⊥.

If, additionally, we assume that λ is a geodesic segment, and all three A,B,C
hypotheses are being satisfied, we prove:

Lemma 1.5. The second variation of Z- length of λ is:

d2

du2
LZ(0) = −

∫ tq

tp

h(R(X, λ′)λ′ + N ′′, N)|(0,t)dt+

+{h(∇XX, λ′)− g(∇XX, Z) + h(N ′, N)}|(0,t)|
tq

tp

where N = X − h(X, V )V .

2. The first variation

We make the following remark:
h : TM ×TM → R is a bilinear metric, positive form, semidefined, degenerated, with
its signature (n− 1, 0, 1) because:

X(h(Y1, Y2)) = X[g(Y1, Y2) + g(Y1, Z)g(Y2, Z)] =

= g(∇XY1, Y2) + g(Y1,∇XY2)+

+[g(∇XY1, Z) + g(Y1,∇XZ)]g(Y2, Z)+

+g(Y1, Z)[g(∇XY2, Z) + g(Y2,∇XZ)]

= g(∇XY1, Y2) + g(Y1,∇XY2) + g(∇XY1, Z)g(Y2, Z)+

+g(Y1, Z)g(∇XY2, Z) = h(∇XY1, Y2) + h(Y1,∇XY2)

where we used the A) hypothesis about Z, namely ∇XZ = 0.
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We have for the Z- length of curve φ(u, ) : [tp, tq] → M the expression:

LZ(u) =
∫ tq

tp

{
−g(V,Z) +

√
h(V, V )

}
dt

and:

d

du
LZ(u) =

∫ tq

tp

{
− ∂

∂u
[g(V,Z)] +

∂

∂u

√
h(V, V )

}
dt =

=
∫ tq

tp

{
−g(∇XV,Z)− g(V,∇XZ) +

1√
h(V, V )

h(∇XV, V )

}
dt

Since [X, V ] = 0, then ∇XV = ∇V X and so:

d

du
LZ(u) =

∫ tq

tp

{
−g(∇XV,Z) +

h(∇V X, V )√
h(V, V )

}
dt (2.1)

We calculate:

∂

∂t
[g(X, Z)] = g(∇V X, Z) + g(X,∇V Z) = g(∇V X, Z) (2.2)

∂

∂t

[
h(X, V )√
h(V, V )

]
=

=
[h(∇V X, V ) + h(X,∇V V )]

√
h(V, V )− h(X, V )h(∇V V,V )√

h(V,V )

h(V, V )

=
h(∇V X, V )√

h(V, V )
+

h(X,∇V V )√
h(V, V )

− h(X, V )h(∇V V, V )[√
h(V, V )

]3 =

=
h(∇V X, V )√

h(V, V )
+

1√
h(V, V )

[
h(∇V V,X)− h(X, V )

h(V, V )
h(∇V V, V )

]
=

=
h(∇V X, V )√

h(V, V )
+

1√
h(V, V )

h

(
∇V V,X − h(X, V )

h(V, V )
V

)
(2.3)

Replacing the results from (2.2) and (2.3) in (2.1), we obtain the following:

d

du
LZ(0) =
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=
∫ tq

tp

{
− ∂

∂t [g(X, Z)] + ∂
∂t

[
h(X,V )√

h(V,V )

]
− 1√

h(V,V )
h(∇V V, Ph

V ⊥X)
}∣∣∣∣

(0,t)

dt

= −
∫ tq

tp

{
1√

h(V, V )
h(∇V V, Ph

V ⊥X)

}∣∣∣∣∣
(0,t)

dt+

+

{
h(X, V )√
h(V, V )

− g(X, Z)

}∣∣∣∣∣
(0,t)

∣∣∣∣∣∣
tq

tp

= −
∫ tq

tp

{
1√

h(V, V )
h(∇V V, Ph

V ⊥X)

}∣∣∣∣∣
(0,t)

dt

= −
∫ tq

tp

{
1√

h (λ′, λ′)
h(λ′′, Ph

(λ′)⊥X)

}∣∣∣∣∣
(0,t)

dt

We have used the hypothesis of proper variation, namely: X(t+p ) = X(t−q ) = 0

Remark 2.1. If λ is a geodesic segment, then
d

du
LZ(0) = 0 because ∇V V |(0,t) =

Dλ′

∂t
= 0. In consequence, the geodesic segments, that are not Z-global, are stationary

points for the Z- length functional.

Remark 2.2. Let it be λ : [tp, tq] → M a piecewise smooth timelike and future
directed curve, h−unitary parametrized which is not Z- global. Noting with Li

Z(u)
the Z-length of the uniparametric variation of the curve λ|[ti−1,ti], i = 1, k we have:

dLi
Z(0)
du

= −
∫ ti

ti−1

h(λ′′, Ph
(λ′)⊥X)

∣∣∣
(0,t)

dt+

+ {h(λ′, X)− g(X, Z)}|(0,t)

∣∣∣ti

ti−1

therefore

dLZ

du
(0) =

k∑
i=1

dLi
Z (0)
du

= −
∫ tq

tp

h
(
λ′′, Ph

(λ′)⊥
X

)∣∣∣
(0,t)

dt−

−
k−1∑
i=1

h (X (ti) ,∆ti
(λ′))

where ∆ti (λ′) = λ′
(
t+i

)
− λ′

(
t−i

)
, ∀i = 1, k − 1 and we have taken into account the

fact that the variation is proper, so: X (λ (tp)) = X (λ (tq)) = 0.

Remark 2.3. Considering H a spatial hypersurface and assuming that λ : [tp, tq] → M
is a timelike future directed geodesical segment, not Z-global with λ(tp) = p ∈ H and
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λ(tp) = q /∈ H, then:

0 =
dLZ(0)

du
= g(Xp, Zp)− g(Xp, λ

′(tp))− g(Xp, Zp)g(λ′(tp), Zp) =

= −g(Xp, λ
′(tp) + g(λ′(tp), Zp)Zp − Zp)

It results that λ′(tp) + [g(λ′(tp), Zp)− 1]Zp has to be g orthogonal on H.

If λ : [tp, tq] → M is a geodesic segment, an affine parametrization of λ so that
g(λ′(tp), Zp) = 1 can be found. In this case, the above condition becomes: λ′(tp) is g
orthogonal on H.

3. The second variation

We calculate the second variation of the Z-length of the geodesical curve λ,
h-unitary parametrized. Starting with the formula (2.1), we have:

d

du
[h(∇V X, V )] = h(∇X∇V X, V ) + h(∇V X,∇XV )

d

du
[h(V, V )] = 2h(∇XV, V )

Then

I
def
=

d

du

{
−g(∇V X, Z) + h(V, V )−

1
2 h(∇V X, V )

}
(3.1)

= −g(∇X∇V X, Z)− h(V, V )−
3
2 h(∇XV, V )h(∇V X, V )+

+h(V, V )−
1
2 [h(∇X∇V X, V ) + h(∇V X,∇XV )]

= −g(∇X∇V X, Z)− h(V, V )−
3
2 [h(∇V X, V )]2+

+h(V, V )−
1
2 [h(∇X∇V X, V ) + h(∇V X,∇XV )]

We define
N

def
= X − h(X, V )V (3.2)

the h-normal on V vector field.
Next we calculate:

∇V [h(X, V )V ]|(0,t) =
{

d

dt
[h(X, V )]

}
V + h(X, V )∇V V |(0,t) (3.3)

=
{

d

dt
[h(X, V )]

}
V

h(∇V N,V )|(0,t) =
d

dt
{h(N,V )} − h(N,∇V V )|(0,t) = 0 (3.4)

h(∇V N,∇V [h(X, V )V ])|(0,t) = h

(
∇V N,

{
d

dt
[h(X, V )]

}
V

)
(3.5)

=
d

dt
[h(X, V )]h(∇V N,V )|(0,t) = 0
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h(∇V X,∇XV )|(0,t) = h(∇V X,∇V X)|(0,t)

(3.2)
= h(∇V {N + h(X, V )V } ,∇V {N + h(X, V )V })|(0,t)

(3.3)
= h

(
∇V N +

d

dt
{h(X, V )}V,∇V N +

d

dt
{h(X, V )}V

)
|(0,t)

= h(∇V N,∇V N) + 2
d

dt
{h(X, V )}h(∇V N,V )+ (3.6)

+
[

d

dt
{h(X, V )}

]2

h(V, V )|(0,t)

(3.4)
= h(∇V N,∇V N) +

[
d

dt
{h(X, V )}

]2

|(0,t)

h(∇V N,V )|(0,t) = h(∇V {N + h(X, V )V } , V )|(0,t) = h(∇V N,V )+

+ h(∇V h(X, V )V, V )
(3.3)
= h(∇V N,V ) +

d

dt
{h(X, V )}|(0,t) (3.7)

Replacing these results in (3.1) we have:

I|(0,t) = −g(∇X∇V X, Z) + h(∇X∇V X, V ) + h(∇V N,∇V N)|(0,t)

We get:

d2LZ(0)
du2

=
∫ tq

tp

{−g(∇X∇V X, Z) + h(∇X∇V X, V ) + h(∇V N,∇V N)} |(0,t)dt (3.8)

and for this equality, we calculate:

∇X∇V X = ∇V∇XX −R(V,X)X (3.9)

g(∇V∇XX, Z)|(0,t) =
d

dt
{g(∇XX, Z)} − g(∇XX,∇V Z)|(0,t) (3.10)

=
d

dt
{g(∇XX, Z)} |(0,t)

−g(∇X∇V X, Z)|(0,t) = g(R(V,X)X −∇V∇XX, Z)|(0,t) (3.11)

= g(R(V,X)X, Z)− d

dt
{g(∇XX, Z)} |(0,t)

h(∇X∇V X, V )|(0,t) = h(∇V∇XX −R(V,X)X, V )|(0,t) (3.12)

=
d

dt
{h(∇XX, V )} − h(∇XX,∇V V )− h(R(V,X)X, V )|(0,t)

= −h(R(V,X)X, V ) +
d

dt
{h(∇XX, V )} |(0,t)

h(∇V N,∇V V ) =
d

dt
{h(N,∇V N)} − h(N,∇V∇V N) (3.13)

Replacing the results from (3.11), (3.12) and (3.13), (3.8) becomes:

d2LZ(0)
du2

=
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=
∫ tq

tp

{
g(R(V,X)X, Z)− d

dt
{g(∇XX, Z)} − h(R(V,X)X, V )

}
|(0,t)dt+ (3.14)

+
∫ tq

tp

{
−h(N,∇V∇V N) +

d

dt
{h(∇XX, V )}+

d

dt
{h(N,∇V N)}

}
|(0,t)dt

=
∫ tq

tp

{g(R(V,X)X, Z)− h(R(V,X)X, V )− h(N,∇V∇V N)} |(0,t)dt+

+ {−g(∇XX, Z) + h(∇XX, V ) + h(N,∇V N)} |(0,t)

∣∣tq

tp

For the (3.14) expressions we have:

g(R(V,X)X, Z) = −g(R(V,X)Z,X) = (3.15)

= −g(∇V∇XZ −∇X∇V Z,X) = 0

h(R(V,X)X, V ) = g(R(V,X)X, V ) + g(R(V,X)X, Z)g(V,Z) (3.16)

= g(R(V,X)X, V ) = g(R(X, V )V,X) = g(R(X, V )V,N + h(X, V )V )

= g(R(X, V )V,N) + g(R(X, V )V, V )h(X, V ) = g(R(X, V )V,N)

g(R(X, V )V,Z) = −g(R(X, V )Z, V ) = 0 (3.17)

With the results from (3.15), (3.16) and (3.17) replaced in (3.14) we obtain:

d2LZ(0)
du2

=

=
∫ tq

tp

{−g(R(X, V )V,N)− h(N,∇V∇V N)} |(0,t)dt+

+
{
{h(∇XX, V ) + h(N,∇V N)− g(∇XX, Z)} |(0,t)

}∣∣tq

tp

=
∫ tq

tp

{−g(R(X, V )V,N)− g(R(X, V )V,Z)g(N,Z)− h(N,∇V∇V N)} |(0,t)dt+

+
{
{h(∇XX, V ) + h(N,∇V N)− g(∇XX, Z)} |(0,t)

}∣∣tq

tp

=
∫ tq

tp

{−h(R(X, V )V,N)− h(N,∇V∇V N)} |(0,t)dt+

+
{
{h(∇XX, V ) + h(N,∇V N)− g(∇XX, Z)} |(0,t)

}∣∣tq

tp

In conclusion the second variation formula is the following:

d2LZ(0)
du2

= −
∫ tq

tp

h(R(X, λ′)λ′ + N ′′, N)|(0,t)dt+

+ {h(∇XX, λ′) + h(N ′, N)− g(∇XX, Z)} |(0,t)

∣∣tq

tp
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Remark 3.1. In the hypothesis according to which φ : (−ε, ε)×[tp, tq] → M is a proper
variation of λ, we have that: X(t+p ) = X(t−q ) = 0 and therefore N(t+p ) = N(t−q ) = 0.
This simplifies the second variation formula:

d2LZ(0)
du2

= −
∫ tq

tp

h(R(X, λ′)λ′ + N ′′, N)|(0,t)dt+

+ {h(∇XX, λ′)− g(∇XX, Z)} |(0,t)

∣∣tq

tp

Remark 3.2. In the hypothesis stating that φ is a canonical proper variation of λ,
(meaning that φ(u, t) = expλ(t) uY (t), with Y (t) a vector field along λ, that respects:

Y (tp) = Y (tq) = 0, g(Y (t), λ′(t)) = 0,∀t ∈ [tp, tq])

we have that the curves: u 7−→ φ(u, t0) are geodesics, namely

∇XX = 0 and X = φ∗(
∂

∂u
)|(0,t) = Y (t).

This implies the following expression for the second variation:

d2LZ(0)
du2

= −
∫ tq

tp

h(R(Y, λ′)λ′ + N ′′, N)|(0,t)dt.
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