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The variation of curves length reported to cone
metric

Sorin Noaghi

Abstract. On a Lorentz manifold (M,g) we consider a timelike, parallel and uni-
tary vector field Z. We define the Z-length of a curve and we obtain their first
and second variation.
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1. Introduction

In 1988 Dan I. Papuc has started the study of differential manifold endowed
with a field of tangent cones. This mathematical structure includes also the Lorentz
manifold (M, g) with the cone of future directed, timelike vector fields. The future-
directed cone is defined by normalized vector field Z. So, we have in each point p € M
the structure (T,M, K,) where K, = {v € T,M | g(v,v) <0, g(v,Z,) < 0}. This
implies a Krein space where the following order relation is defined:

v<wifand only if v —w € K,

Moreover, this order relation involves the definition of a norm [3], [4] named Z-norm
through:
[v]z, =inf{A>0| —AZ, <v <AZ,}
The expression of the Z- norm is by [5]:

vlz, = l9(v, Zp)| + \/g(v, v) + lg(v, Zp)]?

For a smooth curve A : [a,b] — M, we define its Z- length the value:

b
Lo = [ W (Olz,di

b
= [ {loV 0 Za)] + 9OV O N (0) + 2OV (D), Zao) }
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We state that the curve A : [a,b] — M is Z-global in xzy = A(tg) if N (tp) and
Zy () are collinear.
For the calculus of the first variation we need to consider some restrictive hypotheses:
A) The future-directed, normalized, timelike vector field Z is parallel, this meaning

VxZ=0,VX € X(M).

B) The curve A, X : [a,b] — M is not Z-global in any of its points.
For this hypothesis we make the following remarks:

Remark 1.1. The necessary condition for B) hypothesis involves h(X(t), N'(t)) # 0
where h(X,Y) = g(X.Y) + g(X, Z)g(Y, Z).

We have h(X,X) =0 & Gram{X.Z} = Z =0« {X, 7}

are collinear.

Remark 1.2. If ¢ : (—¢,¢) X [t,, t4] — M is a piecewise smooth variation of a timelike,
future directed curve A which is not Z-global, then it exists > 0 with the property
that ¢(u, . ) : [ty tg] — M is timelike, future directed and not Z-global for every
lu] < 4.

Beem [2] (page 253) proved the previous statement for a geodesic segment .
Without any difficulty, we can give up on the restriction of geodesic segment, consider-
ing A a piecewise smooth timelike future directed curve. It still remains to demonstrate
that ¢(u, . ) : [tp,tg] — M is not Z-global for |u| < 6.

Firstly, the smooth differentiation of ¢ involves the fact that it exists e < ¢
as ¢ : [—e1,e1] X [tp,ty] — M is differentiable on compact. Consequently, we can
extend to an open set which contains [—e1,¢e1] X [t,,t4]. Because X is timelike and
not Z-global, we have ¢'(u,t}) , ¢'(u,t;) timelike vectors which are not collinear
with Z¢(u,t;), respectively Zd)(u,tq_) for V |u| < §; . We assume that for any § > 0,
é(uo, . ) : [tp,tg] — M is not Z-global, for V |ug| < d1. So it exists a sequence u,, — 0
for which ¢'(uy,ty,) is collinear with Zy(,, +.). Hence (un,t,) € [—e1,€1] X [tp,tq],
which is compact, it results that we have an accumulation point (0,t). So, ¢'(0,¢) is
collinear with Zyo ), or A'(t) is collinear with Z(, that involves A being Z-global
in z = A(t), affirmation excluded by the hypothesis.

Secondly, we consider the case where ¢ : (—¢,¢) x [tp,t,] — M is a piecewise
smooth variation of piecewise smooth timelike, future directed and not Z-global curve
A. There is a partition ¢, =t <t < ... <ty =tg sothat ¢[_. cyx[t,_, .+, is a smooth
timelike not Z-global future directed variation of A[j;, | ;,1, Vi = 1, k. According to the
above results, we have d;, i = 1,k so that ¢(u, ) : [t;i_1,t;] — M is not Z-global and
¢ (u,tf 1), ¢'(u,t; ) are not collinear with Zguit |y respectively Z g (ut ) for |u| < ;.

Considering 6 = mind;, we obtain that ¢(u, ) : [t,,ts] — M is not a Z-global curve
=1,k

for Ju| < 4.

C) We assume that X : [tp,t,] — M is a timelike future directed curve, h-unitary

parametrized, this means h(X, \) = g(\, X) + g(\, Z2)? = 1.
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Remark 1.3. Obviously, the h-unitary condition implies that the A curve is not Z-
global as stated in Remark 1.1.

Considering ® : A — M, A := (—¢,€) X [tp, t4] & proper smooth causal variation
of A, the curves ¢(u, ) : [tp,tqs) — M, |u| < € are not Z-global in any of their points.
So:

1. ®(0,t) = A(t), Vt € [tp, t4]

2. ®(u,tp) =p, ®(u,ty) = ¢

3. deC3(A

4. g(V,V) <0, g(V,Z) <0, g(V, Z)? + g(V, V) # 0 where V = ¢.(2)

We note the variation vector field by X = ¢.(5
We note Lz(u) = Lz(¢(u, )). Considering (A
have to demonstrate:

) where {2, 2} is a base in T, ;)A.

9
) and (B) hypotheses to be valid, we

Lemma 1.4. The first variation of Z- length of A is:
d ta 1

—Lz(0) = N X dt

@b == ], iy X Foos Kles
where P(}g/) Z((f,y)) Y is the X projection, respecting the bilinear form h on
Y+

If, additionally, we assume that X is a geodesic segment, and all three A, B,C
hypotheses are being satisfied, we prove:

Lemma 1.5. The second variation of Z- length of X\ is:
d? ta
WLZ(O) = —/ h(R(X, X)X + N, N)| 0,1 dt+
tp
HA(VxX,N) = g(VxX, Z) + h(N', N)}o,li!
where N = X — h(X, V)V.

2. The first variation

We make the following remark:
h:TM xTM — R is a bilinear metric, positive form, semidefined, degenerated, with
its signature (n — 1,0, 1) because:

X(h(Y1,Y2)) = X[g9(Y1,Y2) + g(Y1,Z)g(Y2, Z)] =
=g9(VxY1,Ys) + g(Y1,VxY2)+
+9(VxY1,2) + g(Y1,VxZ)]g(Ya, Z)+
+9(Y1, 2)[9(VxY2, Z) + g(Y2,Vx Z)]
=9(VxY1,Y2) + g(Y1,VxY2) + 9(VxY1,Z)g(Ya, Z)+
+9(Y1, Z2)g(VxYa, Z) = h(VxY1,Y2) + h(Y1, VxY2)
where we used the A) hypothesis about Z, namely VxZ = 0.
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We have for the Z- length of curve ¢(u, ) : [tp,tq] — M the expression:

Ly(u) = / ’ {~9(v.2)+ VRV.V) } dt

P

and:

Ly () = / {—fuw, )+ /R, v>}dt -

1

P

h(VxV, V)} dt

Since [X,V] =0, then VxV = Vy X and so:

d _ [ h(VvX,V)
%LZ(U)_/t { 9(VxV.Z)+ ST }dt

P

We calculate:

%[9()@ ) =9(VvX,Z)+9(X,VvZ) =g(VvX,Z)
0| MX,V) |
ot | VeV, VY|
(VX V) + X Ty V)IVAV V) = B v>’“j§—¢%§;
B h(V,V)

CW(VYX,V) | R(X,VyV)  h(X,V)A(VyV, V)

CVRVY)  VA(VY) [Vavr)

(Vv X,V) 1 -
VA IRRYOAR [WVWQ

(VX V) 1 WX, V)
-t T (- )

h(X,V)
h(V,V)

M) =

(2.3)

Replacing the results from (2.2) and (2.3) in (2.1), we obtain the following:

%LZ(O) =
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dt
(0,¢)

tq
— _9 o | X V) | _ 1 h
- /t { g6 AN+ 5 {\/h(V,W] \/h(V,v)hNVV’ PVLX)}

P

tq 1
= ——h(VyV, P”LX)} dt+
/tp { h(V,V) v 00
t‘]
X,V
. {<> _o(X, Z>}
h(V,V) ),
t‘l
= —/ {1h(vvv, P"}LX)} dt
tp h‘(V7 V) (O,t)
dt

t
_ B 1 " h
- {WW ’P“'“X)}

We have used the hypothesis of proper variation, namely: X (t}) = X(t;) =0

(0,t)

d
Remark 2.1. If )\ is a geodesic segment, then @LZ(O) = 0 because Vy V] =
DX

= 0. In consequence, the geodesic segments, that are not Z-global, are stationary

points for the Z- length functional.

Remark 2.2. Let it be A : [tp,t,] — M a piecewise smooth timelike and future
directed curve, h—unitary parametrized which is not Z- global. Noting with L% (u)
the Z-length of the uniparametric variation of the curve >\|[ti—11ti]7 i =1, k we have:

dLiZ(O) b " h
- W\, PR, X ‘ dt
du /t A% By X0] g, BT

t;

+ {h(N, X) = 9(X, Z)} o)

ti—1

therefore

k ; t
dLz dLy (0) /“ " oh
87 ) = —_ hA,P,X‘ dt—
du 0) du . ( )+ ) (0,)

- ”
= SR (X (). A (V)

where Ay, (\) =X (t7) = XN (t;), Vi=1,k — 1 and we have taken into account the
fact that the variation is proper, so: X (A (tp)) = X (A (tq)) =0.

Remark 2.3. Considering H a spatial hypersurface and assuming that A : [t,,t,] — M
is a timelike future directed geodesical segment, not Z-global with A\(¢,) = p € H and
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Atp) = q ¢ H, then:

- deLu(O) = 9(Xp, Zp) — 9(Xp, N (tp)) — 9(Xp, Zp)g(N (t), Zp) =

= —g9(Xp, N(tp) +9(N'(t), Zp) Zp — Z,)
It results that A (¢,) + [g(N (¢p), Zp) — 1]Z), has to be g orthogonal on H.

If X: [tp, ty] — M is a geodesic segment, an affine parametrization of A so that
g(N(tp), Z,) =1 can be found. In this case, the above condition becomes: A'(t,) is g
orthogonal on H.

3. The second variation

We calculate the second variation of the Z-length of the geodesical curve A,
h-unitary parametrized. Starting with the formula (2.1), we have:
d

T h(Vy X, V)] = h(VxVy X, V) +h(Vy X, VxV)

LIV, V)] = 20(VxV, V)

Then
def d
I'= —
du
= —g(VxVvX,Z) — h(V,V) 2h(VxV,V)h(Vy X, V)+

TRV, V) 2 [W(VxVy X, V) + h(Vy X, Vx V)]
= —g(VxVvX,Z) = h(V,V) 2 [h(Vy X, V)] +
+h(V,V) 2 [M(Vx Vv X, V) +h(Vy X, VxV)]

{—g(VVX, Z) 4+ h(V,V) 5 h(Vy X, V)} (3.1)

We define
NY x - nx, vV (3.2)
the h-normal on V' vector field.
Next we calculate:

VX VIVl = { VIV 4 M VT V0 63
d
~ eI
WV N, V)l0n = S (N, V)} = (N, T3 V)]0 = (3.4)
h(Vy N, Vy[h(X,V)V])|oy =h (VVN {(jt[h(X’ V)]} V> (3.5)
d

= S X V)IR(TYN, V)l = 0
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h(VvX,VxV)|0.4) =MVvX,VvX)|o.
3.2
D h(Vy (N + h(X,V)V}, Vo {N + h(X, V)V Dl 0.

| d d
D (VN + G VTN + 5 VY [
— W(VyN,VyN)+ 2% {(h(X,V)} h(Vy N, V)+ (3.6)

+ L‘;t {h(X, V)}} hV, V)l 0.0

3.4 d 2
W R(VN, VN + {dt {h(x, V)}} 0
h(Vv N, V)| =h(Vy{N +h(X,V)V}, V)0 =h(VvN,V)+

. d
+ ATV h(X,VIV,V) B Ty N V) + SR V)0 (3.7)

Replacing these results in (3.1) we have:
Iy = —9(VxVvX,Z) + M(VxVyX,V)+ h(VyN,VyN)|oy
We get:

d*Lz(0)
du?

tq
= / {—Q(VXVVX, Z) + h(VXVVX, V) + h(VVN, VvN)} |(0,t)dt (38)
tp

and for this equality, we calculate:
VxVyX =VyVxX - R(V, X)X (3.9)

9(VvVxX, Z)|04) = % {9(VxX,2)} = 9(VxX,VvZ)|0. (3.10)
= & (o(VxX. D)}
—g(VxVv X, Z)|0n) = 9(R(V, X)X — VyVx X, Z)| 0. (3.11)
= 4(R(V. X)X, 2) ~ L {g(Vx X, 2)} [0
h(VxVy X, V)04 =MVyVxX — RV, X)X, V)0, (3.12)
= L (XX V)~ (VXX TVV) - (V. X)X V)0

= —h(R(V, X)X, V) + % {A(Vx X, V)} o,

d
WVYN,TyV) = & (N, Ty N)} — h(N, Ty Vo N) (3.13)
Replacing the results from (3.11), (3.12) and (3.13), (3.8) becomes:
2Lz(0)

du?
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:/tq {g (V. X)X, Z) - d{ (VxX,2)} - h(R (V,X)X,V)}(Oyt)dt_k (3.14)

p
/tq

- / {9(R(V, X)X, Z) — h(R(V, X)X, V) — h(N, Vy-Vy N} (0. i+

—h(N,VyVyN) +

+

d d
G (BT X V) 4 5 (VTN o

/—/H

+{=9(Vx X, Z) + (VX X, V) + h(N, Vv N)} o],

For the (3.14) expressions we have:

g(R(V, X)X, Z) = —g(R(V,X)Z,X) = (3.15)
= —g(VvVXZ — VXsz,X) =0

WR(V, X)X, V) = g(R(V, X)X, V) + g(R(V, X)X, Z)g(V, Z) (3.16)
g(R(V. X)X, V) = g(R(X,V)V,X) = g(R(X,V)V,N + h(X,V)V)
= g(R(X, V)V N)+ g(R(X, V)V, V)h(X,V) = g(R(X,V)V,N)

9(R(X, V)V, Z) = —g(R(X,V)Z,V) =0 (3.17)
With the results from (3.15), (3.16) and (3.17) replaced in (3.14) we obtain:

2L;(0)
du?

tq
= {=9(R(X,V)V,N) = h(N,VyVyN)}|ondt+

tp

+ {{M(VxX,V)+h(N,VyN) - g(VxX,Z)} \<o,t>}|iz
- ttq {—g(R(X,V)V,N) — g(R(X,V)V, Z)g(N, Z) — h(N,VyVyN)} |0, dt+
+ {{M(VxX,V)+h(N,VyN) - g(VxX,2Z)} \(o’t)}\if,
= /ttq {=h(R(X,V)V,N) = h(N,VvyVyN)}|o.4dt+
+ {{n(VxX,V) +h(N,VyN) - g(Vx X, Z)} \(ut)HiZ
In conclusion the second variation formula is the following:

d2L4(0)
du?

tq
_ / RR(X, N)N + N, N) |00y dt+
t

p

+ {W(VxX,N) + h(N',N) = g(Vx X, 2)} 0.0,
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Remark 3.1. In the hypothesis according to which ¢ : (—¢,¢) x[tp, t,] — M is a proper
variation of A, we have that: X (¢) = X(t;) = 0 and therefore N(t}) = N(t;) = 0.
This simplifies the second variation formula:

2L tq
ddijz(o) =- / W(R(X, X)X + N, N)| 0. dt+
tp

+ {r(Vx X, \) —g(VxX,Z)} |(o,t>|Z

Remark 3.2. In the hypothesis stating that ¢ is a canonical proper variation of A,
(meaning that ¢(u,t) = exp, ) uY (t), with Y'() a vector field along A, that respects:

Y(tp) =Y (tg) = 0,9(Y(£), N(t) = 0,V € [tp,14])

we have that the curves: u — ¢(u, tg) are geodesics, namely
0
VxX =0 and X = ¢*(%)|(O,t} =Y(t).

This implies the following expression for the second variation:
d*L7(0)

2
5 —/t W(RY, NN+ N7, N)| 0,0yt

P
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