The variation of curves length reported to cone metric

Sorin Noaghi

Abstract

On a Lorentz manifold (M, g) we consider a timelike, parallel and unitary vector field Z. We define the Z-length of a curve and we obtain their first and second variation. Mathematics Subject Classification (2010): 53B30, 53C50. Keywords: Lorentz manifold, field of tangent cones, first and second variation.

1. Introduction

In 1988 Dan I. Papuc has started the study of differential manifold endowed with a field of tangent cones. This mathematical structure includes also the Lorentz manifold (M, g) with the cone of future directed, timelike vector fields. The futuredirected cone is defined by normalized vector field Z. So, we have in each point $p \in M$ the structure $\left(T_{p} M, K_{p}\right)$ where $K_{p}=\left\{v \in T_{p} M \mid g(v, v) \leq 0, g\left(v, Z_{p}\right)<0\right\}$. This implies a Krein space where the following order relation is defined:

$$
v \leq w \text { if and only if } v-w \in K_{p}
$$

Moreover, this order relation involves the definition of a norm [3], [4] named Z-norm through:

$$
|v|_{Z_{p}}=\inf \left\{\lambda \geq 0 \mid-\lambda Z_{p} \leq v \leq \lambda Z_{p}\right\}
$$

The expression of the Z - norm is by [5]:

$$
|v|_{Z_{p}}=\left|g\left(v, Z_{p}\right)\right|+\sqrt{g(v, v)+\left[g\left(v, Z_{p}\right)\right]^{2}}
$$

For a smooth curve $\lambda:[a, b] \rightarrow M$, we define its Z - length the value:

$$
\begin{aligned}
L_{Z}(\lambda) & =\int_{a}^{b}\left|\lambda^{\prime}(t)\right|_{Z_{p}} d t \\
& =\int_{a}^{b}\left\{\left|g\left(\lambda^{\prime}(t), Z_{\lambda(t)}\right)\right|+\sqrt{g\left(\lambda^{\prime}(t), \lambda^{\prime}(t)\right)+g^{2}\left(\lambda^{\prime}(t), Z_{\lambda(t)}\right)}\right\} d t
\end{aligned}
$$

We state that the curve $\lambda:[a, b] \rightarrow M$ is Z-global in $x_{0}=\lambda\left(t_{0}\right)$ if $\lambda^{\prime}\left(t_{0}\right)$ and $Z_{\lambda(t)}$ are collinear.
For the calculus of the first variation we need to consider some restrictive hypotheses: A) The future-directed, normalized, timelike vector field Z is parallel, this meaning

$$
\nabla_{X} Z=0, \forall X \in \mathcal{X}(M)
$$

B) The curve $\lambda, \lambda:[a, b] \rightarrow M$ is not Z-global in any of its points.

For this hypothesis we make the following remarks:
Remark 1.1. The necessary condition for B) hypothesis involves $h\left(\lambda^{\prime}(t), \lambda^{\prime}(t)\right) \neq 0$ where $h(X, Y)=g(X, Y)+g(X, Z) g(Y, Z)$.

We have $h(X, X)=0 \Leftrightarrow \operatorname{Gram}\{X . Z\}=\left|\begin{array}{cc}g(X, X) & g(X, Z) \\ g(Z, X) & g(Z, Z)\end{array}\right|=0 \Leftrightarrow\{X, Z\}$ are collinear.

Remark 1.2. If $\phi:(-\varepsilon, \varepsilon) \times\left[t_{p}, t_{g}\right] \rightarrow M$ is a piecewise smooth variation of a timelike, future directed curve λ which is not Z-global, then it exists $\delta>0$ with the property that $\phi(u,):.\left[t_{p}, t_{g}\right] \rightarrow M$ is timelike, future directed and not Z-global for every $|u|<\delta$.

Beem [2] (page 253) proved the previous statement for a geodesic segment λ. Without any difficulty, we can give up on the restriction of geodesic segment, considering λ a piecewise smooth timelike future directed curve. It still remains to demonstrate that $\phi(u,):.\left[t_{p}, t_{g}\right] \rightarrow M$ is not Z-global for $|u|<\delta$.

Firstly, the smooth differentiation of ϕ involves the fact that it exists $\varepsilon_{1}<\varepsilon$ as $\phi:\left[-\varepsilon_{1}, \varepsilon_{1}\right] \times\left[t_{p}, t_{g}\right] \rightarrow M$ is differentiable on compact. Consequently, we can extend to an open set which contains $\left[-\varepsilon_{1}, \varepsilon_{1}\right] \times\left[t_{p}, t_{g}\right]$. Because λ is timelike and not Z-global, we have $\phi^{\prime}\left(u, t_{p}^{+}\right), \phi^{\prime}\left(u, t_{q}^{-}\right)$timelike vectors which are not collinear with $Z_{\phi\left(u, t_{p}^{+}\right)}$, respectively $Z_{\phi\left(u, t_{q}^{-}\right)}$for $\forall|u|<\delta_{1}$. We assume that for any $\delta>0$, $\phi\left(u_{0},.\right):\left[t_{p}, t_{g}\right] \rightarrow M$ is not Z-global, for $\forall\left|u_{0}\right|<\delta_{1}$. So it exists a sequence $u_{n} \rightarrow 0$ for which $\phi^{\prime}\left(u_{n}, t_{n}\right)$ is collinear with $Z_{\phi\left(u_{n}, t_{n}\right)}$. Hence $\left(u_{n}, t_{n}\right) \in\left[-\varepsilon_{1}, \varepsilon_{1}\right] \times\left[t_{p}, t_{q}\right]$, which is compact, it results that we have an accumulation point $(0, t)$. So, $\phi^{\prime}(0, t)$ is collinear with $Z_{\phi(0, t)}$, or $\lambda^{\prime}(t)$ is collinear with $Z_{\lambda(t)}$, that involves λ being Z-global in $x=\lambda(t)$, affirmation excluded by the hypothesis.

Secondly, we consider the case where $\phi:(-\varepsilon, \varepsilon) \times\left[t_{p}, t_{g}\right] \rightarrow M$ is a piecewise smooth variation of piecewise smooth timelike, future directed and not Z-global curve λ. There is a partition $t_{p}=t_{0}<t_{1}<\ldots<t_{k}=t_{q}$ so that $\left.\phi\right|_{(-\varepsilon, \varepsilon) \times\left[t_{i-1}, t_{i}\right]}$ is a smooth timelike not Z-global future directed variation of $\left.\lambda\right|_{\left[t_{i-1}, t_{i}\right]}, \forall i=\overline{1, k}$. According to the above results, we have $\delta_{i}, i=\overline{1, k}$ so that $\phi(u):,\left[t_{i-1}, t_{i}\right] \rightarrow M$ is not Z-global and $\phi^{\prime}\left(u, t_{i-1}^{+}\right), \phi^{\prime}\left(u, t_{i}^{-}\right)$are not collinear with $Z_{\phi\left(u, t_{i-1}^{+}\right)}$, respectively $Z_{\phi\left(u, t_{i}^{-}\right)}$for $|u|<\delta_{i}$. Considering $\delta=\min _{i=\overline{1, k}} \delta_{i}$, we obtain that $\phi(u):,\left[t_{p}, t_{g}\right] \rightarrow M$ is not a Z-global curve for $|u|<\delta$.
C) We assume that $\lambda:\left[t_{p}, t_{q}\right] \rightarrow M$ is a timelike future directed curve, h-unitary parametrized, this means $h\left(\lambda^{\prime}, \lambda^{\prime}\right)=g\left(\lambda^{\prime}, \lambda^{\prime}\right)+g\left(\lambda^{\prime}, Z\right)^{2}=1$.

Remark 1.3. Obviously, the h-unitary condition implies that the λ curve is not Z global as stated in Remark 1.1.

Considering $\Phi: \mathcal{A} \rightarrow M, \mathcal{A}:=(-\varepsilon, \varepsilon) \times\left[t_{p}, t_{q}\right]$ a proper smooth causal variation of λ, the curves $\phi(u):,\left[t_{p}, t_{q}\right] \rightarrow M,|u|<\varepsilon$ are not Z-global in any of their points. So:

1. $\Phi(0, t)=\lambda(t), \forall t \in\left[t_{p}, t_{q}\right]$
2. $\Phi\left(u, t_{p}\right)=p, \Phi\left(u, t_{q}\right)=q$
3. $\Phi \in \mathcal{C}^{3}(\mathcal{A})$
4. $g(V, V)<0, g(V, Z)<0, g(V, Z)^{2}+g(V, V) \neq 0$ where $V=\phi_{*}\left(\frac{\partial}{\partial t}\right)$

We note the variation vector field by $X=\phi_{*}\left(\frac{\partial}{\partial u}\right)$ where $\left\{\frac{\partial}{\partial u}, \frac{\partial}{\partial t}\right\}$ is a base in $T_{(u, t)} \mathcal{A}$. We note $L_{Z}(u)=L_{Z}(\phi(u)$,$) . Considering (A)$ and (B) hypotheses to be valid, we have to demonstrate:

Lemma 1.4. The first variation of Z - length of λ is:

$$
\frac{d}{d u} L_{Z}(0)=-\left.\int_{t_{p}}^{t_{q}} \frac{1}{\sqrt{h\left(\lambda^{\prime} \cdot \lambda^{\prime}\right)}} h\left(\lambda^{\prime \prime}, P_{\left(\lambda^{\prime}\right)^{\perp}}^{h} X\right)\right|_{(0, t)} d t
$$

where $P_{(Y)^{\perp}}^{h} X=X-\frac{h(X, Y)}{h(Y, Y)} Y$ is the X projection, respecting the bilinear form h on Y^{\perp}.

If, additionally, we assume that λ is a geodesic segment, and all three A, B, C hypotheses are being satisfied, we prove:

Lemma 1.5. The second variation of Z - length of λ is:

$$
\begin{aligned}
& \frac{d^{2}}{d u^{2}} L_{Z}(0)=-\left.\int_{t_{p}}^{t_{q}} h\left(R\left(X, \lambda^{\prime}\right) \lambda^{\prime}+N^{\prime \prime}, N\right)\right|_{(0, t)} d t+ \\
& \quad+\left.\left.\left\{h\left(\nabla_{X} X, \lambda^{\prime}\right)-g\left(\nabla_{X} X, Z\right)+h\left(N^{\prime}, N\right)\right\}\right|_{(0, t)}\right|_{t_{p}} ^{t_{q}}
\end{aligned}
$$

where $N=X-h(X, V) V$.

2. The first variation

We make the following remark:
$h: T M \times T M \rightarrow \mathbb{R}$ is a bilinear metric, positive form, semidefined, degenerated, with its signature $(n-1,0,1)$ because:

$$
\begin{gathered}
X\left(h\left(Y_{1}, Y_{2}\right)\right)=X\left[g\left(Y_{1}, Y_{2}\right)+g\left(Y_{1}, Z\right) g\left(Y_{2}, Z\right)\right]= \\
=g\left(\nabla_{X} Y_{1}, Y_{2}\right)+g\left(Y_{1}, \nabla_{X} Y_{2}\right)+ \\
+\left[g\left(\nabla_{X} Y_{1}, Z\right)+g\left(Y_{1}, \nabla_{X} Z\right)\right] g\left(Y_{2}, Z\right)+ \\
+g\left(Y_{1}, Z\right)\left[g\left(\nabla_{X} Y_{2}, Z\right)+g\left(Y_{2}, \nabla_{X} Z\right)\right] \\
=g\left(\nabla_{X} Y_{1}, Y_{2}\right)+g\left(Y_{1}, \nabla_{X} Y_{2}\right)+g\left(\nabla_{X} Y_{1}, Z\right) g\left(Y_{2}, Z\right)+ \\
+g\left(Y_{1}, Z\right) g\left(\nabla_{X} Y_{2}, Z\right)=h\left(\nabla_{X} Y_{1}, Y_{2}\right)+h\left(Y_{1}, \nabla_{X} Y_{2}\right)
\end{gathered}
$$

where we used the A) hypothesis about Z, namely $\nabla_{X} Z=0$.

We have for the Z - length of curve $\phi(u):,\left[t_{p}, t_{q}\right] \rightarrow M$ the expression:

$$
L_{Z}(u)=\int_{t_{p}}^{t_{q}}\{-g(V, Z)+\sqrt{h(V, V)}\} d t
$$

and:

$$
\begin{gathered}
\frac{d}{d u} L_{Z}(u)=\int_{t_{p}}^{t_{q}}\left\{-\frac{\partial}{\partial u}[g(V, Z)]+\frac{\partial}{\partial u} \sqrt{h(V, V)}\right\} d t= \\
=\int_{t_{p}}^{t_{q}}\left\{-g\left(\nabla_{X} V, Z\right)-g\left(V, \nabla_{X} Z\right)+\frac{1}{\sqrt{h(V, V)}} h\left(\nabla_{X} V, V\right)\right\} d t
\end{gathered}
$$

Since $[X, V]=0$, then $\nabla_{X} V=\nabla_{V} X$ and so:

$$
\begin{equation*}
\frac{d}{d u} L_{Z}(u)=\int_{t_{p}}^{t_{q}}\left\{-g\left(\nabla_{X} V, Z\right)+\frac{h\left(\nabla_{V} X, V\right)}{\sqrt{h(V, V)}}\right\} d t \tag{2.1}
\end{equation*}
$$

We calculate:

$$
\begin{gather*}
\frac{\partial}{\partial t}[g(X, Z)]=g\left(\nabla_{V} X, Z\right)+g\left(X, \nabla_{V} Z\right)=g\left(\nabla_{V} X, Z\right) \tag{2.2}\\
\frac{\partial}{\partial t}\left[\frac{h(X, V)}{\sqrt{h(V, V)}}\right]= \\
=\frac{\left[h\left(\nabla_{V} X, V\right)+h\left(X, \nabla_{V} V\right)\right] \sqrt{h(V, V)}-h(X, V) \frac{h\left(\nabla_{V} V, V\right)}{\sqrt{h(V, V)}}}{h(V, V)} \\
=\frac{h\left(\nabla_{V} X, V\right)}{\sqrt{h(V, V)}}+\frac{h\left(X, \nabla_{V} V\right)}{\sqrt{h(V, V)}}-\frac{h(X, V) h\left(\nabla_{V} V, V\right)}{[\sqrt{h(V, V)}]^{3}}= \\
=\frac{h\left(\nabla_{V} X, V\right)}{\sqrt{h(V, V)}+\frac{1}{\sqrt{h(V, V)}}\left[h\left(\nabla_{V} V, X\right)-\frac{h(X, V)}{h(V, V)} h\left(\nabla_{V} V, V\right)\right]=} \\
=\frac{h\left(\nabla_{V} X, V\right)}{\sqrt{h(V, V)}}+\frac{1}{\sqrt{h(V, V)}} h\left(\nabla_{V} V, X-\frac{h(X, V)}{h(V, V)} V\right) \tag{2.3}
\end{gather*}
$$

Replacing the results from (2.2) and (2.3) in (2.1), we obtain the following:

$$
\frac{d}{d u} L_{Z}(0)=
$$

$$
\begin{aligned}
& =\left.\int_{t_{p}}^{t_{q}}\left\{-\frac{\partial}{\partial t}[g(X, Z)]+\frac{\partial}{\partial t}\left[\frac{h(X, V)}{\sqrt{h(V, V)}}\right]-\frac{1}{\sqrt{h(V, V)}} h\left(\nabla_{V} V, P_{V^{\perp}}^{h} X\right)\right\}\right|_{(0, t)} d t \\
& =-\left.\int_{t_{p}}^{t_{q}}\left\{\frac{1}{\sqrt{h(V, V)}} h\left(\nabla_{V} V, P_{V^{\perp}}^{h} X\right)\right\}\right|_{(0, t)} d t+ \\
& +\left.\left.\left\{\frac{h(X, V)}{\sqrt{h(V, V)}}-g(X, Z)\right\}\right|_{(0, t)}\right|_{t_{p}} ^{t_{q}} \\
& =-\left.\int_{t_{p}}^{t_{q}}\left\{\frac{1}{\sqrt{h(V, V)}} h\left(\nabla_{V} V, P_{V^{\perp}}^{h} X\right)\right\}\right|_{(0, t)} d t \\
& =-\left.\int_{t_{p}}^{t_{q}}\left\{\frac{1}{\sqrt{h\left(\lambda^{\prime}, \lambda^{\prime}\right)}} h\left(\lambda^{\prime \prime}, P_{\left(\lambda^{\prime}\right)^{\perp}}^{h} X\right)\right\}\right|_{(0, t)} d t
\end{aligned}
$$

We have used the hypothesis of proper variation, namely: $X\left(t_{p}^{+}\right)=X\left(t_{q}^{-}\right)=0$
Remark 2.1. If λ is a geodesic segment, then $\frac{d}{d u} L_{Z}(0)=0$ because $\left.\nabla_{V} V\right|_{(0, t)}=$ $\frac{D \lambda^{\prime}}{\partial t}=0$. In consequence, the geodesic segments, that are not Z-global, are stationary points for the Z - length functional.

Remark 2.2. Let it be $\lambda:\left[t_{p}, t_{q}\right] \rightarrow M$ a piecewise smooth timelike and future directed curve, h-unitary parametrized which is not Z - global. Noting with $L_{Z}^{i}(u)$ the Z-length of the uniparametric variation of the curve $\left.\lambda\right|_{\left[t_{i-1}, t_{i}\right]}, i=\overline{1, k}$ we have:

$$
\begin{aligned}
& \frac{d L_{Z}^{i}(0)}{d u}=-\left.\int_{t_{i-1}}^{t_{i}} h\left(\lambda^{\prime \prime}, P_{\left(\lambda^{\prime}\right)^{\perp}}^{h} X\right)\right|_{(0, t)} d t+ \\
& \quad+\left.\left.\left\{h\left(\lambda^{\prime}, X\right)-g(X, Z)\right\}\right|_{(0, t)}\right|_{t_{i-1}} ^{t_{i}}
\end{aligned}
$$

therefore

$$
\begin{aligned}
\frac{d L_{Z}}{d u}(0) & =\sum_{i=1}^{k} \frac{d L_{Z}^{i}(0)}{d u}=-\left.\int_{t_{p}}^{t_{q}} h\left(\lambda^{\prime \prime}, P_{\left(\lambda^{\prime}\right)^{\perp}}^{h} X\right)\right|_{(0, t)} d t- \\
& -\sum_{i=1}^{k-1} h\left(X\left(t_{i}\right), \Delta_{t_{i}}\left(\lambda^{\prime}\right)\right)
\end{aligned}
$$

where $\Delta_{t_{i}}\left(\lambda^{\prime}\right)=\lambda^{\prime}\left(t_{i}^{+}\right)-\lambda^{\prime}\left(t_{i}^{-}\right), \forall i=\overline{1, k-1}$ and we have taken into account the fact that the variation is proper, so: $X\left(\lambda\left(t_{p}\right)\right)=X\left(\lambda\left(t_{q}\right)\right)=0$.

Remark 2.3. Considering H a spatial hypersurface and assuming that $\lambda:\left[t_{p}, t_{q}\right] \rightarrow M$ is a timelike future directed geodesical segment, not Z-global with $\lambda\left(t_{p}\right)=p \in H$ and
$\lambda\left(t_{p}\right)=q \notin H$, then:

$$
\begin{aligned}
0 & =\frac{d L_{Z}(0)}{d u}=g\left(X_{p}, Z_{p}\right)-g\left(X_{p}, \lambda^{\prime}\left(t_{p}\right)\right)-g\left(X_{p}, Z_{p}\right) g\left(\lambda^{\prime}\left(t_{p}\right), Z_{p}\right)= \\
& =-g\left(X_{p}, \lambda^{\prime}\left(t_{p}\right)+g\left(\lambda^{\prime}\left(t_{p}\right), Z_{p}\right) Z_{p}-Z_{p}\right)
\end{aligned}
$$

It results that $\lambda^{\prime}\left(t_{p}\right)+\left[g\left(\lambda^{\prime}\left(t_{p}\right), Z_{p}\right)-1\right] Z_{p}$ has to be g orthogonal on H.
If $\lambda:\left[t_{p}, t_{q}\right] \rightarrow M$ is a geodesic segment, an affine parametrization of λ so that $g\left(\lambda^{\prime}\left(t_{p}\right), Z_{p}\right)=1$ can be found. In this case, the above condition becomes: $\lambda^{\prime}\left(t_{p}\right)$ is g orthogonal on H.

3. The second variation

We calculate the second variation of the Z-length of the geodesical curve λ, h-unitary parametrized. Starting with the formula (2.1), we have:

$$
\begin{aligned}
\frac{d}{d u}\left[h\left(\nabla_{V} X, V\right)\right] & =h\left(\nabla_{X} \nabla_{V} X, V\right)+h\left(\nabla_{V} X, \nabla_{X} V\right) \\
\frac{d}{d u}[h(V, V)] & =2 h\left(\nabla_{X} V, V\right)
\end{aligned}
$$

Then

$$
\begin{gather*}
I \stackrel{\text { def }}{=} \frac{d}{d u}\left\{-g\left(\nabla_{V} X, Z\right)+h(V, V)^{-\frac{1}{2}} h\left(\nabla_{V} X, V\right)\right\} \tag{3.1}\\
=-g\left(\nabla_{X} \nabla_{V} X, Z\right)-h(V, V)^{-\frac{3}{2}} h\left(\nabla_{X} V, V\right) h\left(\nabla_{V} X, V\right)+ \\
+h(V, V)^{-\frac{1}{2}}\left[h\left(\nabla_{X} \nabla_{V} X, V\right)+h\left(\nabla_{V} X, \nabla_{X} V\right)\right] \\
=-g\left(\nabla_{X} \nabla_{V} X, Z\right)-h(V, V)^{-\frac{3}{2}}\left[h\left(\nabla_{V} X, V\right)\right]^{2}+ \\
+h(V, V)^{-\frac{1}{2}}\left[h\left(\nabla_{X} \nabla_{V} X, V\right)+h\left(\nabla_{V} X, \nabla_{X} V\right)\right]
\end{gather*}
$$

We define

$$
\begin{equation*}
N \stackrel{\text { def }}{=} X-h(X, V) V \tag{3.2}
\end{equation*}
$$

the h-normal on V vector field.
Next we calculate:

$$
\begin{gather*}
\left.\nabla_{V}[h(X, V) V]\right|_{(0, t)}=\left\{\frac{d}{d t}[h(X, V)]\right\} V+\left.h(X, V) \nabla_{V} V\right|_{(0, t)} \tag{3.3}\\
=\left\{\frac{d}{d t}[h(X, V)]\right\} V \\
\left.h\left(\nabla_{V} N, V\right)\right|_{(0, t)}=\frac{d}{d t}\{h(N, V)\}-\left.h\left(N, \nabla_{V} V\right)\right|_{(0, t)}=0 \tag{3.4}\\
\left.h\left(\nabla_{V} N, \nabla_{V}[h(X, V) V]\right)\right|_{(0, t)}=h\left(\nabla_{V} N,\left\{\frac{d}{d t}[h(X, V)]\right\} V\right) \tag{3.5}\\
=\left.\frac{d}{d t}[h(X, V)] h\left(\nabla_{V} N, V\right)\right|_{(0, t)}=0
\end{gather*}
$$

$$
\begin{align*}
& \left.h\left(\nabla_{V} X, \nabla_{X} V\right)\right|_{(0, t)}=\left.h\left(\nabla_{V} X, \nabla_{V} X\right)\right|_{(0, t)} \\
& \left.\stackrel{(3.2)}{=} h\left(\nabla_{V}\{N+h(X, V) V\}, \nabla_{V}\{N+h(X, V) V\}\right)\right|_{(0, t)} \\
& \left.\stackrel{(3.3)}{=} h\left(\nabla_{V} N+\frac{d}{d t}\{h(X, V)\} V, \nabla_{V} N+\frac{d}{d t}\{h(X, V)\} V\right)\right|_{(0, t)} \\
& \quad=h\left(\nabla_{V} N, \nabla_{V} N\right)+2 \frac{d}{d t}\{h(X, V)\} h\left(\nabla_{V} N, V\right)+ \tag{3.6}\\
& +\left.\left[\frac{d}{d t}\{h(X, V)\}\right]^{2} h(V, V)\right|_{(0, t)} \\
& \stackrel{(3.4)}{=} h\left(\nabla_{V} N, \nabla_{V} N\right)+\left.\left[\frac{d}{d t}\{h(X, V)\}\right]^{2}\right|_{(0, t)} \\
& \left.h\left(\nabla_{V} N, V\right)\right|_{(0, t)}=\left.h\left(\nabla_{V}\{N+h(X, V) V\}, V\right)\right|_{(0, t)}=h\left(\nabla_{V} N, V\right)+ \\
& + \tag{3.7}\\
& +h\left(\nabla_{V} h(X, V) V, V\right) \stackrel{(3.3)}{=} h\left(\nabla_{V} N, V\right)+\left.\frac{d}{d t}\{h(X, V)\}\right|_{(0, t)}
\end{align*}
$$

Replacing these results in (3.1) we have:

$$
\left.I\right|_{(0, t)}=-g\left(\nabla_{X} \nabla_{V} X, Z\right)+h\left(\nabla_{X} \nabla_{V} X, V\right)+\left.h\left(\nabla_{V} N, \nabla_{V} N\right)\right|_{(0, t)}
$$

We get:

$$
\begin{equation*}
\frac{d^{2} L_{Z}(0)}{d u^{2}}=\left.\int_{t_{p}}^{t_{q}}\left\{-g\left(\nabla_{X} \nabla_{V} X, Z\right)+h\left(\nabla_{X} \nabla_{V} X, V\right)+h\left(\nabla_{V} N, \nabla_{V} N\right)\right\}\right|_{(0, t)} d t \tag{3.8}
\end{equation*}
$$

and for this equality, we calculate:

$$
\begin{gather*}
\nabla_{X} \nabla_{V} X=\nabla_{V} \nabla_{X} X-R(V, X) X \tag{3.9}\\
\left.g\left(\nabla_{V} \nabla_{X} X, Z\right)\right|_{(0, t)}=\frac{d}{d t}\left\{g\left(\nabla_{X} X, Z\right)\right\}-\left.g\left(\nabla_{X} X, \nabla_{V} Z\right)\right|_{(0, t)} \tag{3.10}\\
=\left.\frac{d}{d t}\left\{g\left(\nabla_{X} X, Z\right)\right\}\right|_{(0, t)} \\
-\left.g\left(\nabla_{X} \nabla_{V} X, Z\right)\right|_{(0, t)}=\left.g\left(R(V, X) X-\nabla_{V} \nabla_{X} X, Z\right)\right|_{(0, t)} \tag{3.11}\\
=g(R(V, X) X, Z)-\left.\frac{d}{d t}\left\{g\left(\nabla_{X} X, Z\right)\right\}\right|_{(0, t)} \\
=\frac{d}{d t}\left\{h\left(\nabla_{X} X, V\right)\right\}-h\left(\nabla_{X} X, \nabla_{V} V\right)-\left.h(R(V, X) X, V)\right|_{(0, t)} \tag{3.12}\\
=-h(R(V, X) X, V)+\left.\frac{d}{d t}\left\{h\left(\nabla_{X} X, V\right)\right\}\right|_{(0, t)} \\
h\left(\nabla_{V} N, \nabla_{V} V\right)=\frac{d}{d t}\left\{h\left(N, \nabla_{V} N\right)\right\}-h\left(N, \nabla_{V} \nabla_{V} N\right)
\end{gather*}
$$

Replacing the results from (3.11), (3.12) and (3.13), (3.8) becomes:

$$
\frac{d^{2} L_{Z}(0)}{d u^{2}}=
$$

$$
\begin{align*}
& =\left.\int_{t_{p}}^{t_{q}}\left\{g(R(V, X) X, Z)-\frac{d}{d t}\left\{g\left(\nabla_{X} X, Z\right)\right\}-h(R(V, X) X, V)\right\}\right|_{(0, t)} d t+ \tag{3.14}\\
& +\left.\int_{t_{p}}^{t_{q}}\left\{-h\left(N, \nabla_{V} \nabla_{V} N\right)+\frac{d}{d t}\left\{h\left(\nabla_{X} X, V\right)\right\}+\frac{d}{d t}\left\{h\left(N, \nabla_{V} N\right)\right\}\right\}\right|_{(0, t)} d t \\
& =\left.\int_{t_{p}}^{t_{q}}\left\{g(R(V, X) X, Z)-h(R(V, X) X, V)-h\left(N, \nabla_{V} \nabla_{V} N\right)\right\}\right|_{(0, t)} d t+ \\
& +\left.\left.\left\{-g\left(\nabla_{X} X, Z\right)+h\left(\nabla_{X} X, V\right)+h\left(N, \nabla_{V} N\right)\right\}\right|_{(0, t)}\right|_{t_{p}} ^{t_{q}}
\end{align*}
$$

For the (3.14) expressions we have:

$$
\begin{gather*}
g(R(V, X) X, Z)=-g(R(V, X) Z, X)= \tag{3.15}\\
=-g\left(\nabla_{V} \nabla_{X} Z-\nabla_{X} \nabla_{V} Z, X\right)=0 \\
h(R(V, X) X, V)=g(R(V, X) X, V)+g(R(V, X) X, Z) g(V, Z) \tag{3.16}\\
=g(R(V, X) X, V)=g(R(X, V) V, X)=g(R(X, V) V, N+h(X, V) V) \\
=g(R(X, V) V, N)+g(R(X, V) V, V) h(X, V)=g(R(X, V) V, N) \\
g(R(X, V) V, Z)=-g(R(X, V) Z, V)=0 \tag{3.17}
\end{gather*}
$$

With the results from (3.15), (3.16) and (3.17) replaced in (3.14) we obtain:

$$
\begin{gathered}
\frac{d^{2} L_{Z}(0)}{d u^{2}}= \\
=\left.\int_{t_{p}}^{t_{q}}\left\{-g(R(X, V) V, N)-h\left(N, \nabla_{V} \nabla_{V} N\right)\right\}\right|_{(0, t)} d t+ \\
+\left.\left\{\left.\left\{h\left(\nabla_{X} X, V\right)+h\left(N, \nabla_{V} N\right)-g\left(\nabla_{X} X, Z\right)\right\}\right|_{(0, t)}\right\}\right|_{t_{p}} ^{t_{q}} \\
=\left.\int_{t_{p}}^{t_{q}}\left\{-g(R(X, V) V, N)-g(R(X, V) V, Z) g(N, Z)-h\left(N, \nabla_{V} \nabla_{V} N\right)\right\}\right|_{(0, t)} d t+ \\
+\left.\left\{\left.\left\{h\left(\nabla_{X} X, V\right)+h\left(N, \nabla_{V} N\right)-g\left(\nabla_{X} X, Z\right)\right\}\right|_{(0, t)}\right\}\right|_{t_{p}} ^{t_{q}} \\
=\left.\int_{t_{p}}^{t_{q}}\left\{-h(R(X, V) V, N)-h\left(N, \nabla_{V} \nabla_{V} N\right)\right\}\right|_{(0, t)} d t+ \\
+\left.\left\{\left.\left\{h\left(\nabla_{X} X, V\right)+h\left(N, \nabla_{V} N\right)-g\left(\nabla_{X} X, Z\right)\right\}\right|_{(0, t)}\right\}\right|_{t_{p}} ^{t_{q}}
\end{gathered}
$$

In conclusion the second variation formula is the following:

$$
\begin{aligned}
\frac{d^{2} L_{Z}(0)}{d u^{2}} & =-\left.\int_{t_{p}}^{t_{q}} h\left(R\left(X, \lambda^{\prime}\right) \lambda^{\prime}+N^{\prime \prime}, N\right)\right|_{(0, t)} d t+ \\
& +\left.\left.\left\{h\left(\nabla_{X} X, \lambda^{\prime}\right)+h\left(N^{\prime}, N\right)-g\left(\nabla_{X} X, Z\right)\right\}\right|_{(0, t)}\right|_{t_{p}} ^{t_{q}}
\end{aligned}
$$

Remark 3.1. In the hypothesis according to which $\phi:(-\varepsilon, \varepsilon) \times\left[t_{p}, t_{q}\right] \rightarrow M$ is a proper variation of λ, we have that: $X\left(t_{p}^{+}\right)=X\left(t_{q}^{-}\right)=0$ and therefore $N\left(t_{p}^{+}\right)=N\left(t_{q}^{-}\right)=0$. This simplifies the second variation formula:

$$
\begin{aligned}
& \frac{d^{2} L_{Z}(0)}{d u^{2}}=-\left.\int_{t_{p}}^{t_{q}} h\left(R\left(X, \lambda^{\prime}\right) \lambda^{\prime}+N^{\prime \prime}, N\right)\right|_{(0, t)} d t+ \\
& \quad+\left.\left.\left\{h\left(\nabla_{X} X, \lambda^{\prime}\right)-g\left(\nabla_{X} X, Z\right)\right\}\right|_{(0, t)}\right|_{t_{p}} ^{t_{q}}
\end{aligned}
$$

Remark 3.2. In the hypothesis stating that ϕ is a canonical proper variation of λ, (meaning that $\phi(u, t)=\exp _{\lambda(t)} u Y(t)$, with $Y(t)$ a vector field along λ, that respects:

$$
\left.Y\left(t_{p}\right)=Y\left(t_{q}\right)=0, g\left(Y(t), \lambda^{\prime}(t)\right)=0, \forall t \in\left[t_{p}, t_{q}\right]\right)
$$

we have that the curves: $u \longmapsto \phi\left(u, t_{0}\right)$ are geodesics, namely

$$
\nabla_{X} X=0 \quad \text { and } \quad X=\left.\phi_{*}\left(\frac{\partial}{\partial u}\right)\right|_{(0, t)}=Y(t)
$$

This implies the following expression for the second variation:

$$
\frac{d^{2} L_{Z}(0)}{d u^{2}}=-\left.\int_{t_{p}}^{t_{q}} h\left(R\left(Y, \lambda^{\prime}\right) \lambda^{\prime}+N^{\prime \prime}, N\right)\right|_{(0, t)} d t
$$

References

[1] Andrica, D., Critical Point Theory and Some Applications, University Press, ClujNapoca 2005.
[2] Beem, J., Ehrlich, P.E.., Global Lorentzian Geometry, Marcel Dekker Inc. New York and Basel, 1981.
[3] Papuc, D.I., A New Geometry of a Lorentzian Manifold, Publicationes Math, Debrecen Tomus, 52(1998), no. 2, 145-158.
[4] Papuc, D.I., The geometry of a Vector Bundle Endowed with a Cone Field, Gen. Math., 5(1997), 313-323.
[5] Noaghi, S.D., The Geometrical Interpretation of Temporal Cone Norm in Almost Minkowski Manifold, Balkan Journal of Geometry and Its Applications, 8(2003), no. 2, 37-42.

Sorin Noaghi
University of Petroşani
Faculty of Sciences
20, University Street
Petroşani, Romania
e-mail: snoaghi@yahoo.com

