Inclusion results for four dimensional Cesàro submethods

Mehmet Ünver

Abstract

We define submethods of four dimensional Cesàro matrix. Comparisons between these submethods are established.

Mathematics Subject Classification (2010): 40B05, 40D25.
Keywords: Double sequence, P-convergence, four dimensional Cesàro matrix.

1. Introduction

Some equivalance results for Cesàro submethods have been studied by Goffman and Petersen [2], Armitage and Maddox [1] and Osikiewicz [5]. In this paper we consider the same concept for four dimensional Cesàro method $C_{1}:=(C, 1,1)$. First we recall some definitions.

A double sequence $[x]=\left(x_{j k}\right)$ is said to be P-convergent (i.e., it is convergent in Pringsheim sense) to L if for all $\varepsilon>0$ there exists an $n_{0}=n_{0}(\varepsilon)$ such that $\left|x_{n m}-L\right|<\varepsilon$ for all $n, m \geq n_{0}$ [7]. In this case we write $P-\lim _{j, k} x_{j k}=L$. Recall that $[x]$ is bounded if and only if

$$
\|x\|_{(\infty, 2)}:=\sup _{j, k}\left|x_{j k}\right|<\infty
$$

By $l_{(\infty, 2)}$ we denote the set of all bounded double sequences.
Note that a P - convergent double sequence need not be in $l_{(\infty, 2)}$. Let

$$
P-l_{(\infty, 2)}:=\left\{[x]=\left(x_{j k}\right): \sup _{n \geq h_{1}, m \geq h_{2}}\left|x_{j k}\right|<\infty, \text { for some } h_{1}, h_{2} \in \mathbb{N}\right\}
$$

and call it the space of all P-bounded double sequences where \mathbb{N} denotes the set of all positive integers. If a double sequence is P-convergent then it is P-bounded and it is easy to see that $P-\lim [x][y]=0$ whenever $P-\lim [x]=0$ and $[y]$ is P - bounded.

Let $A=\left(a_{j k}^{n m}\right)$ be a four dimensional summability matrix and $[x]=\left(x_{j k}\right)$ be a double sequence. If $[A x]:=\left\{(A x)_{n m}\right\}$ is P-convergent to L then we say $[x]$ is A - summable to L where

$$
(A x)_{n m}:=\sum_{j, k} a_{j k}^{n m} x_{j k}, \text { for all } n, m \in \mathbb{N}
$$

A is said to be $R H$ - regular if it maps every bounded P - convergent sequence into a P-convergent sequence with the same P-limit [3]. Some recent developments concerning the summability by four dimensional matrices may be found in [6].

Recall that four dimensional Cesàro matrix $C_{1}=\left(c_{j k}^{n m}\right)$ is defined by

$$
c_{j k}^{n m}=\left\{\begin{array}{cc}
\frac{1}{n m}, & j \leq n \text { and } k \leq m \\
0, & \text { otherwise } .
\end{array}\right.
$$

The double index sequence $\beta=\beta(n, m)$ is defined as $\beta(n, m)=(\lambda(n), \mu(m))$ where $\lambda(n)$ and $\mu(m)$ are strictly increasing single sequences of positive integers. Let $[x]=\left(x_{j k}\right)$ be a double sequence. We say $[y]=\left(y_{j k}\right)$ is a subsequence of $[x]$ if $y_{j k}=x_{\beta(j, k)}$ for all $j, k \in \mathbb{N}$.

Let $\beta(n, m)=(\lambda(n), \mu(m))$ be a double index sequence and $[x]=\left(x_{j k}\right)$ be a double sequence. Then the Cesàro submethod $C_{\beta}:=\left(C_{\beta}, 1,1\right)$ is defined to be

$$
\left(C_{\beta} x\right)_{n m}=\frac{1}{\lambda(n) \mu(m)} \sum_{(j, k)=(1,1)}^{(\lambda(n), \mu(m))} x_{j k}
$$

where $\sum_{(j, k)=(1,1)}^{(\lambda(n), \mu(m))} x_{j k}=\sum_{j=1}^{\lambda(n)} \sum_{k=1}^{\mu(m)} x_{j k}$. Since $\left\{\left(C_{\beta} x\right)_{n m}\right\}$ is a subsequence of $\left\{(C x)_{n m}\right\}$, the method C_{β} is $R H$ - regular for any β.

Let $x=\left(x_{k}\right)$ be a single sequence and $\left[x^{c}\right]=\left(x_{j k}^{c}\right),\left[x^{r}\right]=\left(x_{j k}^{r}\right)$ be two double sequences such that

$$
\begin{aligned}
& x_{j k}^{c}=x_{j}, \text { for all } k \in \mathbb{N} \\
& x_{j k}^{r}=x_{k}, \text { for all } j \in \mathbb{N} .
\end{aligned}
$$

It easy to see that the following statements are equivalent:
(a) $\lim x=L$; (b) $P-\lim \left[x^{c}\right]=L$; (c) $P-\lim \left[x^{r}\right]=L$.

The next result follows easily.
Proposition 1.1. Let $[x]=\left(x_{j k}\right)$ be a double sequence such that $x_{j k}=y_{j} z_{k}$ for all $j, k \in \mathbb{N}$ where $y=\left(y_{j}\right)$ and $z=\left(z_{k}\right)$ are single sequences (we call such a double sequence as a factorable double sequence). If y, z are convergent to L_{1}, L_{2} respectively then $[x]$ is P-convergent to $L_{1} L_{2}$.

2. Inclusion results

Let A and B two four dimensional summability matrix methods. If every double sequence which is A summable is also B summable to the same limit, then we say B includes A and we write $A \subseteq B$.

In [1] Armitage and Maddox have given an inclusion theorem for submethods of ordinary Cesàro method. Now, we give an analog of that result for four dimensional Cesàro submethods.

Theorem 2.1. Let $\beta_{1}(n, m)=\left(\lambda^{(1)}(n), \mu^{(1)}(m)\right)$ and $\beta_{2}(n, m)=\left(\lambda^{(2)}(n), \mu^{(2)}(m)\right)$ be two double index sequences.
i) If $E\left(\lambda^{(2)}\right) \backslash E\left(\lambda^{(1)}\right)$ and $E\left(\mu^{(2)}\right) \backslash E\left(\mu^{(1)}\right)$ are finite sets then $C_{\beta_{1}} \subseteq C_{\beta_{2}}$.
ii) If $C_{\beta_{1}} \subseteq C_{\beta_{2}}$ then $E\left(\lambda^{(2)}\right) \backslash E\left(\lambda^{(1)}\right)$ or $E\left(\mu^{(2)}\right) \backslash E\left(\mu^{(1)}\right)$ is finite set, where

$$
E\left(\lambda^{(i)}\right):=\left\{\lambda^{(i)}(n): n \in \mathbb{N}\right\} \text { and } E\left(\mu^{(i)}\right):=\left\{\mu^{(i)}(m): m \in \mathbb{N}\right\} ; i=1,2
$$

Proof. i) If $E\left(\lambda^{(2)}\right) \backslash E\left(\lambda^{(1)}\right)$ and $E\left(\mu^{(2)}\right) \backslash E\left(\mu^{(1)}\right)$ are finite then there exists n_{0} such that $\left\{\lambda^{(2)}(n): n \geq n_{0}\right\} \subset E\left(\lambda^{(1)}\right)$ and $\left\{\mu^{(2)}(m): m \geq n_{0}\right\} \subset E\left(\mu^{(1)}\right)$. Let $n(j)$ and $m(k)$ be two increasing index sequences such that for all $n, m \geq n_{0}$

$$
\lambda^{(2)}(n)=\lambda^{(1)}(n(j)) \text { and } \mu^{(2)}(m)=\mu^{(1)}(m(k))
$$

Then $P-\lim \left(C_{\beta_{1}} x\right)_{n m}=L$ implies $P-\lim \left(C_{\beta_{1}} x\right)_{n(j), m(k)}=L$. Hence this implies $P-\lim \left(C_{\beta_{2}} x\right)_{n m}=L$.
ii) Suppose that $C_{\beta_{1}}$ implies $C_{\beta_{2}}$ but that $E\left(\lambda^{(2)}\right) \backslash E\left(\lambda^{(1)}\right)$ and $E\left(\mu^{(2)}\right) \backslash E\left(\mu^{(1)}\right)$ are infinite sets. Then there are strictly increasing sequences $\lambda^{(2)}(n(j))$ and $\mu^{(2)}(m(k))$ such that for all $j, k \in \mathbb{N} \lambda^{(2)}(n(j)) \notin E\left(\lambda^{(1)}\right)$ and $\mu^{(2)}(m(k)) \notin E\left(\mu^{(1)}\right)$. Define $[t]=\left(t_{n m}\right)$ by

$$
t_{n m}= \begin{cases}j k, & \text { if } n=\lambda^{(2)}(n(j)) \text { and } m=\mu^{(2)}(m(k)) \\ 0, & \text { otherwise }\end{cases}
$$

Let $(C s)_{n m}=t_{n m}$, i.e. $\frac{1}{n m} \sum_{(j, k)=(1,1)}^{(n, m)} s_{j k}=t_{n m}$. If $n \in E\left(\lambda^{(1)}\right)$ and $m \in E\left(\mu^{(1)}\right)$ then $t_{n m}=0$ which implies the sequence $[s]$ is $C_{\beta_{1}}$ - summable to zero. Now we define a double index sequence β_{3} as

$$
\beta_{3}=\left(\lambda^{(2)}(n(j)), \mu^{(2)}(m(k))\right)
$$

Since

$$
\frac{1}{\lambda^{(2)}(n(j)) \mu^{(2)}(m(k))} \sum_{(p, q)=(1,1)}^{\left(\left(\lambda^{(2)}(n(j)) \mu^{(2)}(m(k))\right)\right)} s_{p q}=C_{\lambda^{(2)}(n(j)), \mu^{(2)}(m(k))}
$$

and $t_{n m}=j k$ for $n \in\left\{\lambda^{(2)}(n(j))\right\}$ and $m \in\left\{\mu^{(2)}(m(k))\right\}$ we have $[s] \notin C_{\beta_{3}}$ which implies $[s] \notin C_{\beta_{2}}$.

Osikiewicz [5] has given a characterization for equivalence of Cesàro method and its submethods. The following theorem is an analog for four dimensional Cesàro method and its submethods.

Theorem 2.2. Let $\beta=(\lambda(n), \mu(m))$ be a double index sequence.
i) If

$$
\begin{equation*}
\lim _{n} \frac{\lambda(n+1)}{\lambda(n)}=\lim _{m} \frac{\mu(m+1)}{\mu(m)}=1 \tag{2.1}
\end{equation*}
$$

then C_{1} and C_{β} are equivalent for bounded double sequences.
ii) If C_{1} and C_{β} are equivalent for bounded double sequences then

$$
\lim _{n} \frac{\lambda(n+1)}{\lambda(n)}=1 \text { or } \lim _{m} \frac{\mu(m+1)}{\mu(m)}=1
$$

Proof. i) By Theorem 2.1 we have $C_{1} \subseteq C_{\beta}$. Let $[x]=\left(x_{j k}\right)$ be a bounded double sequence that is C_{β} summable to L and assume

$$
\lim _{n} \frac{\lambda(n+1)}{\lambda(n)}=\lim _{m} \frac{\mu(m+1)}{\mu(m)}=1
$$

Consider the sets $F_{1}=\mathbb{N} \backslash E(\lambda)=:\left\{\alpha_{1}(n)\right\}$ and $F_{2}=\mathbb{N} \backslash E(\mu)=:\left\{\alpha_{2}(m)\right\}$.
Case I. If the sets F_{1} and F_{2} are finite, then Theorem 2.1 implies that $C_{\beta} \subseteq C_{1}$.
Case II. Assume F_{1} and F_{2} are both infinite sets. Then there exists an n_{0} such that for $n, m \geq n_{0}, \alpha_{1}(n)>\lambda(1)$ and $\alpha_{2}(m)>\mu(1)$. Since $E(\lambda) \cap F_{1}=\varnothing$ and $E(\mu) \cap F_{2}=\varnothing$, for all $n, m \geq n_{0}$, there exist $p, q \in \mathbb{N}$ such that $\lambda(p)<\alpha_{1}(n)<\lambda(p+1)$ and $\mu(q)<\alpha_{2}(m)<\mu(q+1)$. It can be written that $\alpha_{1}(n)=\lambda(p)+a$ and $\alpha_{2}(m)=\mu(q)+b$, where

$$
\begin{equation*}
0<a<\lambda(p+1)-\lambda(p) \text { and } 0<b<\mu(q+1)-\mu(q) \tag{2.2}
\end{equation*}
$$

Now define a double index sequence β^{\prime} as

$$
\beta^{\prime}(n, m)=\left(\alpha_{1}(n), \alpha_{2}(m)\right)
$$

Then for $n, m \geq n_{0}$,

$$
\begin{aligned}
& \left|\left(C_{\beta^{\prime}} x\right)_{n m}-\left(C_{\beta} x\right)_{p q}\right|=\left|\frac{1}{\alpha_{1}(n) \alpha_{2}(m)} \sum_{(j, k)=(1,1)}^{\left(\alpha_{1}(n), \alpha_{2}(m)\right)} x_{j k}-\frac{1}{\lambda(p) \mu(q)} \sum_{(j, k)=(1,1)}^{(\lambda(p), \mu(q))} x_{j k}\right| \\
& =\left|\frac{1}{(\lambda(p)+a)(\mu(q)+b)} \sum_{(j, k)=(1,1)}^{(\lambda(p)+a, \mu(q)+b)} x_{j k}-\frac{1}{\lambda(p) \mu(q)} \sum_{(j, k)=(1,1)}^{(\lambda(p), \mu(q))} x_{j k}\right| \\
& =\left\lvert\, \frac{1}{(\lambda(p)+a)(\mu(q)+b)} \sum_{(j, k)=(1,1)}^{(\lambda(p), \mu(q))} x_{j k}-\frac{1}{\lambda(p) \mu(q)} \sum_{(j, k)=(1,1)}^{(\lambda(p), \mu(q))} x_{j k}\right. \\
& +\frac{1}{(\lambda(p)+a)(\mu(q)+b)}\left\{\begin{array}{l}
\sum_{(j, k)=(1, \mu(q)+1)}^{(\lambda(p), \mu(q)+b)} x_{j k}+\sum_{(j, k)=(\lambda(p)+1,1)}^{(\lambda(p)+a, \mu(q))} x_{j k}
\end{array}\right. \\
& \quad+\sum_{(\lambda(p)+a, \mu(q)+b)}^{\left.\sum_{(j, k)=(\lambda(p)+1, \mu(q)+1)} x_{j k}\right\} \mid} \\
& \leq\|x\|_{(\infty, 2)}^{\sum_{(j, k)=(1,1)}^{(\lambda), \mu(q))}\left|\frac{1}{(\lambda(p)+a)(\mu(q)+b)}-\frac{1}{\lambda(p) \mu(q)}\right|}
\end{aligned}
$$

$$
\begin{aligned}
& +\|x\|_{(\infty, 2)} \frac{b \lambda(p)+a \mu(q)+a b}{(\lambda(p)+a)(\mu(q)+b)} \\
& \leq 2\|x\|_{(\infty, 2)} \frac{b \lambda(p)+a \mu(q)+a b}{\lambda(p) \mu(q)}
\end{aligned}
$$

By 2.2 we have

$$
\begin{align*}
\left|\left(C_{\beta^{\prime}} x\right)_{n m}-\left(C_{\beta} x\right)_{p q}\right| & \leq 2\|x\|_{(\infty, 2)} \frac{b \lambda(p)+a \mu(q)+a b}{\lambda(p) \mu(q)} \\
& \leq 2\|x\|_{(\infty, 2)}\left(\frac{\lambda(p+1) \mu(q+1)}{\lambda(p) \mu(q)}-1\right) \tag{2.3}
\end{align*}
$$

Since

$$
\left|\left(C_{\beta^{\prime}} x\right)_{n m}-L\right| \leq\left|\left(C_{\beta^{\prime}} x\right)_{n m}-\left(C_{\beta} x\right)_{p q}\right|+\left|\left(C_{\beta} x\right)_{p q}-L\right|
$$

it follows from 2.1, 2.3 and Proposition 1.1 that $P-\lim _{n, m}\left(C_{\beta^{\prime}} x\right)_{n m}=L$.
As the double sequence $\left\{\left(C_{1} x\right)_{n m}\right\}$ may be partitioned into two subsequences $\left\{\left(C_{\beta^{\prime}} x\right)_{n m}\right\}$ and $\left\{\left(C_{\beta} x\right)_{n m}\right\}$, each having the common P-limit $L,[x]$ must be $C_{1}-$ summable to L. Hence $C_{\beta} \subseteq C_{1}$.
Case III. Assume F_{1} is infinite set and F_{2} is finite set and define a double index sequence β^{\prime} as

$$
\beta^{\prime}(n, m)=\left(\alpha_{1}(n), \mu(m)\right) .
$$

Now using the same argument in Case II with taking $b=0$ we have

$$
\begin{equation*}
\left|\left(C_{\beta^{\prime}} x\right)_{n m}-\left(C_{\beta} x\right)_{p q}\right| \leq 2\|x\|_{(\infty, 2)}\left(\frac{\lambda(p+1)}{\lambda(p)}-1\right) . \tag{2.4}
\end{equation*}
$$

Since

$$
\left|\left(C_{\beta^{\prime}} x\right)_{n m}-L\right| \leq\left|\left(C_{\beta^{\prime}} x\right)_{n m}-\left(C_{\beta} x\right)_{p q}\right|+\left|\left(C_{\beta} x\right)_{p q}-L\right|
$$

it follows from 2.1, 2.4 and Proposition 1.1 that $P-\lim _{n, m}\left(C_{\beta^{\prime}} x\right)_{n m}=L$.
As the double sequence $\left\{\left(C_{1} x\right)_{n m}\right\}$ may be partitioned into two subsequences $\left\{\left(C_{\beta^{\prime}} x\right)_{n m}\right\}$ and $\left\{\left(C_{\beta} x\right)_{n m}\right\}$, each having the common P-limit $L,[x]$ must be $C_{1}-$ summable to L. Hence $C_{\beta} \subseteq C_{1}$.
Case IV. If F_{1} is finite set and F_{2} is infinite set, then we can get the proof as in Case III by changing the roles of F_{1} and F_{2}.

Hence for all cases we get $C_{\beta} \subseteq C_{1}$.
ii) Assume that $\limsup _{n} \frac{\lambda(n+1)}{\lambda(n)}>1$ and $\limsup _{m} \frac{\mu(m+1)}{\mu(m)}>1$. Then, we choose two strictly increasing sequences of positive integers $n(j)$ and $m(k)$ such that

$$
\begin{equation*}
\lim _{j} \frac{\lambda(n(j)+1)}{\lambda(n(j))}=L_{1}>1 \text { and } \lim _{k} \frac{\mu(m(k)+1)}{\mu(m(k))}=L_{2}>1 \tag{2.5}
\end{equation*}
$$

with $\lambda(n(j)+1)-\lambda(n(j))$ and $\mu(m(k)+1)-\mu(m(k))$ are odd. Let I_{j} and S_{k} be the intervals $[\lambda(n(j))+1, \lambda(n(j)+1)-1]$ and $[\mu(m(k))+1, \mu(m(k)+1)-1]$, respectively. $\left|I_{j}\right|$ and $\left|S_{k}\right|$ will always be even by the choice of $n(j)$ and $m(k)$, where $|E|$ is the number of the integers in E. If we define a double sequence $[x]$ by $x_{p q}=0$
if $p \in\left[\lambda(n(j))+1, \lambda(n(j))+\frac{\left|I_{j}\right|}{2}\right]$ or $q \in\left[\mu(m(k))+1, \mu(m(k))+\frac{\left|S_{k}\right|}{2}\right], x_{p q}=1$ if $p \in\left(\lambda(n(j))+\frac{\left|I_{j}\right|}{2}, \lambda(n(j)+1)-1\right]$ and $q \in\left(\mu(m(k))+\frac{\left|S_{k}\right|}{2}, \mu(m(k)+1)-1\right]$, $x_{p q}=0$ if $p \notin\left|I_{j}\right|$ or $q \notin\left|S_{k}\right|$ and p or q is odd, $x_{p q}=1$ if $p \notin\left|I_{j}\right|$ or $q \notin\left|S_{k}\right|$ and p and q are even, for $j, k=1,2, \ldots$. Then for given j, k we have $\sum_{(p, q) \in I_{j} \times S_{k}} x_{p q}=\frac{\left|I_{j}\right|\left|S_{k}\right|}{4}$ and for given n, m we have

$$
\left(C_{\beta} x\right)_{n m}=\frac{1}{\lambda(n) \mu(m)} \sum_{(p, q)=(1,1)}^{(\lambda(n), \mu(m))} x_{p q}=\frac{1}{\lambda(n) \mu(m)}\left[\left|\frac{\lambda(n)}{2}\right|\right]\left[\left|\frac{\mu(m)}{2}\right|\right]
$$

where $[|K|]$ denotes the greatest integer that is not greater than K. Hence, we have $P-\lim _{n, m}\left(C_{\beta} x\right)_{n m}=\frac{1}{4}$. Now define a double index sequence $\sigma(j, k)$ by

$$
\sigma(j, k)=(a(j), b(k))
$$

where $a(j)=\lambda(n(j))+\frac{\left|I_{j}\right|}{2}$ and $b(k)=\mu(m(k))+\frac{\left|S_{k}\right|}{2}$. For all j we get

$$
\begin{gathered}
\left(C_{\sigma} x\right)_{j k}=\frac{1}{a(j) b(k)} \sum_{(p, q)=(1,1)}^{(a(k), b(k))} x_{p q} \\
=\frac{1}{\left(\lambda(n(j))+\frac{\left|I_{j}\right|}{2}\right)} \frac{\left(\lambda(n(j))+\frac{\left|I_{j}\right|}{2}, \mu(m(k))+\frac{\left|S_{k}\right|}{2}\right)}{\left(\mu(m(k))+\frac{\left|S_{k}\right|}{2}\right)} \sum_{(p, q)=(1,1)} x_{p q} \\
=\frac{1}{\left(\lambda(n(j))+\frac{\left|I_{j}\right|}{2}\right)} \frac{1}{\left(\mu(m(k))+\frac{\left|S_{k}\right|}{2}\right)} \sum_{(\lambda(n(j)), \mu(m(k)))}^{\sum_{p, q)=(1,1)}} x_{p q} \\
\approx \frac{1}{\left(\lambda(n(j))+\frac{\left|I_{j}\right|}{2}\right)} \frac{1}{\left(\mu(m(k))+\frac{\left|S_{k}\right|}{2}\right)} \frac{\lambda(n(j))}{2} \frac{\mu(m(k))}{2} \\
=\frac{\lambda(n(j))}{2 \lambda(n(j))+\left|I_{j}\right|} \frac{\mu(m(k))}{2 \mu(m(k))+\left|S_{k}\right|} \\
=\frac{\lambda(n(j))}{2 \lambda(n(j))+\lambda(n(j)+1)-\lambda(n(j))-1} \frac{1}{2 \mu(m(k))+\mu(m(k)+1)-\mu(m(k))-1} \\
=\frac{1}{2(n(n)+1)}+1-\frac{1}{\lambda(n(j))} \frac{\mu(m(k)+1)}{\mu(m(k))}+1-\frac{1}{\mu(m(k))}
\end{gathered}
$$

From 2.5 and Proposition 1.1 we have

$$
P-\lim _{j, k}\left(C_{\sigma} x\right)_{j k}=\frac{1}{L_{1}+1} \frac{1}{L_{2}+1}<\frac{1}{4}
$$

Since $\left\{\left(C_{\sigma} x\right)_{j k}\right\}$ and $\left\{\left(C_{\beta} x\right)_{n m}\right\}$ are two subsequences of $\left\{\left(C_{1} x\right)_{n m}\right\}$ with $P-$ $\lim _{j, k}\left(C_{\sigma} x\right)_{j k}<\frac{1}{4}$ and $P-\lim _{n, m}\left(C_{\beta} x\right)_{n m}=\frac{1}{4},[x]$ cannot be $C_{1}-$ summable. On the other hand, we may choose $n(j)$ and $m(k)$ such that

$$
\lambda(n(j)+1)-\lambda(n(j)) \text { and } \mu(m(k)+1)-\mu(m(k)) \text { are even }
$$

or

$$
\lambda(n(j)+1)-\lambda(n(j)) \text { is odd and } \mu(m(k)+1)-\mu(m(k)) \text { is even }
$$

or

$$
\lambda(n(j)+1)-\lambda(n(j)) \text { is even and } \mu(m(k)+1)-\mu(m(k)) \text { is odd }
$$

and we will continue the proof in the same way. Hence, we have C_{1} and C_{β} are not equivalent for bounded sequences.

Osikiewicz [5] has given an inclusion result between submethods of the ordinary Cesàro method. The following theorem gives similar results for four dimensional Cesàro submethods.

Theorem 2.3. Let $\beta_{1}(n, m)=\left(\lambda^{(1)}(n), \mu^{(1)}(m)\right)$ and $\beta_{2}(n, m)=\left(\lambda^{(2)}(n), \mu^{(2)}(m)\right)$ be two double index sequences such that

$$
P-\lim _{n m} \frac{\lambda^{(1)}(n) \mu^{(1)}(m)}{\lambda^{(2)}(n) \mu^{(2)}(m)}=1
$$

then $C_{\beta_{1}}$ and $C_{\beta_{2}}$ are equivalent for bounded double sequences.
Proof. Let $[x]$ be a bounded double sequence, and define two double sequences $T(n, m)$ and $t(n, m)$ by

$$
T(n, m)=\max \left\{\lambda^{(1)}(n) \mu^{(1)}(m), \lambda^{(2)}(n) \mu^{(2)}(m)\right\}
$$

and

$$
t(n, m)=\min \left\{\lambda^{(1)}(n) \mu^{(1)}(m), \lambda^{(2)}(n) \mu^{(2)}(m)\right\}
$$

It is easy to see that $P-\lim _{n m} \frac{t(n, m)}{T(n, m)}=1$. Now define two double index sequences $T^{*}(n, m)=\left(T_{1}(n), T_{2}(m)\right)$ and $t^{*}(n, m)=\left(t_{1}(n), t_{2}(m)\right)$ by

$$
T^{*}(n, m)= \begin{cases}\left(\lambda^{(1)}(n), \mu^{(1)}(m)\right), & \lambda^{(1)}(n) \mu^{(1)}(m)=T(n, m) \\ \left(\lambda^{(2)}(n), \mu^{(2)}(m)\right), & \lambda^{(2)}(n) \mu^{(2)}(m)=T(n, m)\end{cases}
$$

and

$$
t^{*}(n, m)= \begin{cases}\left(\lambda^{(1)}(n), \mu^{(1)}(m)\right), & \lambda^{(1)}(n) \mu^{(1)}(m)=t(n, m) \\ \left(\lambda^{(2)}(n), \mu^{(2)}(m)\right), & \lambda^{(2)}(n) \mu^{(2)}(m)=t(n, m) .\end{cases}
$$

Note that $T(n, m)=T_{1}(n) T_{2}(m)$ and $t(n, m)=t_{1}(n) t_{2}(m)$. Then for fixed n, m we get

$$
\begin{align*}
& \left|\left(C_{\beta_{1}} x\right)_{n m}-\left(C_{\beta_{2}} x\right)_{n m}\right|=\left\lvert\, \frac{1}{\lambda^{(1)}(n) \mu^{(1)}(m)} \sum_{(j, k)=(1,1)}^{\left(\lambda^{(1)}(n), \mu^{(1)}(m)\right)} x_{j k}-\right. \\
& \left.\frac{1}{\lambda^{(2)}(n) \mu^{(2)}(m)} \sum_{(j, k)=(1,1)}^{\left(\lambda^{(2)}(n), \mu^{(2)}(m)\right)} x_{j k} \right\rvert\, \\
& =\left|\frac{1}{T(n, m)} \sum_{(j, k)=(1,1)}^{T^{*}(n, m)} x_{j k}-\frac{1}{t(n, m)} \sum_{(j, k)=(1,1)}^{t^{*}(n, m)} x_{j k}\right| \\
& =\left\lvert\, \sum_{(j, k)=(1,1)}^{t^{*}(n, m)}\left(\frac{1}{T(n, m)}-\frac{1}{t(n, m)}\right) x_{j k}\right. \\
& +\frac{1}{T(n, m)}\left\{\sum_{(j, k)=\left(t_{1}(n)+1,1\right)}^{\left(T_{1}(n), t_{2}(m)\right)} x_{j k}+\sum_{(j, k)=\left(1, t_{2}(m)+1\right)}^{\left(t_{1}(n), T_{2}(m)\right)} x_{j k}\right. \\
& \left.+\sum_{(j, k)=\left(t_{1}(n)+1, t_{2}(m)+1\right)}^{\left(T_{1}(n), T_{2}(m)\right)} x_{j k}\right\} \mid \\
& \leq\|x\|_{(\infty, 2)} \sum_{(j, k)=(1,1)}^{t^{*}(n, m)} \frac{T_{1}(n) T_{2}(m)-t_{1}(n) t_{2}(m)}{T_{1}(n) T_{2}(m) t_{1}(n) t_{2}(m)} \\
& +\|x\|_{(\infty, 2)} \frac{1}{T_{1}(n) T_{2}(m)}\left\{\left(T_{1}(n)-t_{1}(n)\right) t_{2}(m)\right. \\
& \left.+t_{1}(n)\left(T_{2}(m)-t_{2}(m)\right)+\left(T_{1}(n)-t_{1}(n)\right)\left(T_{2}(m)-t_{2}(m)\right)\right\} \\
& =2\|x\|_{(\infty, 2)} \frac{T_{1}(n) T_{2}(m)-t_{1}(n) t_{2}(m)}{T_{1}(n) T_{2}(m)} \\
& =2\|x\|_{(\infty, 2)}\left(1-\frac{t_{1}(n) t_{2}(m)}{T_{1}(n) T_{2}(m)}\right) \\
& =2\|x\|_{(\infty, 2)}\left(1-\frac{t(n, m)}{T(n, m)}\right) \text {. } \tag{2.6}
\end{align*}
$$

Since

$$
\left|\left(C_{\beta_{1}} x\right)_{n m}-L\right| \leq\left|\left(C_{\beta_{1}} x\right)_{n m}-\left(C_{\beta_{2}} x\right)_{n m}\right|+\left|\left(C_{\beta_{2}} x\right)_{n m}-L\right|
$$

2.6 implies that $[x]$ is $C_{\beta_{1}}$ summable to L provided that $[x]$ is $C_{\beta_{2}}$ summable to L. Hence, $C_{\beta_{1}}$ is equivalent to $C_{\beta_{2}}$ for bounded double sequences.

We have compared C_{β} and C_{1} for bounded double sequences in Theorem 2.2. Next, replacing the convergence condition in 2.1 by P - boundedness, we show that
C_{β} is equivalent to C_{1} for nonnegative double sequences that are $C_{\beta}-$ summable to 0.

Theorem 2.4. Let $\beta=(\lambda(n), \mu(m))$ be a double index sequence. Then the following statements are equivalent:
i) The double sequence $[y]=\left(y_{n m}\right)$ defined by

$$
\begin{equation*}
y_{n m}=\left(\frac{\lambda(n+1) \mu(m+1)}{\lambda(n) \mu(m)}\right), \text { for all } n, m \in \mathbb{N} \tag{2.7}
\end{equation*}
$$

is $P-$ bounded.
ii) $[x]$ is C_{1} summable to 0 where $[x]$ is a nonnegative double sequence that is C_{β} summable to 0 .

Proof. Let $[x]$ is a nonnegative double sequence that is C_{β} summable to 0 and assume that the double sequence [y] defined by 2.7 is P-bounded. Consider the sets

$$
F_{1}=\mathbb{N} \backslash E(\lambda)=:\left\{\alpha_{1}(n)\right\} \text { and } F_{2}=\mathbb{N} \backslash E(\mu)=:\left\{\alpha_{2}(m)\right\}
$$

Case I. If the sets F_{1} and F_{2} are finite then Theorem 2.1 implies that $C_{\beta} \subseteq C_{1}$.
Case II. Assume F_{1} and F_{2} are both infinite sets. Then there exists an n_{0} such that for $n, m \geq n_{0}, \alpha_{1}(n)>\lambda(1)$ and $\alpha_{2}(m)>\mu(1)$. Since $E(\lambda) \cap F_{1}=\varnothing$ and $E(\mu) \cap F_{2}=\varnothing$, for all $n, m \geq n_{0}$, there exist $p, q \in \mathbb{N}$ such that $\lambda(p)<\alpha_{1}(n)<\lambda(p+1)$ and $\mu(q)<\alpha_{2}(m)<\mu(q+1)$. It can be written that $\alpha_{1}(n)=\lambda(p)+a$ and $\alpha_{2}(m)=\mu(q)+b$, where

$$
\begin{equation*}
0<a<\lambda(p+1)-\lambda(p) \text { and } 0<b<\mu(q+1)-\mu(q) \tag{2.8}
\end{equation*}
$$

Now define a double index sequence β^{\prime} as

$$
\beta^{\prime}(n, m)=\left(\alpha_{1}(n), \alpha_{2}(m)\right) .
$$

Then for $n, m \geq n_{0}$ we have,

$$
\begin{gathered}
\left(C_{\beta^{\prime}} x\right)_{n m}=\frac{1}{\alpha_{1}(n) \alpha_{2}(m)} \sum_{(j, k)=(1,1)}^{\left(\alpha_{1}(n), \alpha_{2}(m)\right)} x_{j k}=\frac{1}{(\lambda(p)+a)(\mu(q)+b)} \sum_{(j, k)=(1,1)}^{(\lambda(p), \mu(q))} x_{j k} \\
+\frac{1}{(\lambda(p)+a)(\mu(q)+b)}\left\{\sum_{(j, k)=(1, \mu(q)+1)}^{(\lambda(p), \mu(q)+b)} x_{j k}+\sum_{(j, k)=(\lambda(p)+1,1)}^{(\lambda(p)+a, \mu(q))} x_{j k}+\right. \\
\leq \frac{1}{\lambda(p) \mu(q)} \sum_{(j, k)=(1,1)}^{(\lambda(p), \mu(q))} x_{j k}+\frac{\sum_{(\lambda, \mu)=(q)+b)}^{(\lambda(p)+a)(\mu(q)+b)} x_{j k} \sum_{(j, k)=(1,1)}^{(\lambda(p)+1, \mu(q)+1)} x_{j k}}{} \\
\leq \frac{1}{\lambda(p) \mu(q)} \sum_{(j, k)=(1,1)}^{(\lambda(p), \mu(q))} x_{j k}
\end{gathered}
$$

$$
\begin{gather*}
+3 \frac{\lambda(p+1) \mu(q+1)}{(\lambda(p)+a)(\mu(q)+b)} \frac{1}{\lambda(p+1) \mu(q+1)} \sum_{(j, k)=(1,1)}^{(\lambda(p+1), \mu(q+1))} x_{j k} \\
\leq\left(C_{\beta} x\right)_{p q}+3 \frac{\lambda(p+1) \mu(q+1)}{\lambda(p) \mu(q)}\left(C_{\beta} x\right)_{p+1, q+1} \tag{2.9}
\end{gather*}
$$

Since $P-\lim [x]=0$ and $[y]$ is $P-$ bounded, from 2.9 we get

$$
P-\lim _{n, m}\left(C_{\beta^{\prime}} x\right)_{n m}=0
$$

As the double sequence $\left\{\left(C_{1} x\right)_{n m}\right\}$ may be partitioned into two subsequences $\left\{\left(C_{\beta^{\prime}} x\right)_{n m}\right\}$ and $\left\{\left(C_{\beta} x\right)_{n m}\right\}$, each having the common P-limit $0,[x]$ must be C_{1} - summable to 0 .
Case III. Assume F_{1} is infinite set and F_{2} is finite set and define a double index sequence β^{\prime} as

$$
\beta^{\prime}(n, m)=\left(\alpha_{1}(n), \mu(m)\right)
$$

Then for all $n \geq n_{0}$ and for all $m \in \mathbb{N}$

$$
\begin{aligned}
\left(C_{\beta^{\prime}} x\right)_{n m}= & \frac{1}{\alpha_{1}(n) \mu(m)} \sum_{(j, k)=(1,1)}^{\left(\alpha_{1}(n), \mu(m)\right)} x_{j k} \\
= & \frac{1}{(\lambda(p)+a) \mu(m)}\left\{\sum_{(j, k)=(1,1)}^{(\lambda(p), \mu(m))} x_{j k}+\sum_{(j, k)=(\lambda(p)+1,1)}^{(\lambda(p)+a, \mu(m))} x_{j k}\right\} \\
\leq & \frac{1}{\lambda(p) \mu(m)} \sum_{(j, k)=(1,1)}^{(\lambda(p), \mu(m))} x_{j k}+\frac{1}{(\lambda(p)+a) \mu(m)} \sum_{(j, k)=(1,1)}^{(\lambda+1), \mu(m+1))} x_{j k} \\
\leq & \frac{1}{\lambda(p) \mu(m)} \sum_{(j, k)=(1,1)}^{(\lambda(p), \mu(m))} x_{j k} \\
& +\frac{\lambda(p+1) \mu(m+1)}{(\lambda(p)+a) \mu(m)} \frac{1}{\lambda(p+1) \mu(m+1)} \sum_{(j, k)=(1,1)}^{(\lambda(p+1), \mu(m+1))} x_{j k} \\
& \leq\left(C_{\beta} x\right)_{p q}+\frac{\lambda(p+1) \mu(m+1)}{\lambda(p) \mu(m)}\left(C_{\beta} x\right)_{p+1, m+1} .
\end{aligned}
$$

Then as in Case II we have $P-\lim _{n, m}\left(C_{1} x\right)_{n m}=0$.
Case IV. If F_{1} is finite set and F_{2} is infinite set, then we can get the proof as in Case III by interchanging the roles of F_{1} and F_{2}.

Conversely assume that $[y]$ is not P-bounded. Then there exist two index sequences $n(j)$ and $m(k)$ such that

$$
\begin{gather*}
P-\lim \frac{\lambda(n(j)+1) \mu(m(k)+1)}{\lambda(n(j)) \mu(m(k))}=\infty \tag{2.10}\\
\lambda(n(j)+1)>2 \lambda(n(j)) \text { and } \mu(m(k)+1)>2 \mu(m(k)), \tag{2.11}
\end{gather*}
$$

for all $a, b \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$

$$
\begin{equation*}
\lim _{j} \frac{\lambda(n(j))}{\lambda(n(j+a))}=1 \text { and } \lim _{k} \frac{\mu(m(k))}{\mu(m(k+b))}=1 \tag{2.12}
\end{equation*}
$$

and for all $s \in \mathbb{N}$

$$
\lambda(n(1)) \mu(m(1))+\ldots+\lambda(n(s-1)) \mu(m(s-1))<\lambda(n(s)) \mu(m(s))
$$

Now define the double sequence $[x]=\left(x_{p q}\right)$ by

$$
x_{p q}=\left\{\begin{array}{c}
1, \\
0,
\end{array} \begin{array}{c}
p \in(\lambda(n(t)), 2 \lambda(n(t))] \\
q \in(\mu(m(t)), 2 \mu(m(t))]
\end{array} \quad t=1,2, \ldots .\right.
$$

For fixed n, m such that $\lambda(n(1)+1) \leq \lambda(n)$ and $\mu(m(1)+1) \leq \mu(m)$, there exist j, k such that $\lambda(n(j)+1) \leq \lambda(n) \leq \lambda(n(j+1))$ and $\mu(m(k)+1) \leq \mu(m) \leq \mu(m(k+1))$. Then we have,

$$
\begin{gather*}
\left(C_{\beta} x\right)_{n m}=\frac{1}{\lambda(n) \mu(m)} \sum_{(p, q)=(1,1)}^{(\lambda(n), \mu(m))} x_{p q} \\
=\frac{1}{\lambda(n) \mu(m)}\left\{\begin{array}{c}
\sum_{(p, q)=(\lambda(n(1))+1, \mu(m(k))+1)}^{(2 \lambda(n(1)), 2 \mu(m(1)))} 1+\ldots+\sum_{(p, q)=(\lambda(n(i))+1, \mu(m(i))+1)}^{(2 \lambda(n(i)), 2 \mu(m(i)))}
\end{array}\right\} \\
=\frac{\lambda(n(i)+1) \mu(m(i)+1)}{\lambda(n) \mu(m)} \frac{\lambda(n(1)) \mu(m(1))+\ldots+\lambda(n(i)) \mu(m(i))}{\lambda(n(i)+1) \mu(m(i)+1)} \\
\leq \frac{\lambda(n(i)+1) \mu(m(i)+1)}{\lambda(n) \mu(m)} \frac{2 \lambda(n(i)) \mu(m(i))}{\lambda(n(i)+1) \mu(m(i)+1)} \\
\leq \frac{2 \lambda(n(i)) \mu(m(i))}{\lambda(n(i)+1) \mu(m(i)+1)} \tag{2.13}
\end{gather*}
$$

where $i=\min \{j, k\}$. Hence, from 2.10 and 2.13 we get

$$
\begin{equation*}
P-\lim _{n, m}\left(C_{\beta} x\right)_{n m}=0 \tag{2.14}
\end{equation*}
$$

Now let $\beta^{\prime}(j, k)=(\alpha(j), \gamma(k))$ be a double index sequences where

$$
\alpha(j)=2 \lambda(n(j)) \text { and } \gamma(k)=2 \mu(m(k))
$$

Then we get

$$
\begin{aligned}
\left(C_{\beta^{\prime}} x\right)_{j k}= & \frac{1}{\alpha(j) \gamma(k)} \sum_{(j, k)=(1,1)}^{(\alpha(j), \gamma(k))} x_{j k} \\
= & \frac{1}{4 \lambda(n(j)) \mu(m(k))} \sum_{(2 \lambda(n(j)), 2 \mu(m(k)))}^{(j, k)=(1,1)} x_{j k} \\
= & \frac{1}{4 \lambda(n(j)) \mu(m(k))}\left\{\sum_{(\lambda, k)=(1,1)}^{(\lambda(j)), \mu(m(k)))} x_{j k}+\sum_{(j, k)=(\lambda(n(j))+1,1)}^{(2 \lambda(n(j)), \mu(m(k)))} x_{j k}\right. \\
& \left.+\sum_{(\lambda(n(j)), 2 \mu(m(k)))} x_{j k}+\sum_{(j, k)=(1, \mu(m(k))+1)}^{(j, k)=(\lambda(n(j))+1, \mu(m(k))+1)}\right\} \\
= & \frac{1}{4}\left(C_{\beta} x\right)_{j k}+\frac{3}{4} \frac{\lambda(n(i)) \mu(m(i))}{\lambda(n(j)) \mu(m(k))}
\end{aligned}
$$

Since $i=\min \{j, k\}$, there exist nonnegative integers a, b such that $i=j+a$ and $i=k+b$. Then 2.12, 2.14 and Proposition 1.1 imply that $P-\lim _{j, k}\left(C_{\beta^{\prime}} x\right)_{j k}=\frac{3}{4}$.

Hence $[x]$ is not C_{1} summable.

References

[1] Armitage, D.H., Maddox, I.J., A new type of Cesàro mean, Analysis, 9(1989), 195-206.
[2] Goffman, C., Petersen, G.M., Submethods of regular matrix summability methods, Canad. J. Math., 8(1956), 40-46.
[3] Hamilton, J.A., Transformations of multiple sequences, Duke Math. J., 2(1936), 29-60.
[4] Khan, M.K., Osikiewicz, J.A., Inclusion results for convolution submethods, Int. J. Math. Math. Sci., 2004, 55-64.
[5] Osikiewicz, J.A., Equivalence results for Cesàro submethods, Analysis, 20(2000), 35-43.
[6] Patterson, R.F., Analogues of some fundamental theorems of summability theory, Int. J. Math. Math. Sci., 23(2000), 1-9.
[7] Pringsheim, A., Elementare theorie der unendliche doppelreihen, Sitsungs Berichte der Math. Akad. der Wissenschafften zu Müch. Ber., 7(1898), 101-153.

Mehmet Ünver
Ankara University, Faculty of Science
Department of Mathematics, Tandoğan 06100
Ankara, Turkey
e-mail: munver@ankara.edu.tr

