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Subordination results for a class of Bazilević
functions with respect to symmetric points
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Abstract. In this paper, using the principle of subordination we introduce the
class of Bazilević functions with respect to k-symmetric points. Several subordi-
nation results are obtained for this classes of functions involving a certain family
of linear operators.
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1. Introduction, definitions and preliminaries

Let H be the class of functions analytic in the open unit disc U = {z : | z |< 1}.
Let H(a, n) be the subclass of H consisting of functions of the form

f(z) = a + anzn + an+1z
n+1 + . . . .

Let
An = {f ∈ H, f(z) = z + an+1z

n+1 + an+2z
n+2 + . . .}

and let A = A1.
Let S denote the class of functions in A which are univalent in U . Also let P to

denote the class of functions of the form

p(z) = 1 +
∞∑

n=1

pnzn (z ∈ U),

which satisfy the condition Re(p(z)) > 0.
We denote by S∗, C, K and C∗ the familiar subclasses of A consisting of functions

which are respectively starlike, convex, close-to-convex and quasi-convex in U . One of
our favorite reference of the field is [4] which covers most of the topics in a lucid and
economical style.

Let the functions f(z) and g(z) be members of A. we say that the function g is
subordinate to f (or f is superordinate to g), written g ≺ f , if there exists a function
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w analytic in U , with w(0) = 0 and |w(z)| < 1 and such that g(z) = f(w(z)). In
particular, if g is univalent, then f ≺ g if f(0) = g(0) and f(U) ⊂ g(U). Using the
concept of subordination of analytic functions, Ma and Minda[6] introduced the class

S∗(φ) of functions in A satisfying zf
′
(z)

f(z) ≺ φ where φ ∈ P with φ
′
(0) > 0 maps U

onto a region starlike with respect to 1 and symmetric with respect to real axis.
For a fixed non zero positive integer k and fk(z) defined by the following equality

fk(z) =
1
k

k−1∑
ν=0

ε−ν
k f(εν

kz)
(

εk = exp
(

2πi

k

))
, (1.1)

a function f(z) ∈ A is said to be in the class S(k)
s (φ) if and only if it satisfies the

condition
zf

′
(z)

fk(z)
≺ φ(z) (z ∈ U), (1.2)

where φ ∈ P, the class of functions with positive real part.
Similarly, a function f(z) ∈ A is said to be in the class C(k)

s (φ) if and only if it
satisfies the condition

(zf
′
(z))

′

f
′
k(z)

≺ φ(z) (z ∈ U), (1.3)

where φ ∈ P, k ≥ 1 is a fixed positive integer and fk(z) is defined by equality (1.1).
The classes S(k)

s (φ) and C(k)
s (φ) were introduced and studied by Wang et. al. [11].

Motivated by the class of univalent Bazilević functions, we introduce the following:
For 0 ≤ γ < ∞, a function f(z) ∈ A is said to be in Bk(γ; φ) if and only if it satisfies
the condition

zf
′
(z)

[fk(z)]1−γ [gk(z)]γ
≺ φ(z), (z ∈ U ; g ∈ S(k)

s (φ)) (1.4)

where φ ∈ P and gk(z) 6= 0 for all z ∈ U is defined as in (1.1).
For complex parameters α1, . . . , αq and β1, . . . , βs (βj ∈ C \ Z−0 ; Z−0 =

0,−1, −2, . . . ; j = 1, . . . , s), we define the generalized hypergeometric function
qFs(α1, . . . , αq; β1, . . . , βs; z) by

qFs(α1, α2, . . . , αq; β1, β2, . . . , βs; z) =
∞∑

n=0

(α1)n . . . (αq)n

(β1)n . . . (βs)n

zn

n!

(q ≤ s + 1; q, s ∈ N0 = N ∪ {0}; z ∈ U),
where N denotes the set of positive integers and (x)k is the Pochhammer symbol
defined, in terms of the Gamma function Γ, by

(x)k =
Γ(x + k)

Γ(x)
=

{
1 if k = 0
x(x + 1)(x + 2) . . . (x + k − 1) if k ∈ N = {1, 2, , . . .}.

Corresponding to a function Gq, s(α1, β1; z) defined by

Gq, s(α1, β1; z) := z qFs(α1, α2, . . . , αq; β1, β2, . . . , βs; z), (1.5)
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Selvaraj and Karthikeyan in [9] recently introduced the following operator
Dm, q

λ, s (α1, β1)f : A −→ A by

D0, q
λ, s(α1, β1)f(z) = f(z) ∗ Gq, s(α1, β1; z)

D1, q
λ, s(α1, β1)f(z) = (1−λ)(f(z)∗Gq, s(α1, β1; z))+λ z(f(z)∗Gq, s(α1, β1; z))

′
(1.6)

Dm, q
λ, s (α1, β1)f(z) = D1, q

λ, s(D
m−1, q
λ, s (α1, β1)f(z)) (1.7)

If f of the form f(z) = z +
∑∞

n=2 anzn, then from (1.6) and (1.7) we may easily
deduce that

Dm, q
λ, s (α1, β1)f(z) = z +

∞∑
n=2

[
1 + (n− 1)λ

]m (α1)n−1 . . . (αq)n−1

(β1)n−1 . . . (βs)n−1

anzn

(n− 1)!
(1.8)

where m ∈ N0 = N ∪ {0} and λ ≥ 0. We remark that, for choice of the parameter
m = 0, the operator Dm, q

λ, s (α1, β1)f(z) reduces to the well-known Dziok- Srivastava
operator [1] and for q = 2, s = 1; α1 = β1, α2 = 1 and λ = 1, we get the operator
introduced by G. Ş. Sălăgean [8]. Also many (well known and new) integral and
differential operators can be obtained by specializing the parameters.

Throughout this paper we assume that

m, q, s ∈ N0, εk = exp
(

2πi

k

)
and

fq, s
k, λ(α1, β1; m; z) =

1
k

k−1∑
ν=0

ε−ν
k Dm, q

λ, s (α1, β1)f(εν
kz). (1.9)

Clearly, for k = 1, we have

fq, s
1, λ(α1, β1; m; z) = Dm, q

λ, s (α1, β1)f(z).

Lemma 1.1. [3]Let h be convex in U , with h(0) = a, δ 6= 0 and Re δ ≥ 0. If p ∈ H(a, n)
and

p(z) +
zp

′
(z)
δ

≺ h(z),

then
p(z) ≺ q(z) ≺ h(z),

where
q(z) =

δ

n zδ/n

∫ z

0

h(t) t(δ/n)−1dt.

The function q is convex and is the best (a, n)-dominant.

Lemma 1.2. [7]Let h be starlike in U , with h(0) = 0. If p ∈ H(a, n) satisfies

zp
′
(z) ≺ h(z),

then
p(z) ≺ q(z) = a + n−1

∫ z

0

h(t) t−1 dt.

The function q is convex and is the best (a, n)-dominant.

Remark 1.3. The Lemma 1.1 for the case of n = 1 was earlier given by Suffridge [10].
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2. Main results

We begin with the following

Theorem 2.1. Let f, g ∈ A with f(z), f
′
(z), fk(z) 6= 0 and gk(z) 6= 0 for all z ∈

U \ {0}. Also let h be convex in U with h(0) = 1 and Reh(z) > 0. Further suppose
that g ∈ S(k)

s (φ) and(
z(Dm, q

λ, s (α1, β1)f(z))
′

[fq, s
k, λ(α1, β1; m; z)]1−γ [gq, s

k, λ(α1, β1; m; z)]γ

)2 [
3 + 2

{
z(Dm, q

λ, s (α1, β1)f(z))
′′

(Dm, q
λ, s (α1, β1)f(z))′ −

(1− γ)
z
(
fq, s

k, λ(α1, β1; m; z)
)′

fq, s
k, λ(α1, β1; m; z)

− γ
z
(
gq, s

k, λ(α1, β1; m; z)
)′

gq, s
k, λ(α1, β1; m; z)

}]
≺ h(z).

(2.1)
Then

z(Dm, q
λ, s (α1, β1)f(z))

′

[fq, s
k, λ(α1, β1; m; z)]1−γ [gq, s

k, λ(α1, β1; m; z)]γ
≺ φ(z) =

√
Q(z) (2.2)

where

Q(z) =
1
z

∫ z

0

h(t) dt

and φ is convex and is the best dominant.

Proof. Let

p(z) =
z(Dm, q

λ, s (α1, β1)f(z))
′

[fq, s
k, λ(α1, β1; m; z)]1−γ [gq, s

k, λ(α1, β1; m; z)]γ
(z ∈ U ; γ ≥ 0),

then p(z) ∈ H(1, 1) with p(z) 6= 0.
Since h is convex, it can be easily seen that Q is convex and univalent in U . If we

make the change of the variables P (z) = p2(z), then P (z) ∈ H(1, 1) with P (z) 6= 0
in U .

By a straight forward computation, we have

zP
′
(z)

P (z)
= 2

[
1 +

z(Dm, q
λ, s (α1, β1)f(z))

′′

(Dm, q
λ, s (α1, β1)f(z))′ − (1− γ)

z
(
fq, s

k, λ(α1, β1; m; z)
)′

fq, s
k, λ(α1, β1; m; z)

−

γ
z
(
gq, s

k, λ(α1, β1; m; z)
)′

gq, s
k, λ(α1, β1; m; z)

]
.

Thus by (2.1), we have

P (z) + zP
′
(z) ≺ h(z) (z ∈ U). (2.3)

Now by Lemma 1.1, we deduce that

P (z) ≺ Q(z) ≺ h(z).
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Since Reh(z) > 0 and Q(z) ≺ h(z) we also have ReQ(z) > 0. Hence the univalence
of Q implies the univalence of

√
Q(z), p2(z) ≺ Q(z) implies that p(z) ≺

√
Q(z) and

the proof is complete. �

Corollary 2.2. Let f, g ∈ A with f
′
(z), fk(z) and gk(z) 6= 0 for all z ∈ U \ {0}. If

g ∈ S(k)
s and Re [Ω(z)] > η (0 ≤ η < 1), where

Ω(z) =

(
z(Dm, q

λ, s (α1, β1)f(z))
′

[fq, s
k, λ(α1, β1; m; z)]1−γ [gq, s

k, λ(α1, β1; m; z)]γ

)2

[
3 + 2

{
z(Dm, q

λ, s (α1, β1)f(z))
′′

(Dm, q
λ, s (α1, β1)f(z))′ − (1− γ)

z
(
fq, s

k, λ(α1, β1; m; z)
)′

fq, s
k, λ(α1, β1; m; z)

−γ
z
(
gq, s

k, λ(α1, β1; m; z)
)′

gq, s
k, λ(α1, β1; m; z)

}]
,

then

Re

[
z(Dm, q

λ, s (α1, β1)f(z))
′

[fq, s
k, λ(α1, β1; m; z)]1−γ [gq, s

k, λ(α1, β1; m; z)]γ

]
> λ(η),

where λ(η) = [2(1− η) · log 2 + (2η − 1)]
1
2 . This result is sharp.

Proof. If we let h(z) =
1 + (2η − 1)z

1 + z
0 ≤ η < 1 in Theorem 2.1.

It follows that Q(z) is convex and ReQ(z) > 0. Therefore

min
|z|≤1

Re
√

Q(z) =
√

Q(1) = [2(1− η) · log 2 + (2η − 1)]
1
2 .

Hence the proof of the Corollary.
If we let m = γ = 0, q = 2, s = 1, α1 = β1 and α2 = 1 in the Corollary 2.2, then

we have the following

Corollary 2.3. Let f ∈ A with f
′
(z) and fk(z) 6= 0 for all z ∈ U \ {0}. If

Re


(

zf
′
(z)

fk(z)

)2 [
3 +

2 zf
′′
(z)

f ′(z)
− 2 zf

′

k(z)
fk(z)

] > η,

then

Re
zf

′
(z)

fk(z)
> λ(η),

where λ(η) = [2(1− η) · log 2 + (2η − 1)]
1
2 . This result is sharp.

If we let γ = 1, m = 0, q = 2, s = 1, α1 = β1 and α2 = 1 in the Corollary 2.2,
then we have the following
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Corollary 2.4. Let f, g ∈ A with f
′
(z) and gk(z) 6= 0 for all z ∈ U \ {0}. If g ∈ S(k)

s

and

Re


(

zf
′
(z)

gk(z)

)2 [
3 +

2 zf
′′
(z)

f ′(z)
− 2 zg

′

k(z)
gk(z)

] > η,

then

Re
zf

′
(z)

gk(z)
> λ(η),

where λ(η) = [2(1− η) · log 2 + (2η − 1)]
1
2 . This result is sharp.

Remark 2.5. If we let k = 1 in Corollary 2.4 and in Corollary 2.3, then we have the
condition for usual starlikeness and close-to-convex respectively.

Theorem 2.6. Let f, g ∈ A with f(z), f
′
(z) and gk(z) 6= 0 for all z ∈ U \{0}. Further

suppose h is starlike with h(0) = 0 in the unit disk U , g ∈ S(k)
s (φ) and

1 +
z(Dm, q

λ, s (α1, β1)f(z))
′′

(Dm, q
λ, s (α1, β1)f(z))′ − (1− γ)

z
(
fq, s

k, λ(α1, β1; m; z)
)′

fq, s
k, λ(α1, β1; m; z)

−

γ
z
(
gq, s

k, λ(α1, β1; m; z)
)′

gq, s
k, λ(α1, β1; m; z)

≺ h(z) (z ∈ U ; γ ≥ 0).

(2.4)

Then

z(Dm, q
λ, s (α1, β1)f(z))

′

[fq, s
k, λ(α1, β1; m; z)]1−γ [gq, s

k, λ(α1, β1; m; z)]γ
≺ φ(z) = exp

(∫ z

0

h(t)
t

dt

)
(2.5)

where φ is convex and is the best dominant.

Proof. Let

Ψ(z) = 1 +
z(Dm, q

λ, s (α1, β1)f(z))
′′

(Dm, q
λ, s (α1, β1)f(z))′ −

(1− γ)
z
(
fq, s

k, λ(α1, β1; m; z)
)′

fq, s
k, λ(α1, β1; m; z)

− γ
z
(
gq, s

k, λ(α1, β1; m; z)
)′

gq, s
k, λ(α1, β1; m; z)

.

(2.6)

Since f , g ∈ A with f
′
(z), fk(z) and gk(z) 6= 0 for all z ∈ U \ {0}, therefore

Ψ(z) = z + b1z + b2z
2 + . . . .

Obviously Ψ is analytic in U . Thus we have

Ψ(z) = h(z) (z ∈ U).

Now by Lemma, we deduce that∫ z

0

Ψ(t)
t

dt ≺
∫ z

0

h(t)
t

dt. (2.7)
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Hence using

Ψ(z)
z

=
d

dz

[
log

{
z(Dm, q

λ, s (α1, β1)f(z))
′

[fq, s
k, λ(α1, β1; m; z)]1−γ [gq, s

k, λ(α1, β1; m; z)]γ

}]
in (2.7), we arrive at the desired result. �

If we let m = 0, q = 2, s = 1, α1 = β1 and α2 = 1 in the Theorem 2.6, then we
have the following

Corollary 2.7. Let f, g ∈ A with f(z), f
′
(z) and gk(z) 6= 0 for all z ∈ U \{0}. Further

suppose h is starlike with h(0) = 0 in the unit disk U and

1 +
zf

′′
(z)

f ′(z)
− (1− γ)

zf
′

k(z)
fk(z)

− γ
zg

′

k(z)
gk(z)

≺ h(z) (z ∈ U ; γ ≥ 0).

Then
zf

′
(z)

[fk(z)]1−γ [gk(z)]γ
≺ φ(z) = exp

(∫ z

0

h(t)
t

dt

)
where φ is convex and is the best dominant.

For k = 1 in the Corollary 2.7, we get result obtained by Goyal and Goswami in [2].
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