Subordination results for a class of Bazilevic functions with respect to symmetric points

Chellaian Selvaraj and Chinnian Santhosh Moni

Abstract

In this paper, using the principle of subordination we introduce the class of Bazilević functions with respect to k-symmetric points. Several subordination results are obtained for this classes of functions involving a certain family of linear operators.

Mathematics Subject Classification (2010): 30C45, 30C50.
Keywords: Analytic functions, Bazilević functions, k-symmetric points, differential operators, differential subordination.

1. Introduction, definitions and preliminaries

Let \mathcal{H} be the class of functions analytic in the open unit disc $\mathcal{U}=\{z:|z|<1\}$. Let $\mathcal{H}(a, n)$ be the subclass of \mathcal{H} consisting of functions of the form

$$
f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots
$$

Let

$$
\mathcal{A}_{n}=\left\{f \in \mathcal{H}, f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\ldots\right\}
$$

and let $\mathcal{A}=\mathcal{A}_{1}$.
Let \mathcal{S} denote the class of functions in \mathcal{A} which are univalent in \mathcal{U}. Also let \mathcal{P} to denote the class of functions of the form

$$
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \quad(z \in \mathcal{U})
$$

which satisfy the condition $\operatorname{Re}(p(z))>0$.
We denote by $\mathcal{S}^{*}, \mathcal{C}, \mathcal{K}$ and \mathcal{C}^{*} the familiar subclasses of \mathcal{A} consisting of functions which are respectively starlike, convex, close-to-convex and quasi-convex in \mathcal{U}. One of our favorite reference of the field is [4] which covers most of the topics in a lucid and economical style.

Let the functions $f(z)$ and $g(z)$ be members of \mathcal{A}. we say that the function g is subordinate to f (or f is superordinate to g), written $g \prec f$, if there exists a function
w analytic in \mathcal{U}, with $w(0)=0$ and $|w(z)|<1$ and such that $g(z)=f(w(z))$. In particular, if g is univalent, then $f \prec g$ if $f(0)=g(0)$ and $f(\mathcal{U}) \subset g(\mathcal{U})$. Using the concept of subordination of analytic functions, Ma and Minda[6] introduced the class $\mathcal{S}^{*}(\phi)$ of functions in \mathcal{A} satisfying $\frac{z f^{\prime}(z)}{f(z)} \prec \phi$ where $\phi \in \mathcal{P}$ with $\phi^{\prime}(0)>0$ maps \mathcal{U} onto a region starlike with respect to 1 and symmetric with respect to real axis.

For a fixed non zero positive integer k and $f_{k}(z)$ defined by the following equality

$$
\begin{equation*}
f_{k}(z)=\frac{1}{k} \sum_{\nu=0}^{k-1} \varepsilon_{k}^{-\nu} f\left(\varepsilon_{k}^{\nu} z\right) \quad\left(\varepsilon_{k}=\exp \left(\frac{2 \pi i}{k}\right)\right) \tag{1.1}
\end{equation*}
$$

a function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{S}_{s}^{(k)}(\phi)$ if and only if it satisfies the condition

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f_{k}(z)} \prec \phi(z) \quad(z \in \mathcal{U}) \tag{1.2}
\end{equation*}
$$

where $\phi \in \mathcal{P}$, the class of functions with positive real part.
Similarly, a function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{C}_{s}^{(k)}(\phi)$ if and only if it satisfies the condition

$$
\begin{equation*}
\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f_{k}^{\prime}(z)} \prec \phi(z) \quad(z \in \mathcal{U}) \tag{1.3}
\end{equation*}
$$

where $\phi \in \mathcal{P}, k \geq 1$ is a fixed positive integer and $f_{k}(z)$ is defined by equality (1.1). The classes $\mathcal{S}_{s}^{(k)}(\phi)$ and $\mathcal{C}_{s}^{(k)}(\phi)$ were introduced and studied by Wang et. al. [11]. Motivated by the class of univalent Bazilevic functions, we introduce the following: For $0 \leq \gamma<\infty$, a function $f(z) \in \mathcal{A}$ is said to be in $\mathcal{B}_{k}(\gamma ; \phi)$ if and only if it satisfies the condition

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{\left[f_{k}(z)\right]^{1-\gamma}\left[g_{k}(z)\right]^{\gamma}} \prec \phi(z), \quad\left(z \in \mathcal{U} ; g \in \mathcal{S}_{s}^{(k)}(\phi)\right) \tag{1.4}
\end{equation*}
$$

where $\phi \in \mathcal{P}$ and $g_{k}(z) \neq 0$ for all $z \in \mathcal{U}$ is defined as in (1.1).
For complex parameters $\alpha_{1}, \ldots, \alpha_{q}$ and $\beta_{1}, \ldots, \beta_{s}\left(\beta_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; \mathbb{Z}_{0}^{-}=\right.$ $0,-1,-2, \ldots ; j=1, \ldots, s)$, we define the generalized hypergeometric function ${ }_{q} F_{s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right)$ by

$$
\begin{gathered}
{ }_{q} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \ldots\left(\alpha_{q}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots\left(\beta_{s}\right)_{n}} \frac{z^{n}}{n!} \\
\left(q \leq s+1 ; q, s \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} ; z \in \mathcal{U}\right)
\end{gathered}
$$

where \mathbb{N} denotes the set of positive integers and $(x)_{k}$ is the Pochhammer symbol defined, in terms of the Gamma function Γ, by

$$
(x)_{k}=\frac{\Gamma(x+k)}{\Gamma(x)}= \begin{cases}1 & \text { if } k=0 \\ x(x+1)(x+2) \ldots(x+k-1) & \text { if } k \in \mathbb{N}=\{1,2, \ldots\}\end{cases}
$$

Corresponding to a function $\mathcal{G}_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right)$ defined by

$$
\begin{equation*}
\mathcal{G}_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right):=z_{q} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right) \tag{1.5}
\end{equation*}
$$

Selvaraj and Karthikeyan in [9] recently introduced the following operator $D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f: \mathcal{A} \longrightarrow \mathcal{A}$ by

$$
\begin{gather*}
D_{\lambda, s}^{0, q}\left(\alpha_{1}, \beta_{1}\right) f(z)=f(z) * \mathcal{G}_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right) \\
D_{\lambda, s}^{1, q}\left(\alpha_{1}, \beta_{1}\right) f(z)=(1-\lambda)\left(f(z) * \mathcal{G}_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right)\right)+\lambda z\left(f(z) * \mathcal{G}_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right)\right)^{\prime} \tag{1.6}\\
D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)=D_{\lambda, s}^{1, q}\left(D_{\lambda, s}^{m-1, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right) \tag{1.7}
\end{gather*}
$$

If f of the form $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, then from (1.6) and (1.7) we may easily deduce that

$$
\begin{equation*}
D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)=z+\sum_{n=2}^{\infty}[1+(n-1) \lambda]^{m} \frac{\left(\alpha_{1}\right)_{n-1} \ldots\left(\alpha_{q}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1} \ldots\left(\beta_{s}\right)_{n-1}} \frac{a_{n} z^{n}}{(n-1)!} \tag{1.8}
\end{equation*}
$$

where $m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $\lambda \geq 0$. We remark that, for choice of the parameter $m=0$, the operator $D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)$ reduces to the well-known Dziok- Srivastava operator [1] and for $q=2, s=1 ; \alpha_{1}=\beta_{1}, \alpha_{2}=1$ and $\lambda=1$, we get the operator introduced by G. Ş. Sălăgean [8]. Also many (well known and new) integral and differential operators can be obtained by specializing the parameters.

Throughout this paper we assume that

$$
m, q, s \in N_{0}, \quad \varepsilon_{k}=\exp \left(\frac{2 \pi i}{k}\right)
$$

and

$$
\begin{equation*}
f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)=\frac{1}{k} \sum_{\nu=0}^{k-1} \varepsilon_{k}^{-\nu} D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f\left(\varepsilon_{k}^{\nu} z\right) . \tag{1.9}
\end{equation*}
$$

Clearly, for $k=1$, we have

$$
f_{1, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)=D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)
$$

Lemma 1.1. [3]Let h be convex in \mathcal{U}, with $h(0)=a, \delta \neq 0$ and Re $\delta \geq 0$. If $p \in \mathcal{H}(a, n)$ and

$$
p(z)+\frac{z p^{\prime}(z)}{\delta} \prec h(z)
$$

then

$$
p(z) \prec q(z) \prec h(z),
$$

where

$$
q(z)=\frac{\delta}{n z^{\delta / n}} \int_{0}^{z} h(t) t^{(\delta / n)-1} d t
$$

The function q is convex and is the best (a, n)-dominant.
Lemma 1.2. [7]Let h be starlike in \mathcal{U}, with $h(0)=0$. If $p \in \mathcal{H}(a, n)$ satisfies

$$
z p^{\prime}(z) \prec h(z),
$$

then

$$
p(z) \prec q(z)=a+n^{-1} \int_{0}^{z} h(t) t^{-1} d t .
$$

The function q is convex and is the best (a, n)-dominant.
Remark 1.3. The Lemma 1.1 for the case of $n=1$ was earlier given by Suffridge [10].

2. Main results

We begin with the following
Theorem 2.1. Let $f, g \in \mathcal{A}$ with $f(z), f^{\prime}(z), f_{k}(z) \neq 0$ and $g_{k}(z) \neq 0$ for all $z \in$ $\mathcal{U} \backslash\{0\}$. Also let h be convex in \mathcal{U} with $h(0)=1$ and Re $h(z)>0$. Further suppose that $g \in \mathcal{S}_{s}^{(k)}(\phi)$ and

$$
\begin{align*}
& \left(\frac{z\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime}}{\left[f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right]^{1-\gamma}\left[g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right]^{\gamma}}\right)^{2}\left[3+2\left\{\frac{z\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime \prime}}{\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime}}-\right.\right. \\
& \left.\left.(1-\gamma) \frac{z\left(f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right)^{\prime}}{f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)}-\gamma \frac{z\left(g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right)^{\prime}}{g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)}\right\}\right] \prec h(z) . \tag{2.1}
\end{align*}
$$

Then

$$
\begin{equation*}
\frac{z\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime}}{\left[f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right]^{1-\gamma}\left[g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right]^{\gamma}} \prec \phi(z)=\sqrt{Q(z)} \tag{2.2}
\end{equation*}
$$

where

$$
Q(z)=\frac{1}{z} \int_{0}^{z} h(t) d t
$$

and ϕ is convex and is the best dominant.
Proof. Let

$$
p(z)=\frac{z\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime}}{\left[f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right]^{1-\gamma}\left[g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right]^{\gamma}} \quad(z \in \mathcal{U} ; \gamma \geq 0)
$$

then $p(z) \in \mathcal{H}(1,1)$ with $p(z) \neq 0$.
Since h is convex, it can be easily seen that Q is convex and univalent in \mathcal{U}. If we make the change of the variables $P(z)=p^{2}(z)$, then $P(z) \in \mathcal{H}(1,1)$ with $P(z) \neq 0$ in \mathcal{U}.

By a straight forward computation, we have

$$
\begin{array}{r}
\frac{z P^{\prime}(z)}{P(z)}=2\left[1+\frac{z\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime \prime}}{\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime}}-(1-\gamma) \frac{z\left(f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right)^{\prime}}{f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)}-\right. \\
\\
\left.\gamma \frac{z\left(g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right)^{\prime}}{g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)}\right]
\end{array}
$$

Thus by (2.1), we have

$$
\begin{equation*}
P(z)+z P^{\prime}(z) \prec h(z) \quad(z \in \mathcal{U}) \tag{2.3}
\end{equation*}
$$

Now by Lemma 1.1, we deduce that

$$
P(z) \prec Q(z) \prec h(z) .
$$

Since $\operatorname{Re} h(z)>0$ and $Q(z) \prec h(z)$ we also have $\operatorname{Re} Q(z)>0$. Hence the univalence of Q implies the univalence of $\sqrt{Q(z)}, p^{2}(z) \prec Q(z)$ implies that $p(z) \prec \sqrt{Q(z)}$ and the proof is complete.

Corollary 2.2. Let $f, g \in \mathcal{A}$ with $f^{\prime}(z), f_{k}(z)$ and $g_{k}(z) \neq 0$ for all $z \in \mathcal{U} \backslash\{0\}$. If $g \in \mathcal{S}_{s}^{(k)}$ and $\operatorname{Re}[\Omega(z)]>\eta \quad(0 \leq \eta<1)$, where

$$
\begin{aligned}
& \Omega(z)=\left(\frac{z\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime}}{\left[f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right]^{1-\gamma}\left[g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right]^{\gamma}}\right)^{2} \\
& {\left[3+2\left\{\frac{z\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime \prime}}{\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime}}-(1-\gamma) \frac{z\left(f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right)^{\prime}}{f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)}\right.\right.} \\
& \\
& \left.\left.-\gamma \frac{z\left(g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right)^{\prime}}{g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)}\right\}\right],
\end{aligned}
$$

then

$$
\operatorname{Re}\left[\frac{z\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime}}{\left[f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right]^{1-\gamma}\left[g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right]^{\gamma}}\right]>\lambda(\eta),
$$

where $\lambda(\eta)=[2(1-\eta) \cdot \log 2+(2 \eta-1)]^{\frac{1}{2}}$. This result is sharp.
Proof. If we let $h(z)=\frac{1+(2 \eta-1) z}{1+z} 0 \leq \eta<1$ in Theorem 2.1.
It follows that $Q(z)$ is convex and $\operatorname{Re} Q(z)>0$. Therefore

$$
\min _{|z| \leq 1} \operatorname{Re} \sqrt{Q(z)}=\sqrt{Q(1)}=[2(1-\eta) \cdot \log 2+(2 \eta-1)]^{\frac{1}{2}} .
$$

Hence the proof of the Corollary.
If we let $m=\gamma=0, q=2, s=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1$ in the Corollary 2.2, then we have the following

Corollary 2.3. Let $f \in \mathcal{A}$ with $f^{\prime}(z)$ and $f_{k}(z) \neq 0$ for all $z \in \mathcal{U} \backslash\{0\}$. If

$$
\operatorname{Re}\left\{\left(\frac{z f^{\prime}(z)}{f_{k}(z)}\right)^{2}\left[3+\frac{2 z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2 z f_{k}^{\prime}(z)}{f_{k}(z)}\right]\right\}>\eta
$$

then

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f_{k}(z)}>\lambda(\eta)
$$

where $\lambda(\eta)=[2(1-\eta) \cdot \log 2+(2 \eta-1)]^{\frac{1}{2}}$. This result is sharp.
If we let $\gamma=1, m=0, q=2, s=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1$ in the Corollary 2.2, then we have the following

Corollary 2.4. Let $f, g \in \mathcal{A}$ with $f^{\prime}(z)$ and $g_{k}(z) \neq 0$ for all $z \in \mathcal{U} \backslash\{0\}$. If $g \in \mathcal{S}_{s}^{(k)}$ and

$$
\operatorname{Re}\left\{\left(\frac{z f^{\prime}(z)}{g_{k}(z)}\right)^{2}\left[3+\frac{2 z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2 z g_{k}^{\prime}(z)}{g_{k}(z)}\right]\right\}>\eta
$$

then

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{g_{k}(z)}>\lambda(\eta)
$$

where $\lambda(\eta)=[2(1-\eta) \cdot \log 2+(2 \eta-1)]^{\frac{1}{2}}$. This result is sharp.
Remark 2.5. If we let $k=1$ in Corollary 2.4 and in Corollary 2.3, then we have the condition for usual starlikeness and close-to-convex respectively.

Theorem 2.6. Let $f, g \in \mathcal{A}$ with $f(z), f^{\prime}(z)$ and $g_{k}(z) \neq 0$ for all $z \in \mathcal{U} \backslash\{0\}$. Further suppose h is starlike with $h(0)=0$ in the unit disk $\mathcal{U}, g \in \mathcal{S}_{s}^{(k)}(\phi)$ and

$$
\begin{align*}
1+\frac{z\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime \prime}}{\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime}}-(1-\gamma) \frac{z\left(f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right)^{\prime}}{f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)}- \tag{2.4}\\
\gamma \frac{z\left(g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right)^{\prime}}{g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)} \prec h(z) \quad(z \in \mathcal{U} ; \gamma \geq 0) .
\end{align*}
$$

Then

$$
\begin{equation*}
\frac{z\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime}}{\left[f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right]^{1-\gamma}\left[g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right]^{\gamma}} \prec \phi(z)=\exp \left(\int_{0}^{z} \frac{h(t)}{t} d t\right) \tag{2.5}
\end{equation*}
$$

where ϕ is convex and is the best dominant.
Proof. Let

$$
\begin{align*}
\Psi(z)= & 1+\frac{z\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime \prime}}{\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime}}- \\
& (1-\gamma) \frac{z\left(f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right)^{\prime}}{f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)}-\gamma \frac{z\left(g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right)^{\prime}}{g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)} . \tag{2.6}
\end{align*}
$$

Since $f, g \in \mathcal{A}$ with $f^{\prime}(z), f_{k}(z)$ and $g_{k}(z) \neq 0$ for all $z \in \mathcal{U} \backslash\{0\}$, therefore

$$
\Psi(z)=z+b_{1} z+b_{2} z^{2}+\ldots
$$

Obviously Ψ is analytic in \mathcal{U}. Thus we have

$$
\Psi(z)=h(z) \quad(z \in \mathcal{U})
$$

Now by Lemma, we deduce that

$$
\begin{equation*}
\int_{0}^{z} \frac{\Psi(t)}{t} d t \prec \int_{0}^{z} \frac{h(t)}{t} d t . \tag{2.7}
\end{equation*}
$$

Hence using

$$
\frac{\Psi(z)}{z}=\frac{d}{d z}\left[\log \left\{\frac{z\left(D_{\lambda, s}^{m, q}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)^{\prime}}{\left[f_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right]^{1-\gamma}\left[g_{k, \lambda}^{q, s}\left(\alpha_{1}, \beta_{1} ; m ; z\right)\right]^{\gamma}}\right\}\right]
$$

in (2.7), we arrive at the desired result.
If we let $m=0, q=2, s=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1$ in the Theorem 2.6, then we have the following
Corollary 2.7. Let $f, g \in \mathcal{A}$ with $f(z), f^{\prime}(z)$ and $g_{k}(z) \neq 0$ for all $z \in \mathcal{U} \backslash\{0\}$. Further suppose h is starlike with $h(0)=0$ in the unit disk \mathcal{U} and

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\gamma) \frac{z f_{k}^{\prime}(z)}{f_{k}(z)}-\gamma \frac{z g_{k}^{\prime}(z)}{g_{k}(z)} \prec h(z) \quad(z \in \mathcal{U} ; \gamma \geq 0) .
$$

Then

$$
\frac{z f^{\prime}(z)}{\left[f_{k}(z)\right]^{1-\gamma}\left[g_{k}(z)\right]^{\gamma}} \prec \phi(z)=\exp \left(\int_{0}^{z} \frac{h(t)}{t} d t\right)
$$

where ϕ is convex and is the best dominant.
For $k=1$ in the Corollary 2.7, we get result obtained by Goyal and Goswami in [2].

References

[1] Dziok, J., Srivastava, H.M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103(1999), no. 1, 1-13.
[2] Goyal, S.P., Goswami, P., On sufficient conditions for analytic functions to be Bazilevič, Complex Var. Elliptic Equ., 54(2009), no. 5, 485-492.
[3] Hallenbeck, D.J., Ruscheweyh, S., Subordination by convex function, Proc. Amer. Soc., 52(1975), 191-195.
[4] Graham, I., Kohr, G., Geometric function theory in one and higher dimensions, Marcel Dekker Inc., New York, 2003.
[5] Liczberski, P., Połubiński, J., On (j, k)-symmetrical functions, Math. Bohem., 120(1995), no. 1, 13-28.
[6] Ma, W.C., Minda, D., A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994, 157-169.
[7] Miller, S.S., Mocanu, P.T., Differential subordinations, Marcel Dekker Inc., New York, 2000.
[8] Sălăgean, G.S., Subclasses of univalent functions, In: Complex Analysis - Fifth Romanian - Finnish Seminar, Part 1 (Bucharest, 1981), Springer, Berlin, 1983, 362-372.
[9] Selvaraj, C., Karthikeyan, K.R., Differential sandwich theorems for certain subclasses of analytic functions, Math. Commun., 13(2008), no. 2, 311-319.
[10] Suffridge, T.J., Some remarks on convex maps of the unit disk, Duke Math. J., 37(1970), 775-777.
[11] Wang, Z.G., Gao, C.Y., Yuan, S.M., On certain subclasses of close-to-convex and quasiconvex functions with respect to k-symmetric points, J. Math. Anal. Appl., 322(2006), no. 1, 97-106.

Chellaian Selvaraj
Department of Mathematics
Presidency College
Chennai-600 005
Tamilnadu, India
e-mail: pamc9439@yahoo.co.in
Chinnian Santhosh Moni
R.M.K. Engineering College
R.S.M. Nagar, Kavaraipettai-601206

Tamilnadu, India
e-mail: csmrmk@yahoo.com.

