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Partial sums of harmonic univalent functions

Saurabh Porwal and Kaushal Kishore Dixit

Abstract. In this paper, authors obtain conditions under which the partial sums
of the Libera integral operator of functions in the class HP (α), (0 ≤ α < 1),
consisting of harmonic univalent functions f = h+g for which Re{h′(z)+g′(z)} >
α, belong to the similar class HP (β), (0 ≤ β < 1). Further, we improve a recent
result on partial sums of functions of bounded turning in [6].
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1. Introduction

A continuous complex-valued function f = u + iv is said to be harmonic in a
simply connected domain D if both u and v are real harmonic in D. In any simply
connected domain we can write f = h+g , where h and g are analytic in D. We call h
the analytic part and g the co-analytic part of f . A necessary and sufficient condition
for f to be locally univalent and sense-preserving in D is that |h′(z)| > |g′(z)|, z ∈ D
(see Clunie and Sheil-Small [2]).

Denote by SH the class of functions f = h+g which are harmonic univalent and
sense-preserving in the unit disk U = {z : |z| < 1} for which f(0) = fz(0) − 1 = 0.
Then for f = h + g ∈ SH we may express the analytic functions h and g as

h(z) = z +
∞∑

k=2

akzk, g(z) =
∞∑

k=1

bkzk, |b1| < 1. (1.1)

For basic results on harmonic functions one may refer to the following standard
introductory text book by Duren [3].

Note that SH reduces to the class S of normalized analytic univalent functions
if the co-analytic part of its member is zero. For this class f(z) may be expressed as

f(z) = z +
∞∑

k=2

akzk, z ∈ U. (1.2)



16 Saurabh Porwal and Kaushal Kishore Dixit

For 0 ≤ α < 1 , B (α) denote the class of functions of the form (1.2) such that
Re {f ′ (z)} > α in U . The functions in B (α) are called functions of bounded turning
(cf. [5]).

Recently, Yalcin et al.[13] introduced the subclass HP (α) of SH consisting of
functions f of the form (1.1) satisfying the condition

Re {h′ (z) + g′ (z)} > α. (1.3)

In [13], HP ∗ (α) denote the subclass of HP (α) consisting of functions f = h+g
such that h and g are of the form

h(z) = z −
∞∑

k=2

|ak| zk, g(z) = −
∞∑

k=1

|bk| zk. (1.4)

We note that for f of the form (1.2), HP (α) reduces to the class B (α) satisfying
the condition Re {f ′ (z)} > α in U .

For f of the form (1.2), the Libera integral operator F is given by

F (z) =
2
z

∫ z

0

f (ς) dς = z +
∞∑

k=2

2
k + 1

akzk. (1.5)

For f = h + g in SH , where h and g are given by (1.1), the Libera integral
operator led us to define integral operator given by

F (z) =
2
z

∫ z

0

h (ς) dς +
2
z

∫ z

0

g (ς) dς = z +
∞∑

k=2

2
k + 1

akzk +
∞∑

k=1

2
k + 1

bkzk. (1.6)

The nth partial sums Fn (z) of the integral operator F (z) for functions f of the
form (1.1) are given by

Fn (z) = z +
n∑

k=2

2
k + 1

akzk +
n∑

k=1

2
k + 1

bkzk. (1.7)

= Hn (z) + Gn (z).

The nth partial sums Fn (z) of the Libera integral operator F (z) for analytic
univalent functions of the form (1.2) have been studied by various authors in ([6],
[8]) ( See also [1], [7], [9], [10], [11], [12]), yet analogous results on harmonic univalent
functions have not been so far explored. Motivated with the work of Jahangiri and
Farahmand [6], an attempt has been made to systematically study the partial sums
of harmonic univalent functions.

2. Main results

To derive our first main result, we need the following three lemmas. The first
lemma is due to Gasper [4], the second is due to Jahangiri and Farahmand [6] and
the third is a well-known and celebrated result (cf. [5]) that can be derived from the
Herglotz representation for positive real part functions.
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Lemma 2.1. Let θ be a real number and let m and k be natural numbers. Then

1
3

+
m∑

k=1

cos (kθ)
k + 2

≥ 0. (2.1)

Lemma 2.2. For z ∈ U ,

Re

(
m∑

k=1

zk

k + 2

)
> −1

3
. (2.2)

Lemma 2.3. Let P (z) be analytic in U , P (0) = 1 and Re (P (z)) > 1
2 in U . For

functions Q analytic in U , the convolution function P ∗Q takes values in the convex
hull of the image on U under Q.

The operator “∗′′ stands for the Hadamard product or convolution of two power
series f(z) =

∑∞
k=0 akzk and g(z) =

∑∞
k=0 bkzk is given by

(f ∗ g) (z) = f (z) ∗ g (z) =
∞∑

k=0

akbkzk.

Theorem 2.4. If f of the form (1.1) with b1 = 0 and f ∈ HP (α) , then Fn ∈
HP

(
4α−1

3

)
, for 1

4 ≤ α < 1.

Proof. Let f be of the form (1.1) and belong to HP (α) for 1
4 ≤ α < 1.

Since
Re {h′ (z) + g′ (z)} > α,

we have

Re

{
1 +

1
2 (1− α)

( ∞∑
k=2

kakzk−1 +
∞∑

k=2

kbkzk−1

)}
>

1
2
. (2.3)

Applying the convolution properties of power series to H ′
n (z) + G′

n (z), we may
write

H ′
n (z) + G′

n (z) = 1 +
n∑

k=2

2k

k + 1
akzk−1 +

n∑
k=2

2k

k + 1
bkzk−1

=

(
1 +

1
2 (1− α)

( ∞∑
k=2

k (ak + bk) zk−1

))
∗

(
1 + (1− α)

n∑
k=2

4
k + 1

zk−1

)
= P (z) ∗Q(z). (2.4)

From Lemma 2.2 for m = n− 1, we obtain

Re

(
n∑

k=2

zk−1

k + 1

)
> −1

3
. (2.5)

By applying a simple algebra to inequality (2.5) and Q(z) in (2.4)), one may
obtain

Re (Q (z)) = Re

{
1 + (1− α)

n∑
k=2

4
k + 1

zk−1

}
>

4α− 1
3

.
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On the other hand, the power series P (z) in (2.4) in conjunction with the con-
dition (2.3) yields

Re (P (z)) >
1
2
.

Therefore, by Lemma 2.3, Re {H ′
n (z) + G′

n (z)} > 4α−1
3 .

This completes the proof of Theorem 2.4. �

If f of the form (1.2) in Theorem 2.4, we obtain the following result of Jahangiri
and Farahmand in [6].

Corollary 2.5. If f of the form (1.2) and f ∈ B (α) , then Fn ∈ B
(

4α−1
3

)
, for

1
4 ≤ α < 1.

To prove our next theorem, we need the following Lemma due to Yalcin et al. [13].

Lemma 2.6. Let f = h + g be given by (1.4). Then f ∈ HP ∗ (α) if and only if
∞∑

k=2

k |ak|+
∞∑

k=1

k |bk| ≤ 1− α, 0 ≤ α < 1.

Theorem 2.7. Let f be of the form (1.4) with b1 = 0 and f ∈ HP ∗ (α) , then the
functions F (z) defined by (1.6) belongs to HP ∗ (ρ) , where ρ = 1+2α

3 . The result is
sharp. Further, the converse need not to be true.

Proof. Since f ∈ HP ∗ (α) , Lemma 2.6 ensures that
∞∑

k=2

k

1− α
(|ak|+ |bk|) ≤ 1. (2.6)

Also, from (1.6) we have

F (z) = z −
∞∑

k=2

2
k + 1

|ak| zk −
∞∑

k=2

2
k + 1

|bk| z̄k.

Let F (z) ∈ HP ∗ (σ) , then, by Lemma 2.6, we have
∞∑

k=2

(
k

1− σ

)(
2

k + 1
|ak|+

2
k + 1

|bk|
)
≤ 1.

Thus we have to find largest value of σ so that the above inequality holds. Now
this inequality holds if

∞∑
k=2

(
k

1− σ

)(
2

k + 1
|ak|+

2
k + 1

|bk|
)
≤

∞∑
k=2

k

1− α
(|ak|+ |bk|) .

or, if (
k

1− σ

)
2

k + 1
≤ k

1− α
, for each k = 2, 3, 4......

which is equivalent to

σ ≤ k − 1 + 2α

k + 1
= ρk, k = 2, 3, 4.......
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It is easy to verify that ρk is an increasing function of k. Therefore, ρ = inf
k≥2

ρk = ρ2

and, hence

ρ =
1 + 2α

3
.

To show the sharpness, we take the function f (z) given by

f (z) = z − (1− α)
2

|x| z2 − (1− α)
2

|y| z̄2, where |x|+ |y| = 1.

Then

F (z) = z − (1− α)
3

|x| z2 − (1− α)
3

|y| z̄2

= H (z) + G (z)

and therefore

H ′ (z) + G′ (z) = 1− 2 (1− α)
3

|x| z − 2 (1− α)
3

|y| z

=
3− 2 (1− α) (|x|+ |y|) z

3

=
1 + 2α

3
, for z → 1.

Hence, the result is sharp.
We now show that the converse of above theorem need not to be true. To this

end, we consider the function

F (z) = z − (1− σ)
3

|x| z3 − (1− σ)
3

|y| z̄3,

where

|x|+ |y| = 1, σ =
2α + 1

3
.

Lemma 2.6 guarantees that F (z) ∈ HP ∗ (σ).
But the corresponding function

f (z) = z − 2 (1− σ)
3

|x| z3 − 2 (1− α)
3

|y| z̄3,

does not belong to HP ∗ (α) , since, for this f (z) the coefficient inequality of Lemma
2.6 is not satisfied. �

In next theorem, we improve the result of Theorem 2.4 for functions f of the
form (1.4) for this we need the following Lemma due to Yalcin et al. [13].

Lemma 2.8. If 0 ≤ α1 ≤ α2 < 1 , then

HP ∗ (α2) ⊆ HP ∗ (α1) .

Theorem 2.9. Let f of the form (1.4) with b1 = 0 and f ∈ HP ∗ (α). Then the function

Fn (z) defined by (1.7) belong to HP ∗
(

2α + 1
3

)
.
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Proof. Since

f (z) = z −
∞∑

k=2

|ak| zk −
∞∑

k=2

|bk| z̄k.

Then

F (z) = z −
∞∑

k=2

2
k + 1

|ak| zk −
∞∑

k=2

2
k + 1

|bk| z̄k.

By using Theorem 2.7, we have

F (z) ∈ HP ∗(σ), where σ =
2α + 1

3
.

Now

Fn (z) = z −
n∑

k=2

2
k + 1

|ak| zk −
n∑

k=2

2
k + 1

|bk| z̄k.

To show that Fn (z) ∈ HP ∗ (σ) , we have
n∑

k=2

(
k

1− σ

)(
2

k + 1
|ak|+

2
k + 1

|bk|
)

≤
∞∑

k=2

(
k

1− σ

)(
2

k + 1
|ak|+

2
k + 1

|bk|
)

≤1.

Thus Fn (z) ∈ HP ∗ (σ).
In next theorem, we improve a result of Jahangiri and Farahmand in [6] when

f has form f(z) = z −
∑∞

k=2 |ak| zk , for this we need the following Lemma. �

Lemma 2.10. If 0 ≤ α1 ≤ α2 < 1 , then

B (α2) ⊆ B (α1) .

Proof. The proof of the above lemma is straightforward, so we omit the details. �

Theorem 2.11. Let f(z) = z −
∞∑

k=2

|ak| zk. If f(z) ∈ B (α) , then

Fn(z) = z −
n∑

k=2

2
k + 1

|ak| zk

belongs to B
(

2α+1
3

)
.

Proof. The proof of this theorem is much akin to that of Theorem 2.9 and therefore
we omit the details. �

Remark 2.12. For 1
4 ≤ α < 1 , f(z) ∈ B (α) Jahangiri and Farahmand [6] shows that

Fn(z) ∈ B
(

4α−1
3

)
and our result states that Fn (z) ∈ B

(
2α+1

3

)
.

Since 2α+1
3 > 4α−1

3 , for 1
4 ≤ α < 1 , and using Lemma 2.10, we have

B

(
2α + 1

3

)
⊂ B

(
4α− 1

3

)
.
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Hence our result provides a smaller class in comparison to the class given by Jahangiri
and Farahmand [6].
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