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Some corrected optimal quadrature formulas
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Abstract. The optimal 3-point quadrature formulae of closed type are derived
and the estimations of error in terms of a variety on norms involving the second
derivative are given. The corrected quadrature rules of the optimal quadrature
formulae are considered. These results are obtained from an inequalities point of
view.
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1. Introduction

The problem to construct the optimal quadratures formulas was studied by many
authors. The first results were obtained by A. Sard, L.S. Meyers and S.M. Nikolski. In
the last years a number of authors have obtained in many different ways the optimal
quadrature formulas ([1], [5], [6], [10], [14], [15]). In this section we present the classical
methods to construct this kind of quadrature formulas.

Let H be the class of sufficiently smooth functions f : [a, b] → R and we consider
the following quadrature formula with degree of exactness equal n− 1∫ b

a

f(x)dx =
m∑

i=0

zi−1∑
k=0

Akif
(k)(xi) +Rn[f ], (1.1)

where the nodes a ≤ x0 < x1 < · · · < xm ≤ b have the multiplicities zi, 1 ≤ zi ≤ n.
The quadrature formula (1.1) is called optimal in the sense of Sard in the space

H, if

Em,n(H, A) = sup
f∈H

|Rn[f ]|

attains the minimum value with regard to A, where A = {Aki}m zi−1
i=0 k=0 are the coef-

ficients of quadrature formula.
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The quadrature formula (1.1) is called optimal in sense Nikolski in the space H,
if

Em,n(H, A, X) = sup
f∈H

|Rn[f ]|

attains the minimum value with regard to A and X, where A = {Aki}m zi−1
i=0 k=0 are

the coefficients and X = (x0, x1, . . . , xm) are the nodes of quadrature formula.
We denote

Wn
p [a, b] :=

{
f ∈ Cn−1[a, b], f (n−1) absolutely continuous ,

∥∥∥f (n)
∥∥∥

p
< ∞

}
with

‖f‖p :=

{∫ b

a

|f(x)|p dx

} 1
p

, for 1 ≤ p < ∞,

‖f‖∞ := sup
x∈[a,b]

|f(x)| .

If f ∈ Wn
p [a, b], by using Peano′s theorem, the remainder term can be written

Rn[f ] =
∫ b

a

Kn(t)f (n)(t)dt,

where Kn(t) = Rn

[
(x− t)n−1

+

(n− 1)!

]
.

For the remainder term we have the evaluation

|Rn[f ]| ≤

[∫ b

a

∣∣∣f (n)(t)
∣∣∣p dt

] 1
p
[∫ b

a

|Kn(t)|q dt

] 1
q

,
1
p

+
1
q

= 1, (1.2)

with remark that in the cases p = 1 and p = ∞ this evaluation is

|Rn[f ]| ≤
∫ b

a

∣∣∣f (n)(t)
∣∣∣ dt sup

t∈[a,b]

|Kn(t)| , (1.3)

|Rn[f ]| ≤ sup
t∈[a,b]

∣∣∣f (n)(t)
∣∣∣ ∫ b

a

|Kn(t)| dt. (1.4)

The ϕ-function method is a model of constructing the quadrature formulas and
was given by D.V. Ionescu ([9]). Suppose that f ∈ Cr[a, b] and for some given n ∈ N
consider the nodes a = x0 < ... < xn = b. On each interval [xk−1, xk], k = 1, ..., n, it
is considered a function ϕk, k = 1, ..., n, with the property that

ϕ
(r)
k = 1, k = 1, ..., n. (1.5)

One defines the function ϕ as follows

ϕ|[xk−1,xk] = ϕk, k = 1, ..., n, (1.6)

i.e., the restriction of the function ϕ to the interval [xk−1, xk] is ϕk.



Some corrected optimal quadrature formulas 563

Using the integration by parts of the integral

S(f) :=
∫ b

a

f(x)dx =
n∑

k=1

∫ xk

xk−1

ϕ
(r)
k (x)f(x)dx,

one obtains the following quadrature formula∫ b

a

f(x)dx =
n∑

k=0

r−1∑
j=0

Akjf
(j)(xk) +Rn(f), (1.7)

with

Rn(f) = (−1)r

∫ b

a

ϕ(x)f (r)(x)dx (1.8)

and
A0j = (−1)j+1ϕ

(r−j−1)
1 (x0),

Akj = (−1)j(ϕk − ϕk+1)(r−j−1)(xk), k = 1, . . . , n− 1,

Anj = (−1)jϕ
(r−j−1)
n (xn), j = 0, 1, . . . , r − 1.

(1.9)

In [1], T. Cătinaş and G. Coman studied the optimality in sense of Nikolski for a
quadrature formula, using the method of ϕ-function.

In [16], N. Ujević and L. Mijić constructed a class of quadrature formulas of
close type with 3 nodes. Let

K2(α, β, γ, δ; t) =


1
2
(t− α)(t− β), t ∈

[
a,

a + b

2

]
,

1
2
(t− γ)(t− δ), t ∈

(
a + b

2
, b

]
,

be a function which depends on the parameters α, β, γ, δ ∈ R. Integrating by parts

the integral
∫ b

a

K2(α, β, γ, δ; t)f ′′(t)dt, and putting conditions that the coefficients of

the first derivatives to be zero, N. Ujević and L. Mijić were constructed the following
class of quadrature formulas of close type∫ b

a

f(t)dt = A0(α, β, γ, δ)f(a) + A1(α, β, γ, δ)f
(

a + b

2

)
+ A2(α, β, γ, δ)f(b) +R[f ],

where

R[f ] =
∫ b

a

K2(α, β, γ, δ)f ′′(t)dt.

The parameters α, β, γ, δ are obtained putting conditions that the remainder term

which is evaluated in sense of (1.4) to be minimal, namely
∫ b

a

|K2 (α, β, γ, δ)| dt to

attains the minimum value.
The main result obtained by N. Ujević and L. Mijić in the above described

procedure is formulated bellow.
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Theorem 1.1. [16] Let I ⊂ R be an open interval such that [0, 1] ⊂ I and let f : I → R
be a twice differentiable function such that f ′′ is bounded and integrable. Then we
have∣∣∣∣∣

∫ 1

0

f(t)dt−
√

2
8

f(0)−

(
1−

√
2

4

)
f

(
1
2

)
−
√

2
8

f(1)

∣∣∣∣∣ ≤ 2−
√

2
48

‖f ′′‖∞. (1.10)

The main purpose of the section 2 is to derive a quadrature formula of close type
with 3-points which is optimal in sense Nikolski, namely we calculate the coefficients
Ai, i = 0, 2 and the node a1 ∈ (a, b) such that the quadrature formula∫ b

a

f(t)dt = A0f(a) + A1f (a1) + A2f(b) +R2[f ],

to be optimal, considering that the remainder term is evaluated in sense of (1.2) in
the cases p = 1, p = 2 and p = ∞.

For the simplicity, in this paper we choose [a, b] = [0, 1]. The corresponding
results in the arbitrary interval [a, b] can be obtained using the following lemma.

Lemma 1.2. [11] If −∞ < α < β < +∞ and w is a weight function on (α, β) and∫ β

α

f(t)w(t)dt =
m∑

i=0

Aif(xi) + rm[f ] , f ∈ L1
w(α, β), then

W (x) = w

(
α + (β − α)

x− a

b− a

)
, x ∈ (a, b), −∞ < a < b < +∞,

is a weight function on (a, b) and∫ b

a

F (x)W (x)dx =
b− a

β − α

m∑
i=0

AiF

(
a + (b− a)

xi − α

β − α

)
+Rm[F ],

where F ∈ L1
w(a, b) and Rm[F ]=

b−a

β−α
rm[F̃ ], F̃ (t)=F

(
a+(b−a)

t−α

β−α

)
.

2. The optimal 3-point quadrature formula of closed type

Let ∫ 1

0

f(x)dx = A0f(0) + A1f(a1) + A2f(1) +R2[f ] (2.1)

be a quadrature formula with degree of exactness equal 1.
Since the quadrature formula has degree of exactness 1, the remainder term

verifies the conditions R2[ei] = 0, ei(x) = xi, i = 0, 1, namely
A0 + A1 + A2 = 1

A1a1 + A2 =
1
2

(2.2)
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and using Peano’s theorem the remainder term has the following integral representa-
tion

R2[f ] =
∫ 1

0

K2(t)f ′′(t)dt, where (2.3)

K2(t) = R2 [(x− t)+] =


1
2
t2 −A0t, 0 ≤ t ≤ a1,

1
2
(1− t)2 −A2(1− t), a1 < t ≤ 1.

(2.4)

Theorem 2.1. For f ∈ W 2
∞[0, 1], the quadrature formula of the form (2.1), optimal

with regard to the error, is∫ 1

0

f(x)dx =
√

2
8

f(0) +
4−

√
2

4
f

(
1
2

)
+
√

2
8

f(1) +R[1]
2 [f ], (2.5)

with

R[1]
2 [f ]=

∫ 1

0

K
[1]
2 (t)f ′′(t)dt, K

[1]
2 (t)=


1
2
t2−

√
2

8
t, 0 ≤ t≤ 1

2
,

1
2
(1−t)2−

√
2

8
(1−t),

1
2

<t≤1,

(2.6)

∣∣∣R[1]
2 [f ]

∣∣∣ ≤ 2−
√

2
48

‖f ′′‖∞ ≈ 0.0122‖f ′′‖∞.

Proof. The remainder term (2.3) can be evaluate in the following way∣∣∣R[1]
2 [f ]

∣∣∣ ≤ ‖f ′′‖∞
∫ 1

0

∣∣∣K [1]
2 (t)

∣∣∣ dt.

The quadrature formula is optimal with regard to the error if∫ 1

0

∣∣∣K [1]
2 (t)

∣∣∣ dt → minimum.

We have

I(A0, A2, a1) =
∫ 1

0

|K [1]
2 (t)|dt =

∫ a1

0

|K [1]
2 (t)|dt +

∫ 1

a1

|K [1]
2 (t)|dt

=
∫ 2A0

0

(
A0t−

1
2
t2
)

dt +
∫ a1

2A0

(
1
2
t2 −A0t

)
dt

+
∫ 1−2A2

a1

[
1
2
(1−t)2−A2(1−t)

]
dt+

∫ 1

1−2A2

[
A2(1−t)− 1

2
(1−t)2

]
dt

=
4
3
A3

0 −
1
2
a2
1A0 +

1
6
a3
1 +

4
3
A3

2 −
1
2
(1− a1)2A2 +

1
6
(1− a1)3.
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Putting condition that the partial derivatives to be zero, namely

∂I(A0, A2, a1)
∂A0

= 4A2
0 −

1
2
a2
1 = 0,

∂I(A0, A2, a1)
∂A2

= 4A2
2 −

1
2
(1− a1)2 = 0,

∂I(A0, A2, a1)
∂a1

= −a1A0 +
a2
1

2
− 1

2
(1− a1)2 + A2(1− a1) = 0,

we find the following values for the coefficients and the node of optimal quadrature
formula

A0 = A2 =
√

2
8

, A1 = 1−
√

2
4

, a1 =
1
2
, and

∫ 1

0

|K [1]
2 (t)|dt =

2−
√

2
48

. �

Remark 2.2. The optimal quadrature (2.5) coincides with the quadrature formula
(1.10) obtained by N. Ujević and L. Mijić in [16], but this quadrature formula was
obtained in different way than in [16]. This result motivated us to seek the quadrature
formulas of type (2.1) such that the estimation of its error to be best possible in p-
norm for p = 2 and p = 1.

Remark 2.3. For the remainder term of quadrature formula (2.5) can be established
the following two estimations

∣∣∣R[1]
2 [f ]

∣∣∣ ≤ [∫ 1

0

(
K

[1]
2 (t)

)2

dt

] 1
2

‖f ′′‖2 =
1
16

√
22− 15

√
2

15
‖f ′′‖2

≈ 0.0143‖f ′′‖2, f ∈ W 2
2 [0, 1],∣∣∣R[1]

2 [f ]
∣∣∣ ≤ sup

t∈[0,1]

|K [1]
2 (t)|·‖f ′′‖1 =

2−
√

2
16

‖f ′′‖1≈0.0366‖f ′′‖1, f ∈ W 2
1 [0, 1].

Theorem 2.4. For f ∈ W 2
2 [0, 1], the quadrature formula of the form (2.1), optimal

with regard to the error, is∫ 1

0

f(x)dx =
3
16

f(0) +
5
8
f

(
1
2

)
+

3
16

f(1) +R[2]
2 [f ], (2.7)

with

R[2]
2 [f ]=

∫ 1

0

K
[2]
2 (t)f ′′(t)dt, K

[2]
2 (t) =


1
2
t2− 3

16
t, 0≤ t≤ 1

2
,

1
2
(1−t)2− 3

16
(1−t),

1
2

<t ≤ 1,

(2.8)

and ∣∣∣R[2]
2 [f ]

∣∣∣ ≤ √
5

160
‖f ′′‖2 ≈ 0.0140‖f ′′‖2.
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Proof. The remainder term (2.3) can be evaluated in the following way∣∣∣R[2]
2 [f ]

∣∣∣ ≤ [∫ 1

0

(
K

[2]
2 (t)

)2

dt

] 1
2

‖f ′′‖2.

The quadrature formula is optimal with regard to the error if∫ 1

0

(
K

[2]
2 (t)

)2

dt → minimum.

We have

I(A0, A2, a1) =
∫ 1

0

(
K

[2]
2 (t)

)2

dt=
∫ a1

0

(
1
2
t2−A0t

)2

dt

+
∫ 1

a1

[
1
2
(1− t)2 −A2(1− t)

]2
dt

=
1
20

a5
1−

A0

4
a4
1+

A2
0

3
a3
1+

(1−a1)5

20
−A2

(1−a1)4

4
+A2

2

(1−a1)3

3
.

Putting condition that the partial derivatives to be zero, namely

∂I(A0, A2, a1)
∂A0

= −a4
1

4
+

2
3
A0a

3
1 = 0,

∂I(A0, A2, a1)
∂A2

= − (1− a1)4

4
+

2
3
A2(1− a1)3 = 0,

∂I(A0, A2, a1)
∂a1

=
a4
1

4
−A0a

3
1+A2

0a
2
1−

(1−a1)4

4
+A2(1−a1)3−A2

2(1−a1)2 =0,

we find the following values for the coefficients and the node of optimal quadrature
formula

A0 = A2 =
3
16

, A1 =
5
8
, a1 =

1
2
, and

∫ 1

0

(
K

[2]
2 (t)

)2

dt =
1

210 · 5
. �

Remark 2.5. For the remainder term of quadrature formula (2.7) can be established
the following two estimations∣∣∣R[2]

2 [f ]
∣∣∣≤∫ 1

0

|K [2]
2 (t)|dt·‖f ′′‖∞=

19
1536

‖f ′′‖∞≈0.0124‖f ′′‖∞, for f ∈W 2
∞[0, 1],

∣∣∣R[2]
2 [f ]

∣∣∣≤ sup
t∈[0,1]

|K [2]
2 (t)|·‖f ′′‖1 =

1
32
‖f ′′‖1≈0.0313‖f ′′‖1, for f ∈W 2

1 [0, 1].

Theorem 2.6. For f ∈ W 2
1 [0, 1], the quadrature formula of the form (2.1), optimal

with regard to the error, is∫ 1

0

f(x)dx =
√

2− 1
2

f(0) + (2−
√

2)f
(

1
2

)
+
√

2− 1
2

f(1) +R[3]
2 [f ], (2.9)
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with

R[3]
2 [f ]=

∫ 1

0

K
[3]
2 (t)f ′′(t)dt, K

[3]
2 (t)=


1
2
t2−

√
2−1
2

t, 0 ≤ t≤ 1
2
,

1
2
(1−t)2−

√
2−1
2

(1−t),
1
2

<t≤1,

(2.10)

and ∣∣∣R[3]
2 [f ]

∣∣∣ ≤ 3− 2
√

2
8

‖f ′′‖1 ≈ 0.0214‖f ′′‖1.

Proof. The remainder term (2.3) can be evaluated in the following way∣∣∣R[3]
2 [f ]

∣∣∣ ≤ ‖f ′′‖1 · sup
0≤t≤1

|K [3]
2 (t)|.

The quadrature formula is optimal with regard to the error if

sup
0≤t≤1

|K [3]
2 (t)| → minimum.

We have

sup
t∈[0,a1]

|K [3]
2 (t)| = max

{
|K [3]

2 (A0)|, |K [3]
2 (a1)|

}
= max

{
1
2
A2

0,

∣∣∣∣12a2
1 −A0a1

∣∣∣∣} ,

sup
t∈[a1,1]

|K [3]
2 (t)|=max

{
|K [3]

2 (a1)|, |K [3]
2 (1−A2)|

}
=max

{∣∣∣∣12a2
1−A0a1

∣∣∣∣ , 1
2
A2

2

}
,

therefore

sup
t∈[0,1]

|K [3]
2 (t)| = max

{
1
2
A2

0,
1
2
A2

2,
1
2
a2
1 −A0a1

}
. (2.11)

Putting condition that sup
t∈[0,1]

|K [3]
2 (t)| to attains the minimum value, which in our

case is equivalent with K
[3]
2 (a1) = −K

[3]
2 (tmin), where tmin ∈ {A0, 1−A2}, we obtain

A0 = (
√

2 − 1)a1, respectively A2 = (
√

2 − 1)(1 − a1). Since K ∈ C[0, 1], namely
K

[3]
2 (a1 − 0) = K

[3]
2 (a1 + 0), we can find the following relation

1
2
a2
1 − (

√
2− 1)a2

1 =
1
2
(1− a1)2 − (

√
2− 1)(1− a1)2.

From the above equality we obtain a1 =
1
2

and the values for the coefficients of the

optimal quadrature formula are A0 = A2 =
√

2− 1
2

, A1 = 2−
√

2. From (2.11) it

follows sup
t∈[0,1]

|K [3]
2 (t)| = 1

2
A2

0 =
3− 2

√
2

8
. �
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Remark 2.7. For the remainder term of quadrature formula (2.9) can be established
the following two estimations∣∣∣R[3]

2 [f ]
∣∣∣ ≤ ∫ 1

0

|K [3]
2 (t)|dt · ‖f ′′‖∞ =

37
√

2− 52
24

‖f ′′‖∞

≈ 0.0136‖f ′′‖∞, f ∈ W 2
∞[0, 1],∣∣∣R[3]

2 [f ]
∣∣∣ ≤ [∫ 1

0

(
K

[3]
2 (t)

)2

dt

] 1
2

‖f ′′‖2 =
1
8

√
78− 55

√
2

15
‖f ′′‖2

≈ 0.0151‖f ′′‖2, f ∈ W 2
2 [0, 1].

Remark 2.8. If we denote by C
[i]
p the constants which appear in estimations of the

following type ∣∣∣R[i]
2 [f ]

∣∣∣ ≤ C [i]
p ‖f ′′‖p ,

where i = 1, 2, 3, p = ∞, 2, respectively 1, and f ∈ W 2
p [0, 1], from the above results

the inequalities C
[1]
∞ ≤ C

[2]
∞ ≤ C

[3]
∞ , C

[2]
2 ≤ C

[1]
2 ≤ C

[3]
2 and C

[3]
1 ≤ C

[2]
1 ≤ C

[1]
1 are true.

Therefore, we can assert that our results are better than Ujević and Mijić’s result, if
we consider 2-norm, respectively 1-norm.

3. The corrected quadrature formulae

In recent years some authors have considered so called perturbed (corrected)
quadrature rules (see [2], [3], [4], [7], [8], [17]). By corrected quadrature rule we mean
the formula which involves the values of the first derivative in end points of the interval
not only the values of the function in certain points. These formulae have a higher
degree of exactness than the original rule. The estimate of the error in corrected rule
is better then in the original rule, in generally.

The main purpose of this section is to derive corrected rule of the optimal quad-
rature formulae obtained in previous section. Here we will show that the corrected
formula improves the original formula. We mention that the corrected formula of (2.5)
was considered by N. Ujević and L. Mijić in [16].

Let∫ 1

0

f(x)dx = A0f(0) + A1f

(
1
2

)
+ A2f(1) + A [f ′(1)− f ′(0)] + R̃2[f ], (3.1)

where

R̃2[ei] = 0, i = 0, 1, and A =
∫ 1

0

K2(t)dt

be the corrected quadrature formula of the rule (2.1).
Since the remainder term has degree of exactness 1 we can write

R̃2[f ] =
∫ 1

0

K̃2(t)f ′′(t)dt, where (3.2)

K̃2(t) = R̃2 [(x− t)+] = K2(t)−A. (3.3)
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From the relation (3.3) we remark that
∫ 1

0

K̃2(t)dt = 0. Now we will calculate the

coefficient A from corrected optimal quadrature formulas obtained in previous section.

If we consider f(x) =
x2

2
in (3.1) we find

A =
1
6
− 1

2
A1 −

1
2
A2. (3.4)

Using relations (3.3) and (3.4) we construct the following corrected quadrature for-
mula of (2.5), (2.7), respectively (2.9):∫ 1

0

f(x)dx =
√

2
8

f(0) +
4−

√
2

4
f

(
1
2

)
+
√

2
8

f(1) (3.5)

+
4− 3

√
2

96
[f ′(1)− f ′(0)] + R̃[1]

2 [f ],

where

R̃[1]
2 [f ] =

∫ 1

0

K̃
[1]
2 (t)f ′′(t)dt, (3.6)

K̃
[1]
2 (t) =


1
2
t2 −

√
2

8
t− 4− 3

√
2

96
, 0 ≤ t ≤ 1

2

1
2
(1− t)2 −

√
2

8
(1− t)− 4− 3

√
2

96
,

1
2

< t ≤ 1,

∫ 1

0

f(x)dx=
3
16

f(0)+
5
8
f

(
1
2

)
+

3
16

f(1)− 1
192

[f ′(1)−f ′(0)]+R̃[2]
2 [f ], (3.7)

where

R̃[2]
2 [f ] =

∫ 1

0

K̃
[2]
2 (t)f ′′(t)dt, (3.8)

K̃
[2]
2 (t) =


1
2
t2 − 3

16
t +

1
192

, 0 ≤ t ≤ 1
2

1
2
(1− t)2 − 3

16
(1− t) +

1
192

,
1
2

< t ≤ 1,

respectively ∫ 1

0

f(x)dx =
√

2− 1
2

f(0) + (2−
√

2)f
(

1
2

)
+
√

2− 1
2

f(1) (3.9)

+
4− 3

√
2

24
[f ′(1)− f ′(0)] + R̃[3]

2 [f ],

where

R̃[3]
2 [f ] =

∫ 1

0

K̃
[3]
2 (t)f ′′(t)dt, (3.10)
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K̃
[3]
2 (t) =


1
2
t2 −

√
2− 1
2

t− 4− 3
√

2
24

, 0 ≤ t ≤ 1
2

1
2
(1− t)2 −

√
2− 1
2

(1− t)− 4− 3
√

2
24

,
1
2

< t ≤ 1,

Denote by C̃
[i]
p the constant which appear in estimations of the remainder term

of corrected quadrature formulas, namely∣∣∣R̃[i]
2 [f ]

∣∣∣ ≤ C̃ [i]
p ‖f ′′‖p ,

where i = 1, 2, 3, p = ∞, 2, respectively 1, and f ∈ W 2
p [0, 1]. The constants C̃

[i]
p can

be calculated in a similar way with the constants C
[i]
p defined in Remark 2.8. From

the bellow table follows that for p = ∞ and p = 2 the corrected formula improves the
original formula.

�i 1 2 3

C
[i]
∞

2−
√

2

48
≈ 0.0122

19

1536
≈0.0124

37
√

2−52

24
≈0.0136

C̃
[i]
∞

5

96

√
6− 29

432

√
3 ≈ 0.0113

19

13824

√
57≈0.0104

√
3(13−9

√
2)3

27
≈0.0091

C
[i]
2

1

16

√
22−15

√
2

15
≈0.0143

√
5

160
≈0.0140

1

8

√
78−55

√
2

15
≈0.0151

C̃
[i]
2

√
470−300

√
2

480
≈ 0.0141

√
155

960
≈ 0.0130

(
1

90
− 1

128

√
2

)
≈0.0112

C
[i]
1

2−
√

2

16
≈0.0366

1

32
≈0.0313

3−2
√

2

8
≈0.0214

C̃
[i]
1

(
1

12
− 1

32

√
2

)
≈0.0391

7

192
≈0.0365

(
5

24
− 1

8

√
2

)
≈0.0316

Theorem 3.1. Let f : [0, 1] → R be an absolutely continuous function such that f ′′ ∈
L[0, 1] and there exist real number m[f ],M [f ] such that m[f ] ≤ f ′′(t) ≤ M [f ], t ∈
[0, 1]. Then∣∣∣R̃[1]

2 [f ]
∣∣∣≤M [f ]−m[f ]

2

(
5
√

6
96

− 29
√

3
432

)
≈11306×10−6 ·M [f ]−m[f ]

2
, (3.11)

∣∣∣R̃[2]
2 [f ]

∣∣∣≤M [f ]−m[f ]
2

· 19
√

57
13824

≈10377×10−6 ·M [f ]−m[f ]
2

, (3.12)

∣∣∣R̃[3]
2 [f ]

∣∣∣≤M [f ]−m[f ]
2

·

√
3(13−9

√
2)3

27
≈9104×10−6 ·M [f ]−m[f ]

2
. (3.13)

If there exist a real number m[f ] such that m[f ] ≤ f ′′(t), t ∈ [0, 1], then∣∣∣R̃[1]
2 [f ]

∣∣∣ ≤ 1
4

(
1
3
−
√

2
8

)
(f ′(1)− f ′(0)−m[f ])

≈ 39139× 10−6 (f ′(1)− f ′(0)−m[f ]), (3.14)
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∣∣∣R̃[2]
2 [f ]

∣∣∣ ≤ 7
192

(f ′(1)− f ′(0)−m[f ])

≈ 36458×10−6 (f ′(1)−f ′(0)−m[f ]), (3.15)∣∣∣R̃[3]
2 [f ]

∣∣∣ ≤ 5− 3
√

2
24

· (f ′(1)− f ′(0)−m[f ])

≈ 31557× 10−6 (f ′(1)− f ′(0)−m[f ]). (3.16)

If there exist a real number M [f ] such that f ′′(t) ≤ M [f ], t ∈ [0, 1], then∣∣∣R̃[1]
2 [f ]

∣∣∣ ≤ 1
4

(
1
3
−
√

2
8

)
[M [f ]− (f ′(1)− f ′(0))]

≈ 39139× 10−6 [M [f ]− (f ′(1)− f ′(0))],∣∣∣R̃[2]
2 [f ]

∣∣∣ ≤ 7
192

[M [f ]− (f ′(1)− f ′(0))]

≈ 36458× 10−6 [M [f ]− (f ′(1)− f ′(0))],∣∣∣R̃[3]
2 [f ]

∣∣∣ ≤ 5− 3
√

2
24

[M [f ]− (f ′(1)− f ′(0))]

≈ 31557× 10−6 [M [f ]− (f ′(1)− f ′(0))].

Proof. Since
∫ 1

0

K̃2(t)dt = 0, the remainder term (3.2) can be written in the following
way

R̃2[f ] =
∫ 1

0

K̃2(t)
(

f ′′(t)− M [f ] + m[f ]
2

)
dt.

Therefore∣∣∣R̃2[f ]
∣∣∣ ≤ ∥∥∥∥f ′′ − M [f ] + m[f ]

2

∥∥∥∥
∞
· ‖K̃2‖1 ≤

M [f ]−m[f ]
2

· ‖K̃2‖1.

Calculating the norm of the kernel K̃2 from the integral representation of the re-
mainder term (3.6), (3.8) and (3.10), respectively, the first part of the theorem is
proved.

To prove the relations (3.14), (3.15) and (3.16) respectively, we consider the
following estimation of remainder term∣∣∣R̃2[f ]

∣∣∣ = ∣∣∣∣∫ 1

0

K̃2(t) (f ′′(t)−m) dt

∣∣∣∣ ≤ sup
t∈[0,1]

|K̃2(t)| ·
∫ 1

0

(f ′′(t)−m) dt

=
∥∥∥K̃2

∥∥∥
∞
· (f ′(1)− f ′(0)−m).

The last part of the theorem can be proved using the following estimation of remainder
term ∣∣∣R̃2[f ]

∣∣∣ = ∣∣∣∣∫ 1

0

K̃2(t) (f ′′(t)−M) dt

∣∣∣∣ ≤ sup
t∈[0,1]

|K̃2(t)| ·
∫ 1

0

(M − f ′′(t)) dt

=
∥∥∥K̃2

∥∥∥
∞
· [M − (f ′(1)− f ′(0))]. �
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Let f, g : [a, b] → R be integrable functions on [a, b]. The functional

T (f, g) :=
1

b− a

∫ b

a

f(t)g(t)dt− 1
b− a

∫ b

a

f(t)dt · 1
b− a

∫ b

a

g(t)dt, (3.17)

is well known in the literature as the Čebyšev functional. It was proved that T (f, f) ≥
0 and the inequality |T (f, g)| ≤

√
T (f, f) ·

√
T (g, g) holds. Denote by σ(f, a, b) =√

T (f, f).

Theorem 3.2. Let f : [0, 1] → R be an absolutely continuous function such that f ′′ ∈
L2[0, 1]. Then∣∣∣R̃[1]

2 [f ]
∣∣∣ ≤

√
47

23040
−
√

2
768

· σ(f ′′; 0, 1) ≈ 14089× 10−6σ(f ′′; 0, 1), (3.18)

∣∣∣R̃[2]
2 [f ]

∣∣∣ ≤ √
155

960
· σ(f ′′; 0, 1) ≈ 12969× 10−6σ(f ′′; 0, 1), (3.19)∣∣∣R̃[3]

2 [f ]
∣∣∣≤ 1

120

√
320−225

√
2·σ(f ′′; 0, 1)≈11186× 10−6σ(f ′′; 0, 1). (3.20)

Proof. The remainder term of the corrected quadrature formula (3.2) can be written
in such way

R̃2[f ] =
∫ 1

0

K̃2(t)f ′′(t)dt =
∫ 1

0

[
K2(t)−

∫ 1

0

K2(t)dt

]
f ′′(t)dt

=
∫ 1

0

K2(t)f ′′(t)dt−
∫ 1

0

K2(t)dt ·
∫ 1

0

f ′′(t)dt = T (K2, f
′′).

From the above relation we obtain∣∣∣R̃2[f ]
∣∣∣ = |T (K2, f

′′)| ≤
√

T (K2,K2)
√

T (f ′′, f ′′) = σ(K2; 0, 1) · σ(f ′′; 0, 1).

Calculating σ(K2; 0, 1) for the kernel defined in (2.6), (2.8) and (2.10), respectively,
the theorem is proved. �

Remark 3.3. The inequalities (3.18), (3.19) and (3.20), respectively, are sharp in the

sense that the constants

√
47

23040
−
√

2
768

,
√

155
960

and
1

120

√
320− 225

√
2 respectively,

cannot be replaced by a smaller ones. To prove that we define the functions

F [i](x) =
∫ x

0

(∫ t

0

K
[i]
2 (u)du

)
dt, i = 1, 2, 3. (3.21)

For the function (3.21) the right-hand side of the inequalities (3.18), (3.19) and (3.20),
respectively are equal with T (K [i]

2 ,K
[i]
2 ), i = 1, 2, 3, respectively, and the left-hand

side becomes ∣∣∣R̃[i]
2 [f ]

∣∣∣ = ∣∣∣∣∫ 1

0

K̃
[i]
2 (t) ·K [i]

2 (t)dt

∣∣∣∣ =∣∣∣∣∫ 1

0

[
K

[i]
2 (t)−

∫ 1

0

K
[i]
2 (t)dt

]
K

[i]
2 (t)dt

∣∣∣∣ = T (K [i]
2 ,K

[i]
2 ), i = 1, 2, 3.
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Remark 3.4. Denote by Zi, i = 1, 2, 3, the constants which appear in one of the
following types of estimations obtained in Theorem 3.1 and Theorem 3.2, namely∣∣∣R̃[i]

2 [f ]
∣∣∣ ≤ Zi ·

M [f ]−m[f ]
2

,

∣∣∣R̃[i]
2 [f ]

∣∣∣ ≤ Zi · (f ′(1)− f ′(0)−m[f ]),

∣∣∣R̃[i]
2 [f ]

∣∣∣ ≤ Zi · (M [f ]− [f ′(1)− f ′(0)])

or ∣∣∣R̃[i]
2 [f ]

∣∣∣ ≤ Zi · σ(f ′′; 0, 1).

Since for every i = 1, 2, 3 we have Z3 ≤ Z2 ≤ Z1, for the corrected quadrature
formulas, our results are better than Ujević and Mijić’s results obtained in [16].

The corrected quadrature formulas (3.5), (3.7), and (3.9), respectively have de-
gree of exactness 3, which is higher than the original rule, namely for j = 1, 3,
R̃

[j]
2 [ei] = 0 and R̃

[j]
2 [e4] 6= 0, where ei(x) = xi, i = 0, 4. Using Peano’s Theorem,

the remainder term can be written

R4[f ] =
∫ 1

0

K4(t)f (4)(t), K4(t) = R4

[
(x− t)3+

3!

]
, (3.22)

where by R4 we denote the new integral representation of the remainder term of these
quadrature formulas.

In the next part of this paper, using relation (3.22), we will give new estimations
of the remainder term in quadrature formulas (3.5), (3.7), and (3.9), respectively.

Theorem 3.5. If f ∈ C4[0, 1], then the remainder term of quadrature formula (3.5)has
the integral representation

R[1]
4 [f ] =

∫ 1

0

K
[1]
4 (t)f (4)(t)dt, where

K
[1]
4 (t) =



1
24

t2

(
t2 −

√
2

2
t− 4− 3

√
2

8

)
, 0 ≤ t ≤ 1

2
,

1
24

(1− t)2
(

(1− t)2 −
√

2
2

(1− t)− 4− 3
√

2
8

)
,

1
2

< t ≤ 1,
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and the following estimations hold

∣∣∣R[1]
4 [f ]

∣∣∣ ≤
√∫ 1

0

(
K

[1]
4 (t)

)2

dt

√∫ 1

0

(
f (4)(t)

)2
dt

=

√
23170− 15645

√
2

80640
‖f (4)‖2 ≈ 4.008× 10−4‖f (4)‖2,

∣∣∣R[1]
4 [f ]

∣∣∣ ≤ ∫ 1

0

∣∣∣K [1]
4 (t)

∣∣∣ dt· sup
t∈[0,1]

|f (4)(t)|

=
200−171

√
2−(90−68

√
2)
√

5−3
√

2+2(15−8
√

2)
√

43−30
√

2
11520

‖f (4)‖∞

≈ 2.946× 10−4 · ‖f (4)‖∞,

∣∣∣R[1]
4 [f ]

∣∣∣ ≤ sup
t∈[0,1]

|K [1]
4 (t)| ·

∫ 1

0

|f (4)(t)|dt

=
2−

√
2

768
· ‖f (4)‖1 ≈ 7.627× 10−4 · ‖f (4)‖1.

Theorem 3.6. If f ∈ C4[0, 1], then the remainder term of quadrature formula (3.7)has
the integral representation

R[2]
4 [f ] =

∫ 1

0

K
[2]
4 (t)f (4)(t)dt, where

K
[2]
4 (t) =


1
24

t2
(

t2 − 3
4
t +

1
16

)
, 0 ≤ t ≤ 1

2
,

1
24

(1− t)2
(

(1− t)2 − 3
4
(1− t) +

1
16

)
,

1
2

< t ≤ 1,

and the following estimations hold

∣∣∣R[2]
4 [f ]

∣∣∣ ≤

√∫ 1

0

(
K

[2]
4 (t)

)2

dt

√∫ 1

0

(
f (4)(t)

)2
dt

=
√

2905
161280

‖f (4)‖2 ≈ 3.342× 10−4‖f (4)‖2,

∣∣∣R[2]
4 [f ]

∣∣∣ ≤ ∫ 1

0

∣∣∣K [2]
4 (t)

∣∣∣ dt· sup
t∈[0,1]

|f (4)(t)|

=
125

√
5− 103

737280
·‖f (4)‖∞ ≈ 2.394× 10−4 · ‖f (4)‖∞,
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∣∣∣R[2]
4 [f ]

∣∣∣ ≤ sup
t∈[0,1]

|K [2]
4 (t)| ·

∫ 1

0

|f (4)(t)|dt

=
1

1536
· ‖f (4)‖1 ≈ 6.51× 10−4 · ‖f (4)‖1.

Theorem 3.7. If f ∈ C4[0, 1], then the remainder term of quadrature formula (3.9)has
the integral representation

R[3]
4 [f ] =

∫ 1

0

K
[3]
4 (t)f (4)(t)dt, where

K
[3]
4 (t) =



1
24

t2

(
t2 − 2(

√
2− 1)t− 4− 3

√
2

2

)
, 0 ≤ t ≤ 1

2
,

1
24

(1− t)2
(

(1− t)2 − 2(
√

2− 1)(1− t)− 4− 3
√

2
2

)
,

1
2

<t≤1,

and the following estimations hold

∣∣∣R[3]
4 [f ]

∣∣∣ ≤

√∫ 1

0

(
K

[3]
4 (t)

)2

dt

√∫ 1

0

(
f (4)(t)

)2
dt

=

√
68530− 48405

√
2

40320
‖f (4)‖2 ≈ 2.148× 10−4‖f (4)‖2,

∣∣∣R[3]
4 [f ]

∣∣∣ ≤ ∫ 1

0

∣∣∣K [3]
4 (t)

∣∣∣ dt· sup
t∈[0,1]

|f (4)(t)|

=
78470− 55487

√
2− 32(550− 389

√
2)
√

10− 7
√

2
5760

·‖f (4)‖∞

≈ 1.461× 10−4 · ‖f (4)‖∞,

∣∣∣R[3]
4 [f ]

∣∣∣ ≤ sup
t∈[0,1]

|K [3]
4 (t)| ·

∫ 1

0

|f (4)(t)|dt

=
3− 2

√
2

384
· ‖f (4)‖1 ≈ 4.468× 10−4 · ‖f (4)‖1.
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[8] Franjić, I., Pečarić, J., On corrected Bullen-Simpson’ s 3/8 inequality, Tamkang Journal
of Mathematics, 37(2006), no. 2, 135–148.

[9] Ionescu, D.V., Cuadraturi numerice, Editura Tehnică, Bucureşti, 1957 (in romanian).
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