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Stability in neutral nonlinear dynamic equations
on time scale with unbounded delay

Abdelouaheb Ardjouni and Ahcene Djoudi

Abstract. Let T be a time scale which is unbounded above and below and such
that 0 ∈ T. Let id−r : T→ T be such that (id− r) (T) is a time scale. We use the
contraction mapping theorem to obtain stability results about the zero solution
for the following neutral nonlinear dynamic equations with unbounded delay

x4 (t) = −a (t) xσ (t) + b (t) G
(
x2 (t) , x2 (t− r (t))

)
+c (t)

(
x2)4̃ (t− r (t)) , t ∈ T,

and

x4 (t) = −a (t) xσ (t) + b (t) G (x (t) , x (t− r (t)))

+c (t) x4̃ (t− r (t)) , t ∈ T,

where f4 is the 4-derivative on T and f4̃ is the 4-derivative on (id− r) (T) .
We provide interesting examples to illustrate our claims.
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1. Introduction

The concept of time scales analysis is a fairly new idea. In 1988, it was introduced
by the German mathematician Stefan Hilger in his Ph.D. thesis [11]. It combines
the traditional areas of continuous and discrete analysis into one theory. After the
publication of two textbooks in this area (by Bohner and Peterson, 2001, 2003, [5]-
[6]), more and more researchers were getting involved in this fast-growing field of
mathematics.

The study of dynamic equations brings together the traditional research areas
of (ordinary and partial) differential and difference equations. It allows one to handle
these two research areas at the same time, hence shedding light on the reasons for
their seeming discrepancies. In fact, many new results for the continuous and discrete
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cases have been obtained by studying the more general time scales case (see [1]-[4],
[8]-[13] and the references therein).

The reader can find more details on the materials and basic properties used in
our section 2 in the first chapter of Bohner and Peterson book [5] pages 1-50 and can
find good examples of dynamic equations in Chapter 2 [6] pages 17-46.

We have studied dynamic nonlinear equations with functional delay on a time
scale and have obtained some interesting results concerning the existence of periodic
solutions (see [1]-[3]) and this work is a continuation. Here, we focus on two neutral
nonlinear dynamic equations which, for our delight, have not been yet studied by
mean of fixed point technic on time scales.

There is no doubt that the Liapunov method have been used successfully to
investigate stability properties of wide variety of ordinary, functional and partial
equations. Nevertheless, the application of this method to problem of stability in
differential equations with delay has encountered serious difficulties if the delay is un-
bounded or if the equation has unbounded term (see [7]-[10] and references therein).
It has been noticed ( see [8]-[10]) that some of theses difficulties vanish by using the
fixed point technic. Other advantages of fixed point theory over Liapunov’s method is
that the conditions of the former are average while those of the latter are pointwise.

Below, we consider the following neutral nonlinear dynamic equations with un-
bounded delay given by

x4 (t) = −a (t)xσ (t) + b (t)G
(
x2 (t) , x2 (t− r (t))

)
+c (t)

(
x2

)4̃
(t− r (t)) , t ∈ T, (1.1)

and

x4 (t) = −a (t)xσ (t) + b (t)G (x (t) , x (t− r (t))) + c (t)x4̃ (t− r (t)) , t ∈ T, (1.2)

where T is an unbounded above and below time scale. Throughout this paper we
assume that 0 ∈ T for convenience. We also assume that a, b : T → R are continuous
and that c : T → R is continuously delta-differentiable. In order for the function
x (t− r (t)) to be well-defined and differentiable over T, we assume that r : T → R
is positive and twice continuously delta-differentiable, and that id − r : T → T is an
increasing mapping such that (id− r) (T) is closed where id is the identity function
on the time scale T. Throughout this paper, intervals subscripted with a T represent
real intervals intersected with T. For example, for a, b ∈ T, [a, b]T = [a, b] ∩ T =
{t ∈ T : a ≤ b} .

In recent years, when T = R, a number of investigators had studied stability
of differential equations by mean of various fixed point techniques ( see [7]-[10] and
papers therein and we refer to [14] for fixed point theorems). In this work we use the
fixed point technique based on the contraction mapping theorem to prove that the
zero solution solution of equation 1.1 (respectively 1.2) is stable and illustrate our
theory by giving examples.

In Section 2, we present some preliminary material that we will need through
the remainder of the paper. We present our main results on stability by using the
contraction mapping principle in Section 3 and we provide two examples to illustrate
our work.
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2. Preliminaries

In this section, we consider some advanced topics in the theory of dynamic
equations on a time scales. Again, we remind that for a review of this topic we direct
the reader to the monographs of Bohner and Peterson [5], Chapter 1 and Chapter 2,
pages 1-78 and [6] pages 1-16.

A time scale T is a closed nonempty subset of R. For t ∈ T the forward jump
operator σ, and the backward jump operator ρ, respectively, are defined as σ (t) =
inf {s ∈ T : s > t} and ρ (t) = sup {s ∈ T : s < t} . These operators allow elements in
the time scale to be classified as follows. We say t is right scattered if σ (t) > t and
right dense if σ (t) = t. We say t is left scattered if ρ (t) < t and left dense if ρ (t) < t.
The graininess function µ : T → [0,∞) , is defined by µ (t) = σ (t) − t and gives the
distance between an element and its successor. We set inf ∅ = sup T and sup ∅ = inf T.
If T has a left scattered maximum M , we define Tk = T\ {M}. Otherwise, we define
Tk = T. If T has a right scattered minimum m, we define Tk = T\ {m}. Otherwise,
we define Tk = T.

Let t ∈ Tk and let f : T → R. The delta derivative of f (t) , denoted f4 (t) , is
defined to be the number (when it exists), with the property that, for each ε > 0,
there is a neighborhood U of t such that∣∣f (σ (t))− f (s)− f4 (t) [σ (t)− s]

∣∣ ≤ ε |σ (t)− s| ,

for all s ∈ U. If T = R then f4 (t) = f ′ (t) is the usual derivative. If T = Z then
f4 (t) = 4f (t) = f (t+ 1)− f (t) is the forward difference of f at t.

A function f is right dense continuous (rd-continuous), f ∈ Crd = Crd (T,R), if
it is continuous at every right dense point t ∈ T and its left-hand limits exist at each
left dense point t ∈ T. The function f : T → R is differentiable on Tk provided f4 (t)
exists for all t ∈ Tk.

We are now ready to state some properties of the delta-derivative of f . Note
fσ (t) = f (σ (t)) .

Theorem 2.1. [5, Theorem 1.20] Assume f, g : T → R are differentiable at t ∈ Tk and
let α be a scalar.

(i) (f + g)4 (t) = f4 (t) + g4 (t) .
(ii) (αf)4 (t) = αf4 (t) .
(ii) The product rules

(fg)4 (t) = f4 (t) g (t) + fσ (t) g4 (t) ,

(fg)4 (t) = f (t) g4 (t) + f4 (t) gσ (t) .

(iv) If g (t) gσ (t) 6= 0 then(
f

g

)4
(t) =

f4 (t) g (t)− f (t) g4 (t)
g (t) gσ (t)

.

The next theorem is the chain rule on time scales.
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Theorem 2.2 (Chain Rule). [5, Theorem 1.93] Assume ν : T → R is strictly increasing
and T̃ := ν (T) is a time scale. Let ω : T̃ → R. If ν4 (t) and ω4̃ (ν (t)) exist for t ∈ Tk,
then (ω ◦ ν)4 =

(
ω4̃ ◦ ν

)
ν4.

In the sequel we will need to differentiate and integrate functions of the form
f (t− r (t)) = f (ν (t)) where, ν (t) := t− r (t) . Our next theorem is the substitution
rule.

Theorem 2.3 (Substitution). [5, Theorem 1.98]Assume ν : T → R is strictly increasing
and T̃ := ν (T) is a time scale. If f : T → R is rd-continuous function and ν is
differentiable with rd-continuous derivative, then for a, b ∈ T,∫ b

a

f (t) ν4 (t)4t =
∫ ν(b)

ν(a)

(
f ◦ ν−1

)
(s) 4̃s.

A function p : T → R is said to be regressive provided 1 + µ (t) p (t) 6= 0
for all t ∈ Tk. The set of all regressive rd-continuous function f : T → R is de-
noted by R. The set of all positively regressive functions R+, is given by R+ =
{f ∈ R : 1 + µ (t) f (t) > 0 for all t ∈ T} .

Let p ∈ R and µ (t) 6= 0 for all t ∈ T. The exponential function on T is defined
by

ep (t, s) = exp
(∫ t

s

1
µ (z)

Log (1 + µ (z) p (z))4z
)
. (2.1)

It is well known that if p ∈ R+, then ep (t, s) > 0 for all t ∈ T. Also, the exponential
function y (t) = ep (t, s) is the solution to the initial value problem y4 = p (t) y,
y (s) = 1. Other properties of the exponential function are given by the following
lemma.

Lemma 2.4. [5, Theorem 2.36]Let p, q ∈ R. Then
(i) e0 (t, s) = 1 and ep (t, t) = 1;
(ii) ep (σ (t) , s) = (1 + µ (t) p (t)) ep (t, s) ;

(iii)
1

ep (t, s)
= e	p (t, s) , where 	p (t) = − p (t)

1 + µ (t) p (t)
;

(iv) ep (t, s) =
1

ep (s, t)
= e	p (s, t) ;

(v) ep (t, s) ep (s, r) = ep (t, r) ;

(vi) e4p (., s) = pep (., s) and
(

1
ep (., s)

)4
= − p (t)

eσp (., s)
.

3. Stability by fixed point theory

We begin our work by considering the neutral nonlinear dynamic equation with
an unbounded delay

x4 (t) = −a (t)xσ (t) + b (t)G (x (t) , x (t− r (t))) + c (t)x4̃ (t− r (t)) , t ∈ T, (3.1)
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where a, b, c and r are defined as before. Here, we assume G (x, y) is locally Lipschitz
continuous in x and y. That is, there is a L > 0 so that if |x| , |y| , |z| and |w| ≤ L,
then

|G (x, y)−G (z, w)| ≤ k1 |x− z|+ k2 |y − w| , (3.2)

for some positive constants k1and k2.

Also, we assume

G (0, 0) = 0. (3.3)

In addition to the conditions on r mentioned in Section 1, we need that

r4 (t) 6= 1, ∀t ∈ T. (3.4)

Furthermore, the exponential function e	a (t, 0) must satisfy

e	a (t, 0) → 0 as t→∞, (3.5)

as well as the initial value problem y4 (t) = −a (t) yσ (t) , y (0) = 1. As such, we
require that a (t) ≥ 0 for all t ∈ T. Since a (t) ≥ 0 for all t ∈ T, then 1 + µ (t) a (t) ≥
1 > 0 for all t and so a ∈ R+.

We begin by inverting equation (3.1) to obtain an equivalent equation . To do
this, we use the variation of parameter formula to rewrite the equation as an integral
mapping equation suitable for the contraction mapping theorem. So, in this step we
need only to know what does a solution of (3.1) looks like. From now on, ψ (t) denotes
a real valued function with domain (−∞, 0]T .

Lemma 3.1. Suppose (3.4) holds. If x(t) is a solution of equation (3.1) on an interval
[0, T )T, (T > 0) satisfying the initial condition x (t) = ψ (t) for t ∈ (−∞, 0]T , then
x(t) is a a solution of the integral equation

x (t) =
(
ψ (0)− c (0)

1− r4 (0)
x (−r (0))

)
e	a (t, 0) +

c (t)
1− r4 (t)

x (t− r (t))

−
∫ t

0

[h (s)xσ (s− r (s))− b (s)G (x (s) , x (s− r (s)))] e	a (t, s)4s, (3.6)

where

h (s) =

(
c4 (s) + cσ (s) a (s)

) (
1− r4 (s)

)
+ r44 (s) c (s)

(1− r4 (s)) (1− r4 (σ (s)))
. (3.7)

Conversely, if a rd-continuous function x(t) satisfies x (t) = ψ (t) for t ∈ (−∞, 0]T
and is a solution of (3.6) on some interval [0, T )T, (T > 0) , then x(t) is a solution of
equation (3.1) on [0, T )T.

Proof. We begin by rewriting (3.1) as

x4 (t) + a (t)xσ (t) = b (t)G (x (t) , x (t− r (t))) + c (t)x4̃ (t− r (t)) .
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Multiply both sides of the above equation by ea (t, 0) and then we integrate from 0
to t to obtain∫ t

0

(ea (s, 0)x (s))44s

=
∫ t

0

[
b (s)G (x (s) , x (s− r (s))) + c (s)x4̃ (s− r (s))

]
ea (s, 0)4s.

As a consequence, we arrive at

ea (t, 0)x (t)− x (0)

=
∫ t

0

[
b (s)G (x (s) , x (s− r (s))) + c (s)x4̃ (s− r (s))

]
ea (s, 0)4s.

Add x (0) to both sides and multiply them by e	a (t, 0) to obtain

x (t) = x (0) e	a (t, 0)

+
∫ t

0

[
b (s)G (x (s) , x (s− r (s))) + c (s)x4̃ (s− r (s))

]
e	a (t, s)4s. (3.8)

Here we have used Lemma 2.4 to simplify the exponential. We want to pull the factor
x4̃ (s− r (s)) from under the integral in (3.8). Clearly∫ t

0

c (s)x4̃ (s− r (s)) e	a (t, s)4s

=
∫ t

0

x4̃ (s− r (s))
(
1− r4 (s)

) c (s)
(1− r4 (s))

e	a (t, s)4s.

Using the integration by parts formula we get∫ t

0

f4 (s) g (s)4s = (fg) (t)− (fg) (0)−
∫ t

0

fσ (s) g4 (s)4s,

and Theorems 2.2 and 2.3 implie∫ t

0

c (s)x4̃ (s− r (s)) e	a (t, s)4s

=
c (t)

1− r4 (t)
x (t− r (t))− c (0)

1− r4 (0)
x (−r (0)) e	a (t, 0)

−
∫ t

0

h (s)xσ (s− r (s)) e	a (t, s)4s, (3.9)

where h is given by (3.7). Finally, by substituting the right hand side of (3.9) into
(3.8) we obtain (3.6). Conversely, suppose that a rd-continuous function x (t) satisfying
x (t) = ψ (t) for t ∈ (−∞, 0]T and is a solution of (3.6) on an interval [0, T )T. Then it
is 4-differentiable on [0, T )T. By 4-differentiating (3.6) we obtain (3.1). �

Now, let ψ : (−∞, 0]T → R be a given bounded 4-differentiable initial function.
We say that x := x (., 0, ψ) is a solution of (3.1) if x (t) = ψ (t) for t ≤ 0 and satisfies
(3.1) for t ≥ 0.
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We say the zero solution of (3.1) is stable at t0 if for each ε > 0, there is a
δ = δ (ε) > 0 such that [ ψ : (−∞, 0]T → R with ‖ψ‖ < δ ] implies |x (t, t0, ψ)| < ε.

Let Crd = Crd (T,R) be the space of all rd-continuous functions from T → R
and define the set Sψ by

Sψ = {ϕ ∈ Crd : ‖ϕ‖ ≤ L, ϕ (t) = ψ (t) if t ≤ 0 and ϕ (t) → 0 as t→∞} .

Then (Sψ, ‖.‖) is a Banach space where ‖.‖ is the supremum norm (we refer to [7,
Example 1.2.2, page 18] for the proof that Sψ is a Banach space).

For the next theorem we assume there is an α > 0 such that∣∣∣∣ c (t)
1− r4 (t)

∣∣∣∣ +
∫ t

0

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t, s)4s ≤ α < 1, t ≥ 0, (3.10)

and
t− r (t) →∞ as t→∞. (3.11)

Theorem 3.2. If (3.2)-(3.5), (3.10) and (3.11) hold, then every solution x (., 0, ψ) in
Crd of (3.1) with a small continuous initial function ψ, is bounded and tends to zero
as t→∞. Moreover, the zero solution is stable at t0 = 0.

Proof. For α and L, find an appropriate δ > 0 such that∣∣∣∣1− c (0)
1− r4 (0)

∣∣∣∣ δ + αL ≤ L.

Let ψ : (−∞, 0]T → R be a given small bounded initial function with ‖ψ‖ < δ. Define
the mapping P : Sψ → Sψ by

(Pϕ) (t) = ψ (t) , if t ≤ 0,

and

(Pϕ) (t) =
(
ϕ (0)− c (0)

1− r4 (0)
ϕ (−r (0))

)
e	a (t, 0) +

c (t)
1− r4 (t)

ϕ (t− r (t))

−
∫ t

0

[h (s)ϕσ (s− r (s))− b (s)G (ϕ (s) , ϕ (s− r (s)))] e	a (t, s)4s, t ≥ 0.

Clearly, Pϕ is continuous when ϕ is such. Let ϕ ∈ Sψ, then using (3.10) in the
definition of Pϕ and applying (3.2) and (3.3), we obtain

|(Pϕ) (t)| ≤
∣∣∣∣1− c (0)

1− r4 (0)

∣∣∣∣ δ +
∣∣∣∣ c (t)
1− r4 (t)

∣∣∣∣L
+

∫ t

0

[|h (s)| |ϕσ (s− r (s))|+ |b (s)| |G (ϕ (s) , ϕ (s− r (s)))|] e	a (t, s)4s

≤
∣∣∣∣1− c (0)

1− r4 (0)

∣∣∣∣ δ + L

{∣∣∣∣ c (t)
1− r4 (t)

∣∣∣∣ +
∫ t

0

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t, s)4s
}

≤
∣∣∣∣1− c (0)

1− r4 (0)

∣∣∣∣ δ + Lα,

which implies that |(Pϕ) (t)| ≤ L for the chosen δ. Thus we have ‖Pϕ‖ ≤ L.
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Next we show that (Pϕ) (t) → 0 as t→∞. By (3.5) and (3.11), the first term in
the definition of (Pϕ) (t) tends to zero. Also, the second term on the right-hand side
tends to zero because of (3.11) and the fact that ϕ ∈ Sψ. It remains to show that the
integral term tends to zero as t→∞.

Let ε > 0 be arbitrary and ϕ ∈ Sψ. Then ‖ϕ‖ ≤ L and there exists t1 > 0 such
that |ϕ (t)|, |ϕ (t− r (t))| and |ϕσ (t− r (t))| < ε for t ≥ t1. By condition (3.5), there
exists t2 > t1 such that for t > t2

e	a (t, t1) <
ε

αL
.

For t > t2, we have∣∣∣∣∣∣
t∫

0

[h (s)ϕσ (s− r (s))− b (s)G (ϕ (s) , ϕ (s− r (s)))] e	a (t, s)4s

∣∣∣∣∣∣
≤

t∫
0

[|h (s)| |ϕσ (s− r (s))|+ |b (s)| |G (ϕ (s) , ϕ (s− r (s)))|] e	a (t, s)4s

≤ L

t1∫
0

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t, s)4s

+ ε

t2∫
t1

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t, s)4s

≤ Le	a (t, t1)

t1∫
0

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t1, s)4s+ αε

≤ αLe	a (t, t1) + αε ≤ ε+ αε.

Hence (Pϕ) (t) → 0 as t→∞.
It remains to show that P is a contraction under the supremum norm. For this,

let ϕ, φ ∈ Sψ then

|(Pϕ) (t)− (Pφ) (t)| ≤
∣∣∣∣ c (t)
1− r4 (t)

∣∣∣∣ ‖ϕ− φ‖

+

t∫
0

|h (s) (ϕσ (s− r (s))− φσ (s− r (s)))| e	a (t, s)4s

+

t∫
0

|b (s) (G (ϕ (s) , ϕ (s− r (s)))−G (φ (s) , φ (s− r (s))))| e	a (t, s)4s

≤


∣∣∣∣ c (t)
1− r4 (t)

∣∣∣∣ +

t∫
0

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t, s)4s

 ‖ϕ− φ‖ ≤ α ‖ϕ− φ‖ .
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Thus, by the contraction mapping principle, P has a unique fixed point in Sψ which
solves (3.1), bounded and tends to zero as t → ∞. The stability of the zero solution
at t0 = 0 follows from the above work by simply replacing L by ε. �

Some stability result obtained on R for similar linear equations with delay via
fixed point technic can be found in [8] (see also [7]). The authors in [13] have obtained
results of stability for a nonlinear dynamic delay equation but with no neutral term.

Example 3.3. Let

T = (−∞,−1] ∪
{

(1/2)Z − 1
}

= (−∞,−1] ∪ {..., (1− 2n) /2n, ...,−3/4,−1/2, 0, 1, 3, ..., 2n − 1, ...} .

Then for any small continuous initial function ψ : (−∞, 0]T → R, every solution
x (., 0, ψ) of the nonlinear neutral dynamic equation

x4 (t) = −3xσ (t) + (3/2) c0 (sin (x (t)) + sin (x (t/2− 1/2)))

+c0x4̃ (t/2− 1/2) , (3.12)

where c0 is a positive constant, is bounded and goes to 0 as t→∞.

Indeed, in (3.12) we have r (t) = t/2+1/2. Let t ∈ (1/2)Z− 1. Then there exists
an n ∈ Z such that t = (1/2)n − 1. Hence

t− r (t) =
1
2

((
1
2

)n
− 1

)
− 1

2

=
(

1
2

)n+1

− 1 ∈ T.

So, id−r : T → T. Furthermore (id− r) (T) is a time scale. Also, t−r (t) = t/2−1/2 →
∞ as t → ∞ and (t− r (t))4 = (t/2− 1/2)4 = 1/2. Consequently, conditions (3.4)
and (3.11) are satisfied. Since 1 + 3µ (t) > 0 for all t ∈ T, then 3 ∈ R+ and condition
(3.5) is satisfied as well.
Also, in (3.12), we have

G (x (t) , x (t/2− 1/2)) = sin (x (t)) + sin (x (t/2− 1/2)) .

Clearly G (0, 0) = 0 and G (x, y) is locally Lipschitz continuous in x and y. That is,
there is a L > 0 so that if |x| , |y| , |z| and |w| ≤ L, then

|G (x, y)−G (z, w)| = |sin (x) + sin (y)− (sin (z) + sin (w))|
≤ |sin (x)− sin (z)|+ |sin (y)− sin (w)|
≤ |x− z|+ |y − w| .
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One may easily check that h (s) = 6c0. Also∣∣∣∣ c (t)
1− r4 (t)

∣∣∣∣ +
∫ t

0

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t, s)4s

= 2c0 + 9c0
∫ t

0

e	3 (t, s)4s

= 2c0 + 3c0 − 3c0e	3 (t, 0)
≤ 5c0.

Hence, (3.10) is satisfied for c0 ≤
α

5
, α ∈ (0, 1) . Let ψ be a given initial function

which is continuous with |ψ (t)| ≤ δ for all t ∈ T and define

Sψ = {ϕ ∈ Crd : ‖ϕ‖ ≤ L, ϕ (t) = ψ (t) if t ≤ 0 and ϕ (t) → 0 as t→∞} .

Define

(Pϕ) (t) = ψ (t) if t ≤ 0,

and

(Pϕ) (t) = (ψ (0)− 2c0ψ (−1/2)) e	3 (t, 0) + 2c0ϕ (t/2− 1/2)

−
∫ t

0

[6c0ϕσ (s/2− 1/2)− (3/2) c0 (sin (ϕ (s)) + sin (ϕ (s/2− 1/2)))]

×e	3 (t, s)4s, t ≥ 0.

Then, for ϕ ∈ Sψ with ‖ϕ‖ ≤ L, we have

‖Pϕ‖ ≤ (1− 2c0) δ + 5c0L ≤ (1− 2c0) δ + αL.

This implies that ‖Pϕ‖ ≤ L, for L ≥ (1− 2c0) δ
1− α

. To see that P defines a contraction

mapping, we let ϕ, φ ∈ Sψ. Then

|(Pϕ) (t)− (Pφ) (t)| ≤ 2c0 ‖ϕ− φ‖+ 3c0 ‖ϕ− φ‖
≤ α ‖ϕ− φ‖ .

Hence, by Theorem 3.2, every solution x (., 0, ψ) of (3.12) with small continuous initial
function ψ : (−∞, 0]T → R, is in Sψ, bounded and goes to zero as t→∞.

Next we turn our attention to the nonlinear neutral dynamic equation with
unbounded delay

x4 (t) = −a (t)xσ (t) + b (t)G
(
x2 (t) , x2 (t− r (t))

)
+c (t)

(
x2

)4̃
(t− r (t)) , t ∈ T, (3.13)

where a, b, c, r and G are defined as before.
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We use the variation of parameter to get the solution

x (t) =
(
x (0)− c (0)

1− r4 (0)
x2 (−r (0))

)
e	a (t, 0)

+
c (t)

1− r4 (t)
x2 (t− r (t))

−
∫ t

0

[
h (s)

(
x2

)σ
(s− r (s))− b (s)G

(
x2 (s) , x2 (s− r (s))

)]
e	a (t, s)4s,

where h is given by (3.7).
Let

Sψ = {ϕ ∈ Crd : ‖ϕ‖ ≤ L, ϕ (t) = ψ (t) if t ≤ 0 and ϕ (t) → 0 as t→∞} .

For the next theorem we assume there is an α > 0 such that

L

{∣∣∣∣ c (t)
1− r4 (t)

∣∣∣∣ +
∫ t

0

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t, s)4s
}

≤ α < 1/2, t ≥ 0. (3.14)

Theorem 3.4. If (3.2)-(3.5), (3.11) and (3.14) hold, then every solution x (., 0, ψ) of
(3.13) with a small continuous initial function ψ, is bounded and tends to zero as
t→∞. Moreover, the zero solution is stable at t0 = 0.

Proof. For α and L, find an appropriate δ > 0 such that

δ +
∣∣∣∣ c (0)
1− r4 (0)

∣∣∣∣ δ2 + αL ≤ L.

Let ψ : (−∞, 0]T → R be a given small bounded initial function with ‖ψ‖ < δ. Define
the mapping P : Sψ → Sψ by

(Pϕ) (t) = ψ (t) , if t ≤ 0,

and

(Pϕ) (t) =
(
ϕ (0)− c (0)

1− r4 (0)
ϕ2 (−r (0))

)
e	a (t, 0)

+
c (t)

1− r4 (t)
ϕ2 (t− r (t))

−
∫ t

0

[
h (s)

(
ϕ2

)σ
(s− r (s))− b (s)G

(
ϕ2 (s) , ϕ2 (s− r (s))

)]
e	a (t, s)4s, t ≥ 0.
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Clearly, Pϕ is continuous when ϕ is such. Let ϕ ∈ Sψ, then using (3.14) in the
definition of Pϕ and applying (3.2) and (3.3), we have

|(Pϕ) (t)|

≤ δ +
∣∣∣∣ c (0)
1− r4 (0)

∣∣∣∣ δ2 +
∣∣∣∣ c (t)
1− r4 (t)

∣∣∣∣L
+

t∫
0

[
|h (s)|

∣∣∣(ϕ2
)σ

(s− r (s))
∣∣∣ + |b (s)|

∣∣G (
ϕ2 (s) , ϕ2 (s− r (s))

)∣∣] e	a (t, s)4s

≤ δ +
∣∣∣∣ c (0)
1− r4 (0)

∣∣∣∣ δ2
+ L2

{∣∣∣∣ c (t)
1− r4 (t)

∣∣∣∣ +
∫ t

0

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t, s)4s
}

≤ δ +
∣∣∣∣ c (0)
1− r4 (0)

∣∣∣∣ δ2 + Lα,

which implies that |(Pϕ) (t)| ≤ L for the chosen δ. Thus we have ‖Pϕ‖ ≤ L.

Next we show that (Pϕ) (t) → 0 as t→∞. By (3.5) and (3.11), the first term in
the definition of (Pϕ) (t) tends to zero. Also, the second term on the right-hand side
tends to zero because of (3.11) and the fact that ϕ ∈ Sψ. It remains to show that the
integral term tends to zero as t→∞.

Let ε > 0 be arbitrary and ϕ ∈ Sψ. Then ‖ϕ‖ ≤ L and there exists t1 > 0 such that
|ϕ (t)|, |ϕ (t− r (t))| and |ϕσ (t− r (t))| < ε for t ≥ t1. By condition (3.5), there exists
t2 > t1 such that for t > t2

e	a (t, t1) <
ε

αL2
.

For t > t2, we have∣∣∣∣∫ t

0

[
h (s)

(
ϕ2

)σ
(s− r (s))− b (s)G

(
ϕ2 (s) , ϕ2 (s− r (s))

)]
e	a (t, s)4s

∣∣∣∣
≤

∫ t

0

[ |h (s)|
∣∣∣(ϕ2

)σ
(s− r (s))

∣∣∣
+ |b (s)|

∣∣G (
ϕ2 (s) , ϕ2 (s− r (s))

)∣∣ ] e	a (t, s)4s

≤ L2

∫ t1

0

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t, s)4s

+ ε2
∫ t2

t1

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t, s)4s

≤ L2e	a (t, t1)
∫ t1

0

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t1, s)4s+ αε2

≤ αL2e	a (t, t1) + αε2 ≤ ε+ αε2.

Hence (Pϕ) (t) → 0 as t→∞.
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It remains to show that P is a contraction under the supremum norm. For this,
let ϕ, φ ∈ Sψ then

|(Pϕ) (t)− (Pφ) (t)|

≤
{∣∣∣∣ c (t)

1− r4 (t)

∣∣∣∣ +
∫ t

0

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t, s)4s
} ∥∥ϕ2 − φ2

∥∥
≤ (2L) {

∣∣∣∣ c (t)
1− r4 (t)

∣∣∣∣
+

∫ t

0

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t, s)4s } ‖ϕ− φ‖

≤ (2α) ‖ϕ− φ‖ .

Thus, by the contraction mapping principle, P has a unique fixed point in Sψ which
solves (3.13), is bounded and tends to zero as t→∞. The stability of the zero solution
at t0 = 0 follows from the above work by simply replacing L by ε. �

Example 3.5. Let

T = (−∞,−1] ∪
{

(1/3)Z − 1
}

= (−∞,−1] ∪ {..., (1− 3n) /3n, ...,−8/9,−2/3, 0, 2, 8, ..., 3n − 1, ...} .

Then for any small continuous initial function ψ : (−∞, 0]T → R, every solution
x (., 0, ψ) of the nonlinear neutral dynamic equation

x4 (t) = −2xσ (t) + c0
(
sin

(
x2 (t)

)
+ cos

(
x2 (t/3− 2/3)

)
− 1

)
+2c0

(
x2

)4̃
(t/3− 2/3) , (3.15)

where c0 is a positive constant, bounded and goes to 0 as t→∞.

Indeed, in (3.15) we have r (t) = 2t/3+2/3. Let t ∈ (1/3)Z−1. Then there exists
an n ∈ Z such that t = (1/3)n − 1. Hence

t− r (t) =
1
3

((
1
3

)n
− 1

)
− 2

3

=
(

1
3

)n+1

− 1 ∈ T.

So, id−r : T → T. Furthermore (id− r) (T) is a time scale. Also, t−r (t) = t/3−2/3 →
∞ as t → ∞ and (t− r (t))4 = (t/3− 2/3)4 = 1/3. Consequently, conditions (3.4)
and (3.11) are satisfied. Since 1 + 2µ (t) > 0 for all t ∈ T, then 2 ∈ R+ and condition
(3.5) is satisfied as well.
Also, in (3.15), we have

G
(
x2 (t) , x2 (t/3− 2/3)

)
= sin

(
x2 (t)

)
+ cos

(
x2 (t/3− 2/3)

)
− 1.
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Clearly G (0, 0) = 0 and G (x, y) is locally Lipschitz continuous in x and y. That is,
there is a L > 0 so that if |x| , |y| , |z| and |w| ≤ L, then

|G (x, y)−G (z, w)| = |sin (x) + cos (y)− (sin (z) + cos (w))|
≤ |sin (x)− sin (z)|+ |cos (y)− cos (w)|
≤ |x− z|+ |y − w| .

One may easily arrive at h (s) = 6c0. Also

L

{∣∣∣∣ c (t)
1− r4 (t)

∣∣∣∣ +
∫ t

0

(|h (s)|+ (k1 + k2) |b (s)|) e	a (t, s)4s
}

= L

(
3c0 + 8c0

∫ t

0

e	2 (t, s)4s
)

= L {3c0 + 4c0 − 4c0e	2 (t, 0)}
≤ 7Lc0.

Hence, (3.14) is satisfied for c0 ≤
α

7L
, α ∈ (0, 1/2) . Let ψ be a given initial function

that is continuous with |ψ (t)| ≤ δ for all t ∈ T and define

Sψ = {ϕ ∈ Crd : ‖ϕ‖ ≤ L, ϕ (t) = ψ (t) if t ≤ 0 and ϕ (t) → 0 as t→∞} .

Define
(Pϕ) (t) = ψ (t) if t ≤ 0,

and

(Pϕ) (t) =
(
ψ (0)− 3c0ψ2 (−2/3)

)
e	2 (t, 0) + 3c0ϕ2 (t/3− 2/3)

−
∫ t

0

[
6c0

(
ϕ2

)σ
(s/3− 2/3)− c0

(
sin

(
ϕ2 (s)

)
+ cos

(
ϕ2 (s/3− 2/3)

)
− 1

)]
× e	2 (t, s)4s, t ≥ 0.

Then, for ϕ ∈ Sψ with ‖ϕ‖ ≤ L, we have

‖Pϕ‖ ≤ δ + 3c0δ2 + 7c0L2 ≤ δ + 3c0δ2 + αL.

This implies that ‖Pϕ‖ ≤ L, for L ≥ δ + 3c0δ2

1− α
. To see that P defines a contraction

mapping, we let ϕ, φ ∈ Sψ. Then

|(Pϕ) (t)− (Pφ) (t)| ≤ 3c0
∥∥ϕ2 − φ2

∥∥ + 4c0
∥∥ϕ2 − φ2

∥∥
≤ 14c0L ‖ϕ− φ‖
≤ 2α ‖ϕ− φ‖ .

Hence, by Theorem 3.4, every solution x (., 0, ψ) of (3.15) with small continuous initial
function ψ : (−∞, 0]T → R, is in Sψ, bounded and goes to zero as t→∞.
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