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Abstract. In the present paper we investigate the existence and uniqueness of
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for some classes of hyperbolic fractional order differential equations by using some
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1. Introduction

The idea of fractional calculus and fractional order differential equations and
inclusions has been a subject of interest not only among mathematicians, but also
among physicists and engineers. Indeed, we can find numerous applications in rhe-
ology, control, porous media, viscoelasticity, electrochemistry, electromagnetism, etc.
[14, 15, 19, 20, 22, 27]. There has been a significant development in ordinary and
partial fractional differential equations in recent years; see the monographs of Abbas
et al. [3], Kilbas et al. [17], Miller and Ross [21], Samko et al. [26], the papers of Abbas
and Benchohra [1, 2], Abbas et al. [4, 5], Belarbi et al. [8], Benchohra et al. [9, 10, 11],
Diethelm [13], Kaufmann and Mboumi [16], Kilbas and Marzan [18], Mainardi [19],
Podlubny et al [25], Vityuk [28], Vityuk and Golushkov [29], Vityuk and Mykhailenko
[30, 31], Zhang [32] and the references therein.

Applied problems require definitions of fractional derivative allowing the uti-
lization of physically interpretable initial conditions. Caputo’s fractional derivative,
originally introduced by Caputo [12] and afterwards adopted in the theory of lin-
ear viscoelasticity, satisfies this demand. For a consistent bibliography on this topic,
historical remarks and examples we refer to [6, 7, 23, 24].
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In [33], Zhang considered the existence and uniqueness of positive solutions for
the following fractional order system

Dr
θu(x, y) = f(x, y, u(x, y), Dρ1

θ u(x, y), . . . ,
Dρn

θ u(x, y)); if (x, y) ∈ (0, a]× (0, b],
u(x, 0) = u(0, y) = 0,

(1.1)

where r = (α, β) ∈ (0, 1]× (0, 1], ρi = (δi, γi); i = 1, . . . , n, and 0 ≤ γi < α, 0 ≤ δi <
β, and Dr

θ is Riemann-Liouville fractional derivative.
In the present paper we investigate the existence and uniqueness of solutions to

fractional order system
cDr

θu(x, y) = f(x, y, u(x, y),cDρ
θu(x, y)); if (x, y) ∈ J := [0, a]× [0, b], (1.2)

u(x, 0) = ϕ(x); x ∈ [0, a],
u(0, y) = ψ(y); y ∈ [0, b],
ϕ(0) = ψ(0),

(1.3)

where a, b > 0, θ = (0, 0), r = (r1, r2), ρ = (ρ1, ρ2), 0 < ρi < ri ≤ 1; i = 1, 2, cDr
θ

is the standard Caputo’s fractional derivative of order r, f : J × Rn × Rn → Rn is a
given function, ϕ : [0, a] → Rn, and ψ : [0, b] → Rn are given absolutely continuous
functions. We present three results for the problem (1.2)-(1.3), the two first results
are based on Schauder’s Fixed Point Theorem (Theorems 3.3 and 3.4) and the third
one on Banach’s contraction principle (Theorem 3.5). As an extension to the problem
(4.1)-(4.2), we present two similar results (Theorems 4.1 and 4.2).

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper. By C(J) we denote the Banach space of all continuous
functions from J into Rn with the norm

‖w‖∞ = sup
(x,y)∈J

‖w(x, y)‖,

where ‖.‖ denotes a suitable complete norm on Rn.

As usual, by AC(J) we denote the space of absolutely continuous functions from
J into Rn and L1(J) is the space of Lebesgue-integrable functions w : J → Rn with
the norm

‖w‖L1 =
∫ a

0

∫ b

0

‖w(x, y)‖dydx.

Definition 2.1. [29] Let r = (r1, r2) ∈ (0,∞)× (0,∞), θ = (0, 0) and u ∈ L1(J). The
left-sided mixed Riemann-Liouville integral of order r of u is defined by

(Ir
θu)(x, y) =

1
Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1u(s, t)dtds.
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In particular,

(Iθ
θu)(x, y) = u(x, y), (Iσ

θ u)(x, y) =
∫ x

0

∫ y

0

u(s, t)dtds; for a.a (x, y) ∈ J,

where σ = (1, 1).
For instance, Ir

θu exists for all r1, r2 ∈ (0,∞), when u ∈ L1(J). Note also that
when u ∈ C(J), then (Ir

θu) ∈ C(J), moreover

(Ir
θu)(x, 0) = (Ir

θu)(0, y) = 0; x ∈ [0, a], y ∈ [0, b].

Example 2.2. Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0,∞)× (0,∞), then

Ir
θx

λyω =
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
xλ+r1yω+r2 , for almost all (x, y) ∈ J.

By 1 − r we mean (1 − r1, 1 − r2) ∈ [0, 1) × [0, 1). Denote by D2
xy := ∂2

∂x∂y , the
mixed second order partial derivative.

Definition 2.3. [29] Let r ∈ (0, 1]× (0, 1] and u ∈ L1(J). The Caputo fractional-order
derivative of order r of u is defined by the expression cDr

θu(x, y) = (I1−r
θ D2

xyu)(x, y).

The case σ = (1, 1) is included and we have

(cDσ
θ u)(x, y) = (D2

xyu)(x, y), for almost all (x, y) ∈ J.

Example 2.4. Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0, 1]× (0, 1], then

Dr
θx

λyω =
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
xλ−r1yω−r2 , for almost all (x, y) ∈ J.

For w,cDρ
θw ∈ C(J), denote

‖w(x, y)‖1 = ‖w(x, y)‖+ ‖cDρ
θw(x, y)‖.

We define the space X as the following

X = {w ∈ C(J) having the Caputo fractional derivative of order ρ,

and cDρ
θw ∈ C(J)}.

In the space X we define the norm

‖w‖X = sup
(x,y)∈J

‖w(x, y)‖1.

It is easy to see that (X, ‖.‖X) is a Banach space.

3. Existence of solutions

Let us start by defining what we mean by a solution of the problem (1.2)-(1.3).

Definition 3.1. A function u ∈ X is said to be a solution of (1.2)-(1.3) if u satisfies
equation (1.2) and conditions (1.3) on J.

For the existence of solutions for the problem (1.2)-(1.3) we need the following
lemma. Its proof is easily and left to the reader.
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Lemma 3.2. A function u ∈ X is a solution of problem (1.2)-(1.3) if and only if u
satisfies

u(x, y) = µ(x, y) + Ir
θf(x, y, u(x, y),cDρ

θu(x, y)); (x, y) ∈ J,
where

µ(x, y) = ϕ(x) + ψ(y)− ϕ(0).

Further, we present conditions for the existence of a solution of problem (1.2)-
(1.3) by using Schauder’s Fixed Point Theorem. In the following result we assume a
sublinear growth condition on the right hand side, namely the function f .

Theorem 3.3. Assume

(H1) The function f : J × Rn × Rn → Rn is continuous,
(H2) There exist constants c, ci > 0; i = 0, 1 and 0 < τj < 1; j = 0, 1 such that

‖f(x, y, u(x, y),cDρ
θu)‖ ≤ c+ c0‖u‖τ0 + c1‖cDρ

θu‖
τ1 ,

for any u ∈ Rn and all (x, y) ∈ J.
Then there exists at least a solution for IV P (1.2)-(1.3) on J .

Proof. Transform the problem (1.2)-(1.3) into a fixed point problem. Consider the
operator N : X → X defined by,

N(u)(x, y) = µ(x, y) + Ir
θf(x, y, u(x, y),cDρ

θu(x, y)). (3.1)

By Lemma 3.2, the problem of finding the solutions of the IV P (1.2)-(1.3) is reduced
to finding the solutions of the operator equation N(u) = u. Differentiating both sides
of (3.1) by applying the Caputo fractional derivative, we get

cDρ
θ(Nu)(x, y) = cDρ

θµ(x, y) + Ir−ρ
θ f(x, y, u(x, y),cDρ

θu(x, y)). (3.2)

Since N(u) and cDρ
θ(Nu) are continuous on J, then N maps X into itself.

From (H1) and the Arzela-Ascoli Theorem, the operator N is completely con-
tinuous.

Let τ = max{τ0, τ1} and BR = {u ∈ X : ‖u‖X ≤ R} be a closed bounded and
convex subset of X, where

R > max{1, A,B,C,D},

where

A = 4‖µ‖∞ +
4car1br2

Γ(1 + r1)Γ(1 + r2)
,

B = 4‖cDρ
θµ‖∞ +

4car1−ρ1br2−ρ2

Γ(1 + r1 − ρ1)Γ(1 + r2 − ρ2)
,

C =
(

Γ(1 + r1)Γ(1 + r2)
4(c0 + c1 + 2)ar1br2

) 1
1−τ

,

D =
(

Γ(1 + r1 − ρ1)Γ(1 + r2 − ρ2)
4(c0 + c1 + 2)ar1−ρ1br2−ρ2

) 1
1−τ

.
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By (H2), for every u ∈ BR and (x, y) ∈ J we have

‖N(u)(x, y)‖

≤ ‖µ(x, y)‖+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

× ‖f(s, t, u(s, t),cDρ
θu(s, t)))‖dtds

≤ ‖µ(x, y)‖+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

× (c+ c0‖u(s, t)‖τ0 + c1‖cDρ
θu(s, t)‖

τ1)dtds

≤ ‖µ‖∞ +
ar1br2

Γ(1 + r1)Γ(1 + r2)
(c+ c0‖u‖τ0

X + c1‖cDρ
θu‖

τ1
X )

≤ ‖µ‖∞ +
ar1br2

Γ(1 + r1)Γ(1 + r2)

(
c+ (c0 + 1)Rτ0 + (c1 + 1)Rτ1

)
≤ ‖µ‖∞ +

ar1br2

Γ(1 + r1)Γ(1 + r2)

(
c+ (c0 + c1 + 2)Rτ

)
= ‖µ‖∞ +

ar1br2

Γ(1 + r1)Γ(1 + r2)

(
c+Rτ−1R(c0 + c1 + 2)

)
≤ R

4
+
R

4
=
R

2
,

and

‖cDρ
θN(u)(x, y)‖

≤ ‖cDρ
θµ(x, y)‖+

1
Γ(r1 − ρ1)Γ(r2 − ρ2)

∫ x

0

∫ y

0

(x− s)r1−ρ1−1

× (y − t)r2−ρ2−1f(s, t, u(s, t),cDρ
θu(s, t)))‖dtds

≤ ‖cDρ
θµ(x, y)‖+

1
Γ(r1 − ρ1)Γ(r2 − ρ2)

∫ x

0

∫ y

0

(x− s)r1−ρ1−1

× (y − t)r2−ρ2−1(c+ c0‖u(s, t)‖τ0 + c1‖cDρ
θu(s, t)‖

τ1)dtds

≤ ‖cDρ
θµ‖∞ +

ar1−ρ1br2−ρ2

Γ(1 + r1 − ρ1)Γ(1 + r2 − ρ2)
(c+ c0‖u‖τ0

X + c1‖cDρ
θu‖

τ1
X )

≤ ‖cDρ
θµ‖∞ +

ar1−ρ1br2−ρ2

Γ(1 + r1 − ρ1)Γ(1 + r2 − ρ2)

×
(
c+ (c0 + 1)Rτ0 + (c1 + 1)Rτ1

)
≤ ‖cDρ

θµ‖∞ +
ar1−ρ1br2−ρ2

Γ(1 + r1 − ρ1)Γ(1 + r2 − ρ2)

(
c+Rτ−1R(c0 + c1 + 2)

)
≤ R

4
+
R

4
=
R

2
.
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Thus, for every u ∈ BR and (x, y) ∈ J we have

‖N(u)(x, y)‖1 = ‖N(u)(x, y)‖+ ‖cDρ
θN(u)(x, y)‖

≤ R

2
+
R

2
= R.

Hence ‖N(u)‖X ≤ R for u ∈ BR, that is, N(BR) ⊆ BR. Schauder’s fixed point
theorem implies that the operator N has at least a fixed point u∗ ∈ BR. By Lemma
3.2, the problem (1.2)-(1.3) has a solution u∗ ∈ BR.

In the following result we assume a superlinear growth condition on the function f .

Theorem 3.4. Assume (H1) and the following hypothesis holds

(H ′
2) There exist constants di > 0; i = 0, 1 and νj > 1; j = 0, 1 such that

‖f(x, y, u(x, y),cDρ
θu)‖ ≤ d0‖u‖ν0 + d1‖cDρ

θu‖
ν1 ,

for any u ∈ Rn and all (x, y) ∈ J.
Then the IV P (1.2)-(1.3) has at least a solution on J .

Proof. Consider the operator N defined by (3.1). In a similar way as in Theorem 3.3,
we can complete this proof, provided if we take the closed, bounded and convex subset
BR = {u ∈ X : ‖u‖X ≤ R} of the space X, where

R < min
{

1,
‖µ‖∞

3
,A,B

}
,

where

A =
(

Γ(1 + r1)Γ(1 + r2)
3(c0 + c1 + 2)ar1br2

) 1
1−ν

,

B =
(

Γ(1 + r1 − ρ1)Γ(1 + r2 − ρ2)
3(c0 + c1 + 2)ar1−ρ1br2−ρ2

) 1
1−ν

,

and
ν = min{ν0, ν1}.

Now, we present a uniqueness result for the problem (1.2)-(1.3) based on Ba-
nach’s contraction principle.

Theorem 3.5. Assume (H1) and the following hypothesis holds

(H3) There exist positive functions g, h ∈ C(J) satisfying

(Ir
θg)(x, y) + (Ir−ρ

θ )g(x, y) <
1
2
, (Ir

θh)(x, y) + (Ir−ρ
θ h)(x, y) <

1
2
,

such that

‖f(x, y, u,cDρ
θu)− f(x, y, v,cDρ

θv)‖ ≤ g(x, y)‖u− v‖+ h(x, y)‖cDρ
θu−

c Dρ
θv‖,

for all (x, y) ∈ J and u, v ∈ Rn.

Then the IV P (1.2)-(1.3) has a unique solution on J .



Fractional order partial hyperbolic differential equations 475

Proof. Consider the operator N defined in (3.1). Let u, v ∈ X. By assumption (H3),
for (x, y) ∈ J, we have

‖N(u)(x, y)−N(v)(x, y)‖1
= ‖Ir

θ

(
f(x, y, u(x, y),cDρ

θu(x, y))− f(x, y, v(x, y),cDθv
ρ(x, y))

)
‖

+ ‖cDr
θI

ρ
θ

(
f(x, y, u(x, y),cDρ

θu(x, y))− f(x, y, v(x, y),cDθv
ρ(x, y))

)
‖

≤ Ir
θ

(
g(x, y)‖u(x, y)− v(x, y)‖+ h(x, y)‖cDρ

θu(x, y)−
c Dρ

θv(x, y)‖
)

+ Ir−ρ
θ

(
g(x, y)‖u(x, y)− v(x, y)‖+ h(x, y)‖cDρ

θu(x, y)−
c Dρ

θv(x, y)‖
)

≤
(
Ir
θg(x, y) + Ir−ρ

θ g(x, y)
)
‖u(x, y)− v(x, y)‖

+
(
Ir
θh(x, y) + Ir−ρ

θ h(x, y)
)
‖cDρ

θu(x, y)−
c Dρ

θv(x, y)‖

≤ 1
2
‖u(x, y)− v(x, y)‖+

1
2
‖cDρ

θu(x, y)−
c Dρ

θv(x, y)‖

≤ 1
2
‖u(x, y)− v(x, y)‖1.

Hence
‖N(u)−N(v)‖X ≤ 1

2
‖u− v‖X ,

which implies that N is a contraction operator. Then Banach’s Contraction Principle
assures that the operator N has a unique fixed point u∗ ∈ X.

4. More general existence results

In this section, we present (without proof) two existence results to the more
general class of fractional order IVP for the system

cDr
θu(x, y) = f(x, y, u(x, y),cDρ1

θ u(x, y),cDρ2
θ u(x, y), ...,

cDρm

θ u(x, y)); if (x, y) ∈ J, (4.1)
u(x, 0) = ϕ(x); x ∈ [0, a],
u(0, y) = ψ(y); y ∈ [0, b],
ϕ(0) = ψ(0),

(4.2)

where J := [0, a]× [0, b], a, b > 0, θ = (0, 0), r = (r1, r2), ρi = (ρi,1, ρi,2), 0 < ρi,j <
rj ≤ 1; i = 1, . . . ,m, j = 1, 2 and f is a given continuous function.

For w,cDρi

θ w ∈ C(J); i = 1, . . . ,m, denote

‖w(x, y)‖1 = ‖w(x, y)‖+
m∑

i=1

‖cDρi

θ w(x, y)‖.

We define the following space

X̃ = {w ∈ C(J) having the Caputo fractional derivative of order ρi,

and cDρi

θ w ∈ C(J); i = 1, . . . ,m}.
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The space X̃ is a Banach space with the norm

‖w‖X̃ = sup
(x,y)∈J

‖w(x, y)‖1.

The following result for the problem (4.1)-(4.2) is based on Schauder’s fixed point
theorem.

Theorem 4.1. Assume that the function f satisfying one of the following conditions:

(H4) There exist constants c, ci > 0; i = 0, . . . ,m and 0 < τj < 1; j = 1, . . . ,m such
that

‖f(x, y, u(x, y),cDρ1
θ u,cDρ2

θ u, ...,cDρm

θ u)‖ ≤ c+ c0‖u‖τ0 +
m∑

i=1

ci‖cDρi

θ u‖
τi ,

for any u ∈ Rn and all (x, y) ∈ J.
(H ′

4) There exist constants di > 0; i = 0, 1, . . . ,m and νj > 1; j = 0, 1, . . . ,m such
that

‖f(x, y, u(x, y),cDρ1
θ u,cDρ2

θ u, ...,cDρm

θ u)‖ ≤ d0‖u‖ν0 +
m∑

i=1

di‖cDρi

θ u‖
νi ,

for any u ∈ Rn and all (x, y) ∈ J.
Then there exists at least a solution for IV P (4.1)-(4.2) on J .

By means of the Banach contraction principle, we have the following result for
problem (4.1)-(4.2).

Theorem 4.2. Assume

(H5) There exist positive functions g, hi ∈ C(J); i = 1, . . . ,m satisfying

(Ir
θg)(x, y) +

m∑
i=1

(Ir−ρi

θ g)(x, y) <
1
2
,

m∑
i=1

(Ir
θhi)(x, y) +

m∑
j=1

m∑
i=1

(Ir−ρj

θ hi)(x, y) <
1
2
,

such that

‖f(x, y, u,cDρ1
θ u, . . . ,cDρm

θ u)− f(x, y, v,cDρ1
θ v, . . . ,cDρm

θ v)‖ ≤ g(x, y)‖u− v‖

+
m∑

i=1

hi(x, y)‖cDρi

θ u−
c Dρi

θ v‖,

for all (x, y) ∈ J and u, v ∈ Rn.

Then the IV P (4.1)-(4.2) has a unique solution on J .
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5. An example

As an application of our results we consider the following partial hyperbolic
differential equations of the form

cDr
θu(x, y) =

72
72 + 9xy2|u(x, y)|+ 8x2y|cDρ

θu(x, y)|
; if (x, y) ∈ [0, 1]× [0, 1], (5.1)

u(x, 0) = x, u(0, y) = y2; x, y ∈ [0, 1]. (5.2)
Set for (x, y) ∈ [0, 1]× [0, 1]

f(x, y, u(x, y),cDr
θu(x, y)) =

72
72 + 9xy2|u(x, y)|+ 8x2y|cDρ

θu(x, y)|
.

Clearly, the function f is continuous. For each u, u, v, v ∈ R and (x, y) ∈ [0, 1]× [0, 1]
we have

|f(x, y, u(x, y), v(x, y))− f(x, y, u(x, y), v(x, y))|

≤ 1
8
xy2‖u− u‖+

1
9
x2y‖v − v‖.

Hence condition (H3) is satisfied with

g(x, y) =
1
8
xy2 and h(x, y) =

1
9
x2y.

For each (x, y) ∈ [0, 1]× [0, 1] and 0 < ri < ρi ≤ 1; i = 1, 2 we have

(Ir
θg)(x, y) + (Ir−ρ

θ g)(x, y) ≤ 2Γ(2)Γ(3)
8Γ(2)Γ(3)

=
1
4
<

1
2
,

and

(Ir
θh)(x, y) + (Ir−ρ

θ h)(x, y) ≤ 2Γ(2)Γ(3)
9Γ(2)Γ(3)

=
2
9
<

1
2
.

Consequently, Theorem 3.5 implies that problem (5.1)-(5.2) has a unique solution on
[0, 1]× [0, 1].
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