On the hyper-Wiener index of unicyclic graphs with given matching number

Xuli Qi and Bo Zhou

Abstract

We determine the minimum hyper-Wiener index of unicyclic graphs with given number of vertices and matching number, and characterize the extremal graphs.

Mathematics Subject Classification (2010): 05C12, 05C35, 05C90.
Keywords: Hyper-Wiener index, Wiener index, distance, matching number, unicyclic graphs.

1. Introduction

Let G be a simple connected graph with vertex set $V(G)$. For $u, v \in V(G)$, the distance $d_{G}(u, v)$ or $d_{u v}$ between u and v in G is the length of a shortest path connecting them. The Wiener index of G is defined as [7, 13]

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d_{u v} .
$$

The Wiener index has found various applications in chemical research [11] and has been studied extensively in mathematics [3, 4].

As a variant of the Wiener index, the hyper-Wiener index of the graph G is defined as [8]

$$
W W(G)=\sum_{\{u, v\} \subseteq V(G)}\binom{d_{u v}+1}{2}=\frac{1}{2} \sum_{\{u, v\} \subseteq V(G)}\left(d_{u v}^{2}+d_{u v}\right) .
$$

This graph invariant was proposed by Randić [12] for a tree and extended by Klein et al. [8] to a connected graph. It is used to predict physicochemical properties of organic compounds [1], and has also been extensively studied, see, e.g., [2, 5, 9, 10, 14].

Du and Zhou [4] determined the minimum Wiener indices of trees and unicyclic graphs with given number of vertices and matching number, respectively, and characterize the extremal graphs. Recently, Yu et al. [15] gave the minimum hyper-Wiener index of trees with given number of vertices and matching number, and characterized
the unique extremal graph. We now determine the minimum hyper-Wiener index of unicyclic graphs with given number of vertices and matching number, and characterize the extremal graphs.

2. Preliminaries

For a connected graph G with $u \in V(G)$, let $W_{G}(u)=\sum_{v \in V(G)} d_{u v}$, and

$$
W W_{G}(u)=\sum_{v \in V(G)}\binom{d_{u v}+1}{2}
$$

For $u \in V(G)$, let $d_{G}(u)$ be the degree of u in G, and the eccentricity of u, denoted by $\operatorname{ecc}(u)$, is the maximum distance from u to all other vertices in G. Let S_{n} be the n-vertex star.

Lemma 2.1. Let G be an n-vertex connected graph with a pendent vertex x being adjacent to vertex y, and let z be a neighbor of y different from x, where $n \geq 4$. Then

$$
W W(G)-W W(G-x) \geq 6 n-8-3 d_{G}(y)
$$

with equality if and only if ecc $(y)=2$. Moreover, if $d_{G}(y)=2$, then

$$
W W(G)-W W(G-x-y) \geq 16 n-36-7 d_{G}(z)
$$

with equality if and only if $\operatorname{ecc}(z)=2$.
Proof. Note that

$$
\begin{aligned}
W W_{G}(x) & =\sum_{u \in V(G) \backslash\{x\}}\binom{1+d_{u y}+1}{2} \\
& =\sum_{u \in V(G) \backslash\{x\}}\binom{d_{u y}+1}{2}+\sum_{u \in V(G) \backslash\{x\}}\left(d_{u y}+1\right) \\
& =W W_{G}(y)-1+W_{G}(y)-1+n-1 \\
& =W W_{G}(y)+W_{G}(y)+n-3 .
\end{aligned}
$$

Then

$$
\begin{aligned}
W W(G)-W W(G-x)= & W W_{G}(x)=W W_{G}(y)+W_{G}(y)+n-3 \\
\geq & \binom{1+1}{2} d_{G}(y)+\binom{2+1}{2}\left(n-1-d_{G}(y)\right) \\
& +d_{G}(y)+2\left(n-1-d_{G}(y)\right)+n-3 \\
= & 6 n-8-3 d_{G}(y)
\end{aligned}
$$

with equality if and only if $\operatorname{ecc}(y)=2$.

If $d_{G}(y)=2$, then $W_{G}(y)=W_{G}(z)+n-4$,

$$
\begin{aligned}
W W_{G}(y) & =1+\sum_{u \in V(G) \backslash\{x, y\}}\binom{1+d_{u z}+1}{2} \\
& =1+\sum_{u \in V(G) \backslash\{x, y\}}\binom{d_{u z}+1}{2}+\sum_{u \in V(G) \backslash\{x, y\}}\left(d_{u z}+1\right) \\
& =1+W W_{G}(z)-1-3+W_{G}(z)-1-2+n-2 \\
& =W W_{G}(z)+W_{G}(z)+n-8,
\end{aligned}
$$

and thus

$$
\begin{aligned}
& W W(G)-W W(G-x-y) \\
= & W W_{G}(x)+W W_{G}(y)-1=2 W W_{G}(y)+W_{G}(y)+n-4 \\
= & 2\left(W W_{G}(z)+W_{G}(z)+n-8\right)+\left(W_{G}(z)+n-4\right)+n-4 \\
= & 2 W W_{G}(z)+3 W_{G}(z)+4 n-24 \\
\geq & 2\left(\binom{1+1}{2} d_{G}(z)+\binom{2+1}{2}\left(n-1-d_{G}(z)\right)\right) \\
& +3\left[d_{G}(z)+2\left(n-1-d_{G}(z)\right)\right]+4 n-24 \\
= & 16 n-36-7 d_{G}(z)
\end{aligned}
$$

with equality if and only if $\operatorname{ecc}(z)=2$.
Let C_{n} be a cycle with n vertices.
Lemma 2.2. $[6,8]$ Let u be a vertex on the cycle C_{r} with $r \geq 3$. Then

$$
\begin{gathered}
W_{C_{r}}(u)= \begin{cases}\frac{r^{2}-1}{4} & \text { if } r \text { is odd, } \\
\frac{r^{2}}{4} & \text { if } r \text { is even },\end{cases} \\
W W_{C_{r}}(u)= \begin{cases}\frac{(r-1)(r+1)(r+3)}{24} & \text { if } r \text { is odd, } \\
\frac{r(r+1)(r+2)}{24} & \text { if } r \text { is even. }\end{cases}
\end{gathered}
$$

For integers n and r with $3 \leq r \leq n$, let $S_{n, r}$ be the graph formed by attaching $n-r$ pendent vertices to a vertex of the cycle C_{r}.

Lemma 2.3. [14] Let G be an n-vertex unicyclic graph with cycle length r, where $3 \leq r \leq n$. Then

$$
W W(G) \geq \begin{cases}\frac{72 n^{2}+\left(2 r^{3}+18 r^{2}-98 r-90\right) n-r^{4}-15 r^{3}+25 r^{2}+87 r}{48} & \text { if } r \text { is odd } \\ \frac{72 n^{2}+\left(2 r^{3}+18 r^{2}-92 r-72\right) n-r^{4}-15 r^{3}+22 r^{2}+72 r}{48} & \text { if } r \text { is even }\end{cases}
$$

with equality if and only if $G=S_{n, r}$.

3. Results

For integers n and m with $2 \leq m \leq\left\lfloor\frac{n}{2}\right\rfloor$, let $\mathbb{U}(n, m)$ be the set of unicyclic graphs with n vertices and matching number m, and let $U_{n, m}$ be the unicyclic graph obtained by attaching a pendent vertex to $m-2$ noncentral vertices and adding an edge between two other noncentral vertices of the star S_{n-m+2}. Obviously, $U_{n, m} \in \mathbb{U}(n, m)$. By direct calculation, $W W\left(U_{n, m}\right)=\frac{1}{2}\left(3 n^{2}+m^{2}+6 n m-19 n-23 m+42\right)$.

For integer $m \geq 3$, let $\mathbb{U}_{1}(m)$ be the set of graphs in $\mathbb{U}(2 m, m)$ containing a pendent vertex whose neighbor is of degree two. Let $\mathbb{U}_{2}(m)=\mathbb{U}(2 m, m) \backslash \mathbb{U}_{1}(m)$. Let $H_{8,5}$ be the graph obtained by attaching three pendent vertices to three consecutive vertices of C_{5}. Let $H_{8,6}$ be the graph obtained by attaching two pendent vertices to two adjacent vertices of C_{6}. Let $H_{8,6}^{\prime}$ be the graph obtained by attaching two pendent vertices to two vertices of distance two of C_{6}. Let $H_{8,6}^{\prime \prime}$ be the graph obtained by attaching two pendent vertices to two vertices of distance three of C_{6}.
Lemma 3.1. Let $G \in \mathbb{U}_{2}(m)$ with $m \geq 4$. Then $W W(G) \geq \frac{1}{2}\left(25 m^{2}-61 m+42\right)$ with equality if and only if $G=H_{8,5}$.
Proof. Since $G \in \mathbb{U}_{2}(m)$, it is easily seen that $G=C_{2 m}$ or G is a graph of maximum degree three obtained by attaching some pendent vertices to a cycle. If $G=C_{2 m}$, then by Lemma 2.2,

$$
\begin{aligned}
W W\left(C_{2 m}\right) & =\frac{(2 m)^{2}(2 m+1)(2 m+2)}{48}=\frac{1}{6}\left(2 m^{4}+3 m^{3}+m^{2}\right) \\
& >\frac{1}{2}\left(25 m^{2}-61 m+42\right)
\end{aligned}
$$

Suppose that $G \neq C_{2 m}$. Then G is a graph of maximum degree three obtained by attaching some pendent vertices to a cycle C_{r}, where $m \leq r \leq 2 m-1$.
Case 1. $r=m$. Then every vertex on the cycle has degree three, and for any pendent vertex x and its neighbor y, by Lemmas 2.1 and 2.2, we have

$$
\begin{aligned}
W W(G) & =\frac{1}{2} m\left(W W_{G}(x)+W W_{G}(y)\right) \\
& =\frac{1}{2} m\left(2 W W_{G}(y)+W_{G}(y)+2 m-3\right) \\
& =\frac{1}{2} m\left(\begin{array}{c}
2 \sum_{u \in V\left(C_{m}\right)}\binom{d_{u y}+1}{2}+2 \sum_{u \in V(G) \backslash V\left(C_{m}\right)}\binom{d_{u y}+1}{2} \\
\end{array}+\sum_{u \in V\left(C_{m}\right)} d_{u y}+\sum_{u \in V(G) \backslash V\left(C_{m}\right)} d_{u y}+2 m-3\right) \\
& =\frac{1}{2} m\left(2 W W_{C_{m}}(y)+2 \sum_{u \in V\left(C_{m}\right)}\binom{1+d_{u y}+1}{2}\right. \\
& \left.+W_{C_{m}}(y)+\sum_{u \in V\left(C_{m}\right)}\left(d_{u y}+1\right)+2 m-3\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} m\left(2 W W_{C_{m}}(y)+2 \sum_{u \in V\left(C_{m}\right)}\binom{d_{u y}+1}{2}+2 \sum_{u \in V\left(C_{m}\right)}\left(d_{u y}+1\right)\right. \\
& \left.+W_{C_{m}}(y)+\sum_{u \in V\left(C_{m}\right)}\left(d_{u y}+1\right)+2 m-3\right) \\
& =\frac{1}{2} m\left(4 W W_{C_{m}}(y)+4 W_{C_{m}}(y)+5 m-3\right) \\
& = \begin{cases}\frac{1}{12}\left(m^{4}+9 m^{3}+29 m^{2}-27 m\right) & \text { if } m \text { is odd } \\
\frac{1}{12}\left(m^{4}+9 m^{3}+32 m^{2}-18 m\right) & \text { if } m \text { is even }\end{cases} \\
& >\frac{1}{2}\left(25 m^{2}-61 m+42\right) .
\end{aligned}
$$

Case 2. $r=m+1$. Then there are precisely two adjacent vertices on the cycle of degree two in G. Let G^{\prime} be the graph obtained from G by attaching two pendent vertices to the two adjacent vertices of degree two in G. For any pendent vertex x and its neighbor y in G^{\prime}, by the above conclusion and Lemma 2.2, we have

$$
\begin{aligned}
& W W(G)= W W\left(G^{\prime}\right)-2 W W_{G^{\prime}}(x)+\binom{3+1}{2} \\
&= \frac{1}{2}(m+1)\left(4 W W_{C_{m+1}}(y)+4 W_{C_{m+1}}(y)+5(m+1)-3\right) \\
&-2\left(2 W W_{C_{m+1}}(y)+3 W_{C_{m+1}}(y)+4 m+1\right)+6 \\
&= \frac{1}{2}\left((4 m-4) W W_{C_{m+1}}(y)+(4 m-8) W_{C_{m+1}}(y)+5 m^{2}-9 m+10\right) \\
&= \begin{cases}\frac{1}{12}\left(m^{4}+11 m^{3}+35 m^{2}-77 m+42\right) \quad \text { if } m \text { is odd } \\
\frac{1}{12}\left(m^{4}+11 m^{3}+32 m^{2}-86 m+60\right) \quad \text { if } m \text { is even }\end{cases} \\
& \geq \frac{1}{2}\left(25 m^{2}-61 m+42\right)
\end{aligned}
$$

with equality if and only if $m=4$, i.e., $G=H_{8,5}$.
Case 3. $m+2 \leq r \leq 2 m-1$. First we consider the subcase $m \geq 5$. By Lemma 2.3,

$$
\begin{aligned}
W W(G) & \geq W W\left(S_{2 m, r}\right) \\
& = \begin{cases}\frac{1}{48}\left(-r^{4}+(4 m-15) r^{3}+(36 m+25) r^{2}\right. \\
\left.+(87-196 m) r+288 m^{2}-180 m\right) & \text { if } r \text { is odd } \\
\frac{1}{48}\left(-r^{4}+(4 m-15) r^{3}+(36 m+22) r^{2}\right. \\
\left.+(72-184 m) r+288 m^{2}-144 m\right) & \text { if } r \text { is even. }\end{cases}
\end{aligned}
$$

Let $f(r)=48 W W\left(S_{2 m, r}\right)$. For odd r, we have

$$
f^{\prime}(r)=-4 r^{3}+(12 m-45) r^{2}+(72 m+50) r+87-196 m
$$

from which it is easy to check that $f^{\prime}(r)>0$, and thus $f(r)$ is increasing with respect to r, implying that

$$
\begin{aligned}
W W(G) & \geq \frac{1}{48} f(r) \geq \frac{1}{48} f(m+2) \\
& =\frac{1}{48}\left(3 m^{4}+37 m^{3}+195 m^{2}-421 m+138\right) \\
& >\frac{1}{2}\left(25 m^{2}-61 m+42\right) .
\end{aligned}
$$

For even r, by similar arguments as above,

$$
\begin{aligned}
W W(G) & \geq \frac{1}{48} f(r) \geq \frac{1}{48} f(m+2) \\
& =\frac{1}{48}\left(3 m^{4}+37 m^{3}+204 m^{2}-388 m+96\right) \\
& >\frac{1}{2}\left(25 m^{2}-61 m+42\right)
\end{aligned}
$$

Now we consider the subcase $m=4$. Then $r=6,7, G=H_{8,6}, H_{8,6}^{\prime}, H_{8,6}^{\prime \prime}$ or $H_{8,7}$, and the hyper-Wiener indices of these four graph are respectively equal to $106,110,115$, and 109, all larger than $99=\frac{1}{2}\left(25 \times 4^{2}-61 \times 4+42\right)$.

The result follows by combining Cases 1-3.
Let $H_{6,3}$ be the graph obtained by attaching a vertex to every vertex of a triangle. Let $H_{6,4}$ be the graph obtained by attaching two pendent vertices to two adjacent vertices of a quadrangle. Let $H_{6,5}$ be the graph obtained by attaching a pendent vertex to C_{5}. Then the following Lemma may be checked easily.

Lemma 3.2. Among the graphs in $\mathbb{U}(6,3), H_{6,5}$ is the unique graph with minimum hyper-Wiener index 39, and $U_{6,3}, H_{6,3}, H_{6,4}$ and C_{6} are the unique graphs with the second minimum hyper-Wiener index 42.

For $G \in \mathbb{U}_{1}(m)$, a vertex triple of G, denoted by (x, y, z), consist of three vertices x, y and z, where x is a pendent vertex of G whose neighbor y is of degree two, and z is the neighbor of y different from x. For the vertex triple (x, y, z) and a perfect matching M with $|M|=m$, we have $x y \in M$ and $d_{G}(z) \leq m+1$.

Lemma 3.3. Let $G \in \mathbb{U}(8,4)$. Then $W W(G) \geq 99$ with equality if and only if $G=U_{8,4}$ or $H_{8,5}$.

Proof. If $G \in \mathbb{U}_{2}(4)$, then by Lemma 3.1, $W W(G) \geq \frac{1}{2}\left(25 \times 4^{2}-61 \times 4+42\right)=99$ with equality if and only if $G=H_{8,5}$. Suppose that $G \in \mathbb{U}_{1}(4)$. Let (x, y, z) be a vertex triple of G. Then $G-x-y \in \mathbb{U}(6,3)$. If $G-x-y \neq H_{6,5}$, then by Lemma 2.1,

$$
W W(G) \geq W W(G-x-y)+16 \times 8-36-7 d_{G}(z) \geq 42+92-7 \times 5=99
$$

with equalities if and only if $G-x-y=U_{6,3}, H_{6,3}, H_{6,4}$ or $C_{6}, d_{G}(z)=5$ and $\operatorname{ecc}(z)=2$, i.e., $G=U_{8,4}$. If $G-x-y=H_{6,5}$, then $d_{G}(z) \leq 4$, and by Lemma 2.1,

$$
W W(G) \geq W W\left(H_{6,5}\right)+16 \times 8-36-7 d_{G}(z) \geq 39+92-7 \times 4=103>99
$$

The result follows.

Lemma 3.4. Let $G \in \mathbb{U}(10,5)$. Then $W W(G) \geq 181$ with equality if and only if $G=U_{10,5}$.

Proof. If $G \in \mathbb{U}_{2}(5)$, then by Lemma 3.1, $W W(G)>\frac{1}{2}\left(25 \times 5^{2}-61 \times 5+42\right)=181$. Suppose that $G \in \mathbb{U}_{1}(5)$. Let (x, y, z) be a vertex triple of G. Then $G-x-y \in \mathbb{U}(8,4)$, and by Lemmas 2.1 and 3.3,

$$
W W(G) \geq W W(G-x-y)+16 \times 10-36-7 d_{G}(z) \geq 99+124-7 \times 6=181
$$

with equalities if and only if $G-x-y=U_{8,4}$ or $H_{8,5}, d_{G}(z)=6$ and $\operatorname{ecc}(z)=2$, i.e., $G=U_{10,5}$.
Proposition 3.5. Let $G \in \mathbb{U}(2 m, m)$, where $m \geq 2$.
(i) If $m=3$, then $W W(G) \geq 39$ with equality if and only if $G=H_{6,5}$;
(ii) If $m \neq 3$, then

$$
W W(G) \geq \frac{1}{2}\left(25 m^{2}-61 m+42\right)
$$

with equality if and only if $G=U_{4,2}, C_{4}$ for $m=2, G=U_{8,4}, H_{8,5}$ for $m=4$, and $G=U_{2 m, m}$ for $m \geq 5$.

Proof. The case $m=2$ is obvious since $\mathbb{U}(4,2)=\left\{U_{4,2}, C_{4}\right\}$ and $W W\left(U_{4,2}\right)=$ $W W\left(C_{4}\right)=10$. The cases $m=3$ and $m=4$ follow from Lemmas 3.2 and 3.3, respectively.

Suppose that $m \geq 5$. Let $g(m)=\frac{1}{2}\left(25 m^{2}-61 m+42\right)$. We prove the result by induction on m. If $m=5$, then the result follows from Lemma 3.4. Suppose that $m \geq 6$ and the result holds for graphs in $\mathbb{U}(2 m-2, m-1)$. Let $G \in \mathbb{U}(2 m, m)$. If $G \in \mathbb{U}_{2}(m)$, then by Lemma 3.1, $W W(G)>g(m)$. If $G \in \mathbb{U}_{1}(m)$, then for a vertex triple (x, y, z) of $G, G-x-y \in \mathbb{U}(2 m-2, m-1)$, and thus by Lemma 2.1 and the induction hypothesis,

$$
\begin{aligned}
W W(G) & \geq W W(G-x-y)+32 m-36-7 d_{G}(z) \\
& \geq g(m-1)+32 m-36-7(m+1) \\
& =\frac{1}{2}\left(25 m^{2}-61 m+42\right)=g(m)
\end{aligned}
$$

with equality if and only if $G-x-y=U_{2 m-2, m-1}, d_{G}(z)=m+1$ and $\operatorname{ecc}(z)=2$, i.e., $G=U_{2 m, m}$.

Let $H_{7,5}$ be the graph obtained by attaching two pendent vertices to a vertex of C_{5}.

Theorem 3.6. Let $G \in \mathbb{U}(n, m)$, where $2 \leq m \leq\left\lfloor\frac{n}{2}\right\rfloor$.
(i) If $(n, m)=(6,3)$, then $W W(G) \geq 39$ with equality if and only if $G=H_{6,5}$;
(ii) If $(n, m) \neq(6,3)$, then

$$
W W(G) \geq \frac{1}{2}\left(3 n^{2}+m^{2}+6 n m-19 n-23 m+42\right)
$$

with equality if and only if $G=U_{4,2}, C_{4}$ for $(n, m)=(4,2), G=U_{5,2}, C_{5}$ for $(n, m)=(5,2), G=U_{7,3}, H_{7,5}$ for $(n, m)=(7,3), G=U_{8,4}, H_{8,5}$ for $(n, m)=(8,4)$ and $G=U_{n, m}$ otherwise.

Proof. The case $(n, m)=(6,3)$ follows from Lemma 3.2. Suppose that $(n, m) \neq(6,3)$. Let $g(n, m)=\frac{1}{2}\left(3 n^{2}+m^{2}+6 n m-19 n-23 m+42\right)$.

If $G=C_{n}$ with $n \geq 7$, then by Lemma $2.2, W W(G)>g(n, m)$.
If $G \neq C_{n}$ with $n>2 m$, then there exist a pendent vertex x and a maximum matching M such that x is not M-saturated in $G[16]$, and thus $G-x \in \mathbb{U}(n-1, m)$. Let y be the unique neighbor of x. Since M contains one edge incident with y, and there are $n-m$ edges of G outside M, we have $d_{G}(y) \leq n-m+1$.
Case 1. $m=2$. The result for $n=4$ follows from Proposition 3.5. If $n=5$, then by Lemma 2.3, the minimum hyper-Wiener index is achieved only by $S_{5,3}, S_{5,4}$, or C_{5}, and thus the result follows by noting that $W W\left(S_{5,3}\right)=W W\left(C_{5}\right)=20<23=$ $W W\left(S_{5,4}\right)$ and $S_{5,3}=U_{5,2}$. If $n \geq 6$, then by Lemma 2.3, the minimum hyperWiener index is achieved only by $S_{n, 3}$ or $S_{n, 4}$, and thus the result follows by noting that $W W\left(S_{n, 3}\right)=\frac{1}{2}\left(3 n^{2}-7 n\right)<\frac{1}{2}\left(3 n^{2}-n-24\right)=W W\left(S_{n, 4}\right)$ and $S_{n, 3}=U_{n, 2}$.
Case 2. $m=3$. Suppose first that $n=7$. Then $G-x \in \mathbb{U}(6,3)$. If $G-x=H_{6,5}$, then $d_{G}(y) \leq 4$, and by Lemma 2.1,

$$
W W(G) \geq W W(G-x)+6 \times 7-8-3 d_{G}(y) \geq 39+34-12=61
$$

with equalities if and only if $d_{G}(y)=4$ and $\operatorname{ecc}(y)=2$, i.e., $G=H_{7,5}$, while if $G-x \neq H_{6,5}$, then by Lemmas 2.1 and 3.2,

$$
W W(G) \geq W W(G-x)+6 \times 7-8-3 d_{G}(y) \geq 42+34-15=61
$$

with equalities if and only if $G-x=U_{6,3}, H_{6,3}, H_{6,4}$ or $C_{6}, d_{G}(y)=5$ and $\operatorname{ecc}(y)=2$, i.e., $G=U_{7,3}$. It follows that $W W(G) \geq 61$ with equality if and only if $G=H_{7,5}$ or $U_{7,3}$. For $n \geq 8$, we prove the result by induction on n. If $n=8$, then $G-x \in \mathbb{U}(7,3)$, and by Lemma 2.1,

$$
W W(G) \geq W W(G-x)+6 \times 8-8-3 d_{G}(y) \geq 61+40-3 \times 6=83
$$

with equalities if and only if $G=H_{7,5}$ or $U_{7,3}, d_{G}(y)=6$ and $\operatorname{ecc}(y)=2$, i.e., $G=U_{8,4}$. Suppose that $n \geq 9$ and the result holds for graphs in $\mathbb{U}(n-1,3)$. By Lemma 2.1 and the induction hypothesis,

$$
\begin{aligned}
W W(G) & \geq W W(G-x)+6 n-8-3 d_{G}(y) \\
& \geq g(n-1,3)+6 n-8-3(n-2) \\
& =\frac{1}{2}\left(3 n^{2}-n-18\right)=g(n, 3)
\end{aligned}
$$

with equalities if and only if $G-x=U_{n-1,3}, d_{G}(y)=n-2$ and $\operatorname{ecc}(y)=2$, i.e., $G=U_{n, 3}$.
Case 3. $m=4$. The case $n=8$ follows from Lemma 3.3. For $n \geq 9$, we prove the result by induction on n. If $n=9$, then $G-x \in \mathbb{U}(8,4)$, and by Lemmas 2.1 and 3.3,

$$
W W(G) \geq W W(G-x)+6 \times 9-8-3 d_{G}(y) \geq 99+46-3 \times 6=127
$$

with equalities if and only if $G=U_{8,4}$ or $H_{8,5}, d_{G}(y)=6$ and $\operatorname{ecc}(y)=2$, i.e., $G=U_{9,4}$. Suppose that $n \geq 10$ and the result holds for graphs in $\mathbb{U}(n-1,4)$.

By Lemma 2.1 and the induction hypothesis,

$$
\begin{aligned}
W W(G) & \geq W W(G-x)+6 n-8-3 d_{G}(y) \\
& \geq g(n-1,4)+6 n-8-3(n-3) \\
& =\frac{1}{2}\left(3 n^{2}+5 n-34\right)=g(n, 4)
\end{aligned}
$$

with equalities if and only if $G-x=U_{n-1,4}, d_{G}(y)=n-3$ and $\operatorname{ecc}(y)=2$, i.e., $G=U_{n, 4}$.
Case 4. $m \geq 5$. We prove the result by induction on n (for fixed m). If $n=2 m$, then the result follows from Proposition 3.5. Suppose that $n>2 m$ and the result holds for graphs in $\mathbb{U}(n-1, m)$. Let $G \in \mathbb{U}(n, m)$. By Lemma 2.1 and the induction hypothesis,

$$
\begin{aligned}
W W(G) & \geq W W(G-x)+6 n-8-3 d_{G}(y) \\
& \geq g(n-1, m)+6 n-8-3(n-m+1) \\
& =\frac{1}{2}\left(3 n^{2}+m^{2}+6 n m-19 n-23 m+42\right)=g(n, m)
\end{aligned}
$$

with equalities if and only if $G-x=U_{n-1, m}, d_{G}(y)=n-m+1$ and $\operatorname{ecc}(y)=2$, i.e., $G=U_{n, m}$.

Acknowledgement. This work was supported by the Guangdong Provincial National Science Foundation of China (Grant No. S2011010005539) and the National Natural Science Foundation of China (Grant No. 11271004).

References

[1] Devillers, J., Balaban, A. T., Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.
[2] Diudea, M.V., Parv, B., Molecular topology. 25. Hyper-Wiener index of dendrimers, J. Chem. Inf. Comput. Sci., 35(1995), 1015-1018.
[3] Dobrynin, A.A., Entringer, R., Gutman, I., Wiener index of Trees: Theory and applications, Acta Appl. Math., 66(2001), 211-249.
[4] Du, Z., Zhou, B., Minimum Wiener indices of trees and unicyclic graphs of given matching number, MATCH Commun. Math. Comput. Chem., 63(2010), 101-112.
[5] Gutman, I., Linert, W., Lukovits, I., Dobrynin, A.A., Trees with extremal hyperWiener index: Mathematical basis and chemical applications, J. Chem. Inf. Comput. Sci., 37(1997), 349-354.
[6] Gutman, I., Polansky, O.E., Mathematical Concepts in Organic Chemistry, Berlin, Springer, 1986.
[7] Hosoya, H., Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Japan, 44(1971), 2332-2339.
[8] Klein, D.J., Lukovits, I., Gutman, I., On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci., 35(1995), 50-52.
[9] Klavžar, S., Žigert, P., Gutman, I., An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons, Match Commun. Math. Comput. Chem., 24(2000), 229-233.
[10] Lukovits, I., Formulas for the hyper-Wiener index of trees, J. Chem. Inf. Comput. Sci., 34(1994), 1079-1081.
[11] Nikolić, S., Trinajstić, N., Mihalić, Z., The Wiener index: Developments and applications, Croat. Chem. Acta, 68(1995), 105-129.
[12] Randić, M., Novel molecular description for structure-property studies, Chem. Phys. Lett., 211(1993), 478-483.
[13] Wiener, H., Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69(1947), 17-20.
[14] Xing, R., Zhou, B., Qi, X., Hyper-Wiener index of unicyclic graphs, Match Commun. Math. Comput. Chem., 66(2011), 315-328.
[15] Yu, G., Feng, L., Ilić, A., The hyper-Wiener index of trees with given parameters, Ars Combin., 96(2010), 395-404.
[16] Yu, A., Tian, F., On the spectral radius of unicyclic graphs, Match Commum. Math. Comput. Chem., 51(2004), 97-109.

Xuli Qi
Hebei Key Laboratory of Computational Mathematics and Applications College of Mathematics and Information Science, Hebei Normal University
Shijiazhuang 050024, P. R. China
e-mail: qixuli-1212@163.com
Bo Zhou
Department of Mathematics, South China Normal University
Guangzhou 510631, P. R. China (Corresponding author)
e-mail: zhoubo@scnu.edu.cn

