Strongly almost summable sequence spaces in 2-normed spaces defined by ideal convergence and an Orlicz function

Ayhan Esi

Abstract. In this paper we introduce some certain new sequence spaces via ideal convergence and an Orlicz function in 2-normed spaces and examine some properties of the resulting these spaces.

Mathematics Subject Classification (2010): 40A99, 40A05.

Keywords: 2-normed space, Orlicz function.

1. Introduction

Let X be a non-empty set, then a family of sets $I \subset 2^X$ (the class of all subsets of X) is called an ideal if and only if for each $A, B \in I$, we have $A \cup B \in I$ and for each $A \in I$ and each $B \subset A$, we have $B \in I$. A non-empty family of sets $F \subset 2^X$ is a filter on X if and only if $\emptyset \notin F$, for each $A, B \in F$, we have $A \cap B \in F$ and each $A \in F$ and each $A \subset B$, we have $B \in F$. An ideal I is called non-trivial ideal if $I \neq \emptyset$ and $X \notin I$. Clearly $I \subset 2^X$ is a non-trivial ideal if and only if $F = F(I) = \{X/A : A \in I\}$ is a filter on X. A non-trivial ideal of 2^X is called admissible if and only if $\{\{x\} : x \in X\} \subset I$. Further details on ideals of 2^X can be found in Kostyrko, et.al [3]. The notion was further investigated by Salat, et.al [4], Tripathy and Hazarika [13 - 15], Tripathy and Mahanta [16] and others.

Recall in [5,7] that an Orlicz function M is continuous, convex, nondecreasing function define for x > 0 such that M(0) = 0 and M(x) > 0. If convexity of Orlicz function is replaced by $M(x+y) \le M(x) + M(y)$ then this function is called the modulus function and characterized by Ruckle [6]. An Orlicz function M is said to satisfy Δ_2 -condition for all values u, if there exists K > 0 such that $M(2u) \le KM(u), u \ge 0$. Subsequently, the notion of Orlicz function was used to defined sequence spaces by Altin et al [8], Tripathy and Mahanta [9], Et et al [10], Tripathy et al [11], Tripathy and Sarma [12] and many others.

Ayhan Esi

Lemma. Let M be an Orlicz function which satisfies Δ_2 – condition and let $0 < \delta < 1$. Then for each $t \ge \delta$, we have $M(t) < K\delta^{-1}M(2)$ for some constant K > 0.

A sequence space X is said to be solid or normal if $(\alpha_k x_k) \in X$, and for all sequences $\alpha = (\alpha_k)$ of scalars with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$.

Let X be a real vector space of dimension d, where $2 \le d < \infty$. A 2-norm on X is a function $\|.,.\| : X \times X \to R$ which satisfies;

(i) ||x, y|| = 0 if and only if x and y are linearly dependent,

(ii) ||x, y|| = ||y, x||,

(iii) $\|\alpha x, y\| = |\alpha| \|x, y\|, \alpha \in \mathbb{R},$

(iv) $||x, y + z|| \le ||x, y|| + ||x, z||$.

The pair $(X, \|., .\|)$ is called a 2-normed space [2]. As an example of a 2-normed space we may take $X = \mathbb{R}$ being equipped with the 2-norm ||x, y|| = the area of paralelogram spanned by the vectors x and y, which may be given explicitly by the formula

$$||x, y||_E = abs\left(\begin{vmatrix} x_{11} & x_{12} \\ y_{11} & y_{12} \end{vmatrix} \right).$$

2. Main results

In this section we introduce the notion of different types of *I*-convergent sequences.

Let I be an ideal of $2^{\mathbb{N}}$, M be an Orlicz function, $p = (p_k)$ be a bounded sequence of strictly positive real numbers and $(X, \|, ., \|)$ be an 2-normed space. Further w(2 - X) denotes X-valued sequence space. Now, we define the following sequence spaces:

$$\begin{split} \widehat{w}^{I} \left[M, p, \|, ., \| \right]_{o} \\ &= \begin{cases} x = (x_{k}) \in w(2 - X) : \forall \varepsilon > 0, \left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^{n} \left[M \left(\left\| \frac{t_{km}(x)}{\rho}, z \right\| \right) \right]^{p_{k}} \ge \varepsilon \right\} \in I \\ \text{ for some } \rho > 0, \ m \in \mathbb{N} \text{ and each } z \in X \end{cases} \\ \\ \widehat{w}^{I} \left[M, p, \|, ., \| \right] \\ &= \begin{cases} x = (x_{k}) \in w \left(2 - X \right) : \forall \varepsilon > 0, \left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^{n} \left[M \left(\left\| \frac{t_{km}(x)}{\rho}, z \right\| \right) \right]^{p_{k}} \ge \varepsilon \right\} \in I \\ \text{ for some } \rho > 0, \ L \in X, m \in \mathbb{N} \text{ and each } z \in X \end{cases} \end{split}$$

$$\widehat{w}^{I} [M, p, \|, ., \|]_{\infty} = \begin{cases} x = (x_{k}) \in w \ (2 - X) : \exists K > 0, \left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^{n} \left[M \left(\left\| \frac{t_{km}(x)}{\rho}, z \right\| \right) \right]^{p_{k}} \ge K \right\} \in I \\ \text{for some } \rho > 0, m \in \mathbb{N} \text{ and each } z \in X \end{cases}$$

and

$$\widehat{w}\left[M,p,\|,.,\|\right]_{\infty} = \left\{ \begin{aligned} x = (x_k) \in w \left(2 - X\right) : \exists K > 0, \frac{1}{n} \sum_{k=1}^{n} \left[M \left(\left\| \frac{t_{km}(x)}{\rho}, z \right\| \right) \right]^{p_k} \leq K \\ \text{for some } \rho > 0, m \in \mathbb{N} \text{ and each } z \in X \end{aligned} \right\},$$

where

$$t_{km}(x) = t_{km}(x_k) = \frac{1}{k+1} \sum_{i=0}^{k} x_{i+m}, m \in \mathbb{N}$$

If $p_k = 1$ for all $k \in \mathbb{N}$, we denote

$$\begin{split} \hat{w}^{I}\left[M, p, \|, ., \|\right] &= \hat{w}^{I}\left[M, \|, ., \|\right], \hat{w}^{I}\left[M, p, \|, ., \|\right]_{o} = \hat{w}^{I}\left[M, \|, ., \|\right]_{o}, \\ \hat{w}^{I}\left[M, p, \|, ., \|\right]_{\infty} &= \hat{w}^{I}\left[M, \|, ., \|\right]_{\infty} \end{split}$$

and

$$\widehat{w}[M, p, \|, ., \|]_{\infty} = \widehat{w}[M, \|, ., \|]_{\infty}$$

respectively.

If for k = 0, we get $t_{km}(x) = x_m$ for all $m \in \mathbb{N}$. We denote these three classes of sequences as $w^I[M, p, \|, ., \|], w^I[M, p, \|, ., \|]_o, w^I[M, p, \|, ., \|]_\infty$ and $w[M, p, \|, ., \|]_\infty$ respectively.

The following well-known inequality will be used for establishing some results of this article. If $0 \leq \inf_k p_k (=h) \leq p_k \leq \sup_k (=H) < \infty$, $D = \max(1, 2^{H-1})$, then

$$|x_k + y_k|^{p_k} \le D\{|x_k|^{p_k} + |y_k|^{p_k}\}$$

for all $k \in \mathbb{N}$ and $x_k, y_k \in \mathbb{C}$. Also $|x_k|^{p_k} \le \max\left(1, |x_k|^H\right)$ for all $x_k \in \mathbb{C}$. Theorem 2.1. The sets $\widehat{u}_k^H[M, \pi, \|, \|] = \widehat{u}_k^H[M, \pi, \|, \|]$ and $\widehat{u}_k^H[M, \pi, \|, \|]$.

Theorem 2.1. The sets $\widehat{w}^{I}[M, p, \|, ., \|]_{o}$, $\widehat{w}^{I}[M, p, \|, ., \|]$ and $\widehat{w}^{I}[M, p, \|, ., \|]_{\infty}$ are linear spaces over the complex field \mathbb{C} .

Proof. We will prove only for $\widehat{w}^{I}[M, p, \|, ., \|]_{o}$ and the others can be proved similarly. Let $x, y \in \widehat{w}^{I}[M, p, \|, ., \|]_{o}$ and $\alpha, \beta \in \mathbb{C}$. Then

$$\left\{n \in \mathbb{N}: \left\|\frac{1}{n}\sum_{k=1}^{n} \left[M\left(\left\|\frac{t_{km}\left(x\right)}{\rho_{1}}, z\right\|\right)\right]^{p_{k}} \geq \frac{\varepsilon}{2}\right\} \in I, \text{ for some } \rho_{1} > 0$$

and

$$\left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^{n} \left[M\left(\left\| \frac{t_{km}\left(y\right)}{\rho_2}, z \right\| \right) \right]^{p_k} \ge \frac{\varepsilon}{2} \right\} \in I, \text{ for some } \rho_2 > 0.$$

for all $m \in \mathbb{N}$. Since $\|, ., \|$ is a 2-norm and M is an Orlicz function, the following inequality holds:

$$\frac{1}{n}\sum_{k=1}^{n}\left[M\left(\left\|\frac{t_{km}\left(\alpha x+\beta y\right)}{\left|\alpha\right|\rho_{1}+\left|\beta\right|\rho_{2}},z\right\|\right)\right]^{p_{k}}$$

$$\leq \frac{D}{n}\sum_{k=1}^{n}\left[\frac{\left|\alpha\right|}{\left|\alpha\right|\rho_{1}+\left|\beta\right|\rho_{2}}M\left(\left\|\frac{t_{km}\left(x\right)}{\rho_{1}},z\right\|\right)\right]^{p_{k}}$$

$$+\frac{D}{n}\sum_{k=1}^{n}\left[\frac{\left|\beta\right|}{\left|\alpha\right|\rho_{1}+\left|\beta\right|\rho_{2}}M\left(\left\|\frac{t_{km}\left(y\right)}{\rho_{2}},z\right\|\right)\right]^{p_{k}}$$

$$\leq \frac{D}{n}\sum_{k=1}^{n}\left[M\left(\left\|\frac{t_{km}\left(x\right)}{\rho_{1}},z\right\|\right)\right]^{p_{k}}+\frac{D}{n}\sum_{k=1}^{n}\left[M\left(\left\|\frac{t_{km}\left(y\right)}{\rho_{2}},z\right\|\right)\right]^{p_{k}}$$

for all $m \in \mathbb{N}$. From the above inequality we get

$$\left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^{n} \left[M\left(\left\| \frac{t_{km} \left(\alpha x + \beta y\right)}{|\alpha| \rho_1 + |\beta| \rho_2}, z \right\| \right) \right]^{p_k} \ge \varepsilon \right\}$$
$$\subset \left\{ n \in \mathbb{N} : \frac{DA}{n} \sum_{k=1}^{n} \left[M\left(\left\| \frac{t_{km} \left(x\right)}{\rho_1}, z \right\| \right) \right]^{p_k} \ge \frac{\varepsilon}{2} \right\}$$
$$\cup \left\{ n \in \mathbb{N} : \frac{DA}{n} \sum_{k=1}^{n} \left[M\left(\left\| \frac{t_{km} \left(y\right)}{\rho_2}, z \right\| \right) \right]^{p_k} \ge \frac{\varepsilon}{2} \right\}.$$

Two sets on the right hand side belong to I and this completes the proof.

It is also easy verify that the space $\widehat{w}\,[M,p,\|,.,\|]_\infty$ is also a linear space.

Theorem 2.2. For fixed $n \in \mathbb{N}$, $\widehat{w}[M, p, \|, ., \|]_{\infty}$ paranormed space with respect to the paranorm defined by

$$g(x) = \inf \left\{ \begin{array}{l} \rho^{\frac{p_n}{H}} > 0 : \left(\sup_{n,m} \frac{1}{n} \sum_{k=1}^n \left[M\left(\left\| \frac{t_{km}(x)}{\rho}, z \right\| \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, \\ for \ each \ z \in X \end{array} \right\}.$$

Proof. $g(\theta) = 0$ and g(-x) = g(x) are easy to prove, so we omit them. Let us take $x, y \in \widehat{w}[M, p, \|, ., \|]_{\infty}$. Let

$$A(x) = \left\{ \rho > 0 : \sup_{n,m} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(\left\| \frac{t_{km}(x)}{\rho}, z \right\| \right) \right]^{p_k} \le 1, \forall z \in X \right\}$$

and

$$A(y) = \left\{ \rho > 0 : \sup_{n,m} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(\left\| \frac{t_{km}(y)}{\rho}, z \right\| \right) \right]^{p_k} \le 1, \forall z \in X \right\}.$$

Let $\rho_1 \in A(x)$ and $\rho_2 \in A(y)$. If $\rho = \rho_1 + \rho_2$, then we have

$$\begin{split} \sup_{n,m} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(\left\| \frac{t_{km}\left(x+y\right)}{\rho}, z \right\| \right) \right] \\ &\leq \frac{\rho_1}{\rho_1 + \rho_2} \sup_{n,m} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(\left\| \frac{t_{km}\left(x\right)}{\rho_1}, z \right\| \right) \right] \\ &+ \frac{\rho_2}{\rho_1 + \rho_2} \sup_{n,m} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(\left\| \frac{t_{km}\left(y\right)}{\rho_1}, z \right\| \right) \right]. \end{split}$$

Thus

$$\sup_{n,m} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(\left\| \frac{t_{km} \left(x + y \right)}{\rho_1 + \rho_2}, z \right\| \right) \right]^{p_k} \le 1$$

and

$$g(x+y) = \inf\left\{ \left(\rho_1 + \rho_2\right)^{\frac{p_n}{H}} > 0 : \rho_1 \in A(x) \text{ and } \rho_2 \in A(y) \right\}$$

Strongly almost summable sequence spaces

$$\leq \inf\left\{ \left(\rho_{1}\right)^{\frac{p_{n}}{H}} > 0: \rho_{1} \in A\left(x\right) \right\} + \inf\left\{ \left(\rho_{2}\right)^{\frac{p_{n}}{H}} > 0: \rho_{2} \in A\left(y\right) \right\}$$
$$= g\left(x\right) + g\left(y\right).$$

Now, let $\lambda_k \to \lambda$, where $\lambda_k, \lambda \in \mathbb{C}$ and $g(x_k^u - x_k) \to 0$ as $u \to \infty$. We have to show that $g(\lambda_k x_k^u - \lambda x_k) \to 0$ as $u \to \infty$. Let

$$A(x^{u}) = \left\{ \rho_{u} > 0 : \sup_{n,m} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(\left\| \frac{t_{km}(x_{k}^{u})}{\rho_{u}}, z \right\| \right) \right]^{p_{k,l}} \le 1, \forall z \in X \right\}$$

and

$$A(x^{u} - x) = \left\{ \rho_{u}^{i} > 0 : \sup_{n,m} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(\left\| \frac{t_{km}(x^{u} - x)}{\rho_{u}^{i}}, z \right\| \right) \right]^{p_{k}} \le 1, \forall z \in X \right\}.$$

If $\rho_{u} \in A(x^{u})$ and $\rho_{u}^{i} \in A(x^{u} - x)$ then we observe that

$$M\left(\left\|\frac{t_{km}\left(\lambda_{k}x_{k}^{u}-\lambda x_{k}\right)}{\rho_{u}\left|\lambda_{k}-\lambda\right|+\rho_{u}^{i}\left|\lambda\right|},z\right\|\right)$$

$$\leq M\left(\left\|\frac{t_{km}\left(\lambda_{k}x_{k}^{u}-\lambda x_{k}^{u}\right)}{\rho_{u}\left|\lambda_{k}-\lambda\right|+\rho_{u}^{i}\left|\lambda\right|},z\right\|+\left\|\frac{t_{km}\left(\lambda x_{k}^{u}-\lambda x_{k}\right)}{\rho_{u}\left|\lambda_{k}-\lambda\right|+\rho_{u}^{i}\left|\lambda\right|},z\right\|\right)$$

$$\leq \frac{\rho_{u}\left|\lambda_{k}-\lambda\right|}{\rho_{u}\left|\lambda_{k}-\lambda\right|+\rho_{u}^{i}\left|\lambda\right|}M\left(\left\|\frac{t_{km}\left(x_{k}^{u}\right)}{\rho_{u}},z\right\|\right)$$

$$+\frac{\rho_{u}^{i}\left|\lambda\right|}{\rho_{u}\left|\lambda_{k}-\lambda\right|+\rho_{u}^{i}\left|\lambda\right|}M\left(\left\|\frac{t_{km}\left(x_{k}^{u}-x_{k}\right)}{\rho_{u}^{i}},z\right\|\right).$$
Executelity, it follows that

From this inequality, it follows that

$$\left[M\left(\left\|\frac{t_{km}\left(\lambda_{k}x_{k}^{u}-\lambda x_{k}\right)}{\rho_{u}\left|\lambda_{k}-\lambda\right|+\rho_{u}^{i}\left|\lambda\right|},z\right\|\right)\right]^{p_{k}}\leq1$$

and consequently

$$\begin{split} g(\lambda_k x_k^u - \lambda x_k) &= \inf \left\{ \left(\rho_u \left| \lambda_k - \lambda \right| + \rho_u^i \left| \lambda \right| \right)^{\frac{p_n}{H}} > 0 : \rho_u \in A\left(x^u\right) \text{ and } \rho_u^i \in A\left(x^u - x\right) \right\} \\ &\leq \left(\left| \lambda_k - \lambda \right| \right)^{\frac{p_n}{H}} \inf \left\{ \left(\rho_u^i \right)^{\frac{p_n}{H}} > 0 : \rho_u \in A\left(x^u\right) \right\} \\ &+ \left(\left| \lambda \right| \right)^{\frac{p_n}{H}} \inf \left\{ \left(\rho_u^i \right)^{\frac{p_n}{H}} > 0 : \rho_u^i \in A\left(x^u - x\right) \right\} \\ &\leq \max \left\{ \left| \lambda \right|, \left(\left| \lambda \right| \right)^{\frac{p_n}{H}} \right\} g\left(x_k^u - x_k\right). \end{split}$$

Hence by our assumption the right hand side tends to zero as $u \to \infty$. This completes the proof.

Theorem 2.3. Let M, M_1 and M_2 be Orlicz functions. Then we have

(i) $\hat{w}^{I}[M_{1}, p, \|, ., \|]_{o} \subset \hat{w}^{I}[MoM_{1}, p, \|, ., \|]_{o}$ provided that $p = (p_{k})$ is such that h > 0.

 $(ii) \ \widehat{w}^{I} [M_{1}, p, \|, ., \|]_{o} \cap \widehat{w}^{I} [M_{2}, p, \|, ., \|]_{o} \subset \widehat{w}^{I} [M_{1} + M_{2}, p, \|, ., \|]_{o}.$

Proof. (i). For given $\varepsilon > 0$, we first choose $\varepsilon_o > 0$ such that $\max \{\varepsilon_o^H, \varepsilon_o^{H_o}\} < \varepsilon$. Now using the continuity of M, choose $0 < \delta < 1$ such that $0 < t < \delta$ implies $M(t) < \varepsilon_o$.

Ayhan Esi

Let $x \in \widehat{w}^{I}[M_{1}, p, \|, ., \|]_{o}$. Now from the definition of the space $\widehat{w}^{I}[M_{1}, p, \|, ., \|]_{o}$, for some $\rho > 0$

$$A\left(\delta\right) = \left\{ n \in \mathbb{N} : \left\| \frac{1}{n} \sum_{k=1}^{n} \left[M_1\left(\left\| \frac{t_{km}\left(x\right)}{\rho}, z \right\| \right) \right]^{p_k} \ge \delta^H \right\} \in I, \ m \in \mathbb{N}$$

Thus if $n \notin A(\delta)$ then

$$\frac{1}{n} \sum_{k=1}^{n} \left[M_1 \left(\left\| \frac{t_{km}(x)}{\rho}, z \right\| \right) \right]^{p_k} < \delta^H$$

$$\Rightarrow \sum_{k=1}^{n} \left[M_1 \left(\left\| \frac{t_{km}(x)}{\rho}, z \right\| \right) \right]^{p_k} < n\delta^H,$$

$$\Rightarrow \left[M_1 \left(\left\| \frac{t_{km}(x)}{\rho}, z \right\| \right) \right]^{p_k} < \delta^H \text{ for all } k, m = 1, 2, ...,$$

$$\Rightarrow M_1 \left(\left\| \frac{t_{km}(x)}{\rho}, z \right\| \right) < \delta \text{ for all } k, m = 1, 2, ...,$$

Hence from above inequality and using continuity of M, we must have

$$M\left(M_1\left(\left\|\frac{t_{km}\left(x\right)}{\rho}, z\right\|\right)\right) < \varepsilon_o \text{ for all } k, m = 1, 2, \dots$$

which consequently implies that

$$\sum_{k=1}^{n} \left[M\left(M_1\left(\left\| \frac{t_{km}\left(x\right)}{\rho}, z\right\| \right) \right) \right]^{p_k} < n \max\left\{ \varepsilon_o^H, \varepsilon_o^{H_o} \right\} < n\varepsilon, \ m = 1, 2, \dots,$$
$$\Rightarrow \frac{1}{n} \sum_{k=1}^{n} \left[M\left(M_1\left(\left\| \frac{t_{km}\left(x\right)}{\rho}, z\right\| \right) \right) \right]^{p_k} < \varepsilon, \ m = 1, 2, \dots,$$

This shows that

$$\left\{n \in \mathbb{N}: \frac{1}{n} \sum_{k=1}^{n} \left[M\left(M_{1}\left(\left\|\frac{t_{km}(x)}{\rho}, z\right\|\right)\right)\right]^{p_{k}} \ge \varepsilon\right\} \subset A\left(\delta\right)$$

and so belongs to I. This completes the proof.

(ii) Let
$$x \in \hat{w}^{I}[M_{1}, p, \|, ., \|]_{o} \cap \hat{w}^{I}[M_{2}, p, \|, ., \|]_{o}$$
. Then the fact that

$$\frac{1}{n} \left[(M_1 + M_2) \left(\left\| \frac{t_{km}(x)}{\rho}, z \right\| \right) \right]^{p_k} \\ \leq \frac{D}{n} \left[M_1 \left(\left\| \frac{t_{km}(x)}{\rho}, z \right\| \right) \right]^{p_k} + \frac{D}{n} \left[M_2 \left(\left\| \frac{t_{km}(x)}{\rho}, z \right\| \right) \right]^{p_k} \\ \text{result.}$$

gives us the result.

Theorem 2.4. (i) If $0 < h \le p_k < 1$, then $\widehat{w}^I [M, p, \|, ., \|]_o \subset \widehat{w}^I [M, \|, ., \|]_o$. (ii) If $1 \le p_k \le H < \infty$, then $\widehat{w}^I [M, \|, ., \|]_o \subset \widehat{w}^I [M, p, \|, ., \|]_o$. (iii) If $0 < p_k < q_k < \infty$ and $\frac{q_k}{p_k}$ is bounded, then

$$\widehat{w}^{I}\left[M,p,\left\|,.,\right\|\right]_{o}\subset\widehat{w}^{I}\left[M,q,\left\|,.,\right\|\right]_{o}.$$

Proof. The proof is standard, so we omit it.

Theorem 2.5. The sequence spaces $\widehat{w}^{I}[M, p, \|, ., \|]_{o}$, $\widehat{w}^{I}[M, p, \|, ., \|]$, $\widehat{w}^{I}[M, p, \|, ., \|]_{\infty}$ and $\widehat{w}[M, p, \|, ., \|]_{\infty}$ are solid.

Proof. We give the proof for only $\widehat{w}^{I}[M, p, \|, ., \|]_{o}$. The others can be proved similarly. Let $x \in \widehat{w}^{I}[M_{1}, p, \|, ., \|]_{o}$ and $\alpha = (\alpha_{k})$ be a sequence of scalars such that $|\alpha_{k}| \leq 1$ for all $k \in \mathbb{N}$. Then we have

$$\left\{ n \in \mathbb{N} : \left. \frac{1}{n} \sum_{k=1}^{n} \left[M\left(\left\| \frac{t_{km}\left(\alpha_{k}x_{k}\right)}{\rho}, z \right\| \right) \right]^{p_{k}} \le \varepsilon \right\} \\ \subset \left\{ n \in \mathbb{N} : \left. \frac{T}{n} \sum_{k=1}^{n} \left[M\left(\left\| \frac{t_{km}\left(x_{k}\right)}{\rho}, z \right\| \right) \right]^{p_{k}} \le \varepsilon \right\} \in I,$$

where $T = \sup_{k} \left\{ 1, |\alpha_{k}|^{H} \right\}$. Hence $\alpha x \in \widehat{w}^{I}[M_{1}, p, \|, ., \|]_{o}$ for all sequences $\alpha = (\alpha_{k})$ with $|\alpha_{k}| \leq 1$ for all $k \in \mathbb{N}$ whenever $x \in \widehat{w}^{I}[M_{1}, p, \|, ., \|]_{o}$.

Acknowledgement. The author is grateful to the referee for corrections and suggestions, which have greatly improved the readability of the paper.

References

- Pringsheim, A., Zur Theori der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(1900), 289-321.
- [2] Gunawan, H., Mashadi, M., On finite dimensional 2-normed spaces, Soochow J. Math., 27(2001), no. 3, 321-329.
- [3] Kostyrko, P., Salat T., Wilczynski, W., *I-convergence*, Real Analysis Exchange, 26 (2000/2001), no. 2, 669-686.
- [4] Salat, T., Tripathy, B.C., Ziman, M., On I-convergence field, Italian J. Pure and Appl. Math., 17(2005), 45-54.
- [5] Krasnoselski, M.A., Rutickii, Y.B., Convex function and Orlicz spaces, Groningen, Nederland, 1961.
- [6] Ruckle, W.H., FK-spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
- [7] Nakano, H., Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
- [8] Altin, Y., Et, M., Tripathy, B.C., The sequence space |N_p| (M, r, q, s) on seminormed spaces, Applied Mathematics and Computation, 154(2004), 423-430.
- [9] Tripathy, B.C., Mahanta, S., On a class of generalized lacunary difference sequence spaces defined by Orlicz functions, Acta Mathematica Applicata Sinica, 20)(2004), no. 2, 231-238.
- [10] Et, M., Altin, Y., Choudhary, B., Tripathy, B.C., On some classes of sequences defined by sequences of Orlicz functions, Mathematical Inequalities and Applications, 9(2006), no. 2, 335-342.
- [11] Tripathy, B.C., Altin, Y., Et, M., Generalized difference sequence spaces on seminormed spaces defined by Orlicz functions, Mathematica Slovaca, 58(2008), no. 3, 315-324.
- [12] Tripathy, B.C., Sarma, B., Double sequence spaces of fuzzy numbers defined by Orlicz function, Acta Mathematica Scientia, 31(2011), no. 1, 134-140.

Ayhan Esi

- [13] Tripathy, B.C., Hazarika, B., *I-convergent sequence spaces associated with multiplier sequence spaces*, Mathematical Inequalities and Applications, 11(2008), no. 3, 543-548.
- [14] Tripathy, B.C., Hazarika, B., Paranormed I-convergent sequence spaces, Mathematica Slovaca, 59(2009), no. 4, 485-494.
- [15] Tripathy, B.C., Hazarika, B., *I-monotonic and I-convergent sequences*, Kyungpook Mathematical Journal, **51**(2011), no. 2, 233-239.
- [16] Tripathy, B.C., Mahanta, S., On I-acceleration convergence of sequences, Journal of the Franklin Institute, 347(2010), 591-598.

Ayhan Esi Adiyaman University Science and Art Faculty Department of Mathematics 02040, Adiyaman, Turkey e-mail: aesi23@hotmail.com