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Non-isomorphic contact structures
on the torus T 3

Saad Aggoun

Abstract. In this paper, we prove the existence of infinitely many number non-
isomorphic contact structures on the torus T 3. Moreover, this structures are ex-
plicitly given by ωn = cos nθ3dθ1 + sin nθ3dθ2, (n ∈ N).
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1. Introduction

In the acts of Colloquium of Brussels in 1958, P. Libermann [3] addressed the
study of the automorphisms of the contact structures on a differentiable manifold M .
She has proved that these automorphisms correspond bijectively to functions on this
manifold. This allows to transport the Lie algebra structure on the vector space F (M)
of the functions on M. We obtain, for two given functions f, g ∈ F (M), a Poisson
bracket [f, g] that depends of the contact form ω. The study of the infinite dimensional
Lie algebras obtained is far from being advanced. Thus, in 1973 A. Lichnerowicz [4]
who hoped to distinguish the contact structures by their Lie algebras, has given
a series of results that are all however of general caracter. Some works that have
appeared after have emphasis on the similarities of these algebras. In 1979, R. Lutz
[7] has proved the existence of infinitely many non-isomorphic contact structures on
the sphere S3. In 1989, as reported by R. Lutz [7] himself, I have opened in my
thesis [1] new perspectives in the other direction by studying the sub-algebras of
finite dimension of these algebras. We know that if two contact structures [ω1] and
[ω2] are isomorphic then their Lie algebras (of infinite dimension of course) A([ω1])
and A([ω2]) are also isomorphic.

Given an n-dimensional smooth manifold M, and a point p ∈ M, a contact
element of M with contact point p is an (n − 1)-dimensional linear subspace of the
tangent space to M at p. A contact contact element can be given by the zeros of a
1-form on the tangent space to M at p. However, if a contact element is given by the
zeros of a1-form ω, then it will also be given by the zeros of λω where λ 6= 0. thus
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{λω : λ 6= 0} all give the same contact element. It follows that the space of all contact
elemnts of M can be identified with a quotient of the cotangent bundle PT ∗M, where
PT ∗M = T ∗M/R, where, for ωi ∈ T ∗p M, ω1Rω2 iff there exists λ 6= 0 : ω1 = λω2.

A contact structure on an odd dimensional manifold M , of dimension 2k + 1,
is a smooth distribution of contact elements, denoted by ξ, which is generic at each
point. The genericity condition is that ξ is non-integrable.

Assume that we have a smooth distribution of contact elements ξ given locally
by a differential 1-form α; i.e. a smooth section of the cotangent bundle. The non-
integrability condition can be given explicitly as α ∧ (dα)k 6= 0.

Notice that if ξ is given by the differential 1-form α, then the same distribution
is given locally by β = fα, where f is a non-zero smooth function. If ξ is co-orientable
then α is defined globally.

If α is a contact form for a given contact structure, the Reeb vector field R can
be defined as the unique element of the kernel of dα such that α(R) = 1.

For more details, we can consult the references [5, 6, 8] .

2. The main result

The main result is contained in the following theorem:

Theorem 2.1. On the torus T 3 the contact structures defined by the contact forms
ωn = cos nθ3dθ1 + sinnθ3dθ2, (n ∈ N) are non-isomorphic.

To establish this result, we need the following lemma.

Lemma 2.2. Let f a C∞−function on the torus T 3 and Rn the Reeb field of ωn defined
by

Rn = cos nθ3
∂

∂θ1
+ sinnθ3

∂

∂θ2
.

If Rn(f) = 0, then f depends only on θ3.

Proof. Rn(f) = 0 means that f is constant along the integral curves of Rn whose
equations are:

dθ1

dt
= cos nθ3,

dθ2

dt
= sinnθ3,

dθ3

dt
= 0.

So, we have

θ1 = t cos nk3 + k1,

θ2 = sinnk3 + k2,

θ3 = k3,

where k1, k2 and k3 are real constants.
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When tan k3 is irrational, the trajectories are dense on a torus T 2, so by continuity f

is constant on this torus. Hence, we get
∂f

∂θ1
=

∂f

∂θ2
= 0 for θ1, θ2 arbitrary and θ3 in

a dense subset of the circle. It follow that f is constant with respect to θ1 and θ2.
This completes the proof of the lemma. �

Proof of the theorem. It suffices to prove that the structures [ω1] and [ω2] are non-
isomorphic.

From [1] we recall that the Poisson brackets associated to [ω1] and [ω2] are given
respectively by:

[f, g]1 =
(

f
∂g

∂θ1
− g

∂f

∂θ1
+

∂f

∂θ3

∂g

∂θ2
− ∂f

∂θ2

∂g

∂θ3

)
cos θ3

+
(

f
∂g

∂θ2
− g

∂f

∂θ2
+

∂f

∂θ1

∂g

∂θ3
− ∂f

∂θ3

∂g

∂θ1

)
sin θ3,

[f, g]2 =
(

f
∂g

∂θ1
− g

∂f

∂θ1
+

1
2

∂f

∂θ3

∂g

∂θ2
− 1

2
∂f

∂θ2

∂g

∂θ3

)
cos 2θ3

+
(

f
∂g

∂θ2
− g

∂f

∂θ2
+

1
2

∂f

∂θ1

∂g

∂θ3
− 1

2
∂f

∂θ3

∂g

∂θ1

)
sin 2θ3.

Suppose that [ω1] and [ω2] are isomorphic that is F ∗ω1 = λω2, where λ is a
function on T 3 without zeros and F be this diffeomorphism defined from T 3 into T 3

by:
F (θ1, θ2, θ3) = (u(θ1, θ2, θ3), v(θ1, θ2, θ3), w(θ1, θ2, θ3) ).

We obtain the two equations

∂u

∂θ1
cos w +

∂v

∂θ1
sinw = λ cos 2θ3. (2.1)

∂u

∂θ2
cos w +

∂v

∂θ2
sinw = λ sin 2θ3. (2.2)

Let Φ(θ1, θ2, θ3) = cos θ3,Ψ(θ1, θ2, θ3) = cos θ1 and Ω(θ1, θ2, θ3) = − sin θ1. Thus
we have [Φ,Ψ]1 = Ω, [Ψ,Ω]1 = Φ and [Ω,Φ]1 = −Ψ.

Then Φ,Ψ and Ω generate a three dimensiononal sub-algebra of A [ω1] isomor-
phic to SL2(R) and consequently, we deduce that the functions Φ◦F,Ψ◦F and Ω◦F
generate a three dimensional sub-algebra of A [ω2] isomorphic to SL2(R).
Thus, we have by analogy

[cos w, cos u]2 = − sinu,
[cos u,− sinu]2 = cos w,
[− sinu, cos w]2 = − cos u.

From this equations, it follows that

∂u

∂θ1
cos 2θ3 +

∂u

∂θ2
sin 2θ3 = − cos w. (2.3)

If Φ(θ1, θ2, θ3) = sin θ3,Ψ(θ1, θ2, θ3) = cos θ2 and Ω(θ1, θ2, θ3) = − sin θ2.
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We obtain similarly
∂v

∂θ1
cos 2θ3 +

∂v

∂θ2
sin 2θ3 = − sinw. (2.4)

We take now

Φ(θ1, θ2, θ3) = 1 and Ψ(θ1, θ2, θ3) = − cos θ3,

we get
∂ (cos w)

∂θ1
cos 2θ3 +

∂ (cos w)
∂θ2

sin 2θ3 = 0. (2.5)

From (5) and lemma 2, it follows that the function cos w and consequently the function
w depend only on θ3.

Differentiating (3) and (4) with respect to θ1 and θ2, we get after taking into account
the form of Reeb field Rn the four equations

R2

(
∂u

∂θ1

)
= R2

(
∂u

∂θ2

)
= R2

(
∂v

∂θ1

)
= R2

(
∂v

∂θ2

)
= 0,

from those, we deduce that the functions ∂u
∂θ1

, ∂u
∂θ2

, ∂v
∂θ1

and ∂v
∂θ2

depend only on θ3.

The diffeomorphism F can now be completly caracterized in the following way :

u (θ1, θ2, θ3) = θ1α1(θ3) + θ2β1(θ3) + γ1(θ3),

v (θ1, θ2, θ3) = θ1α2(θ3) + θ2β2(θ3) + γ2(θ3),

w (θ1, θ2, θ3) = γ3(θ3),

where the functions αi, βi, γj , i = 1, 2 and j = 1, 2, 3 are defined on the torus T 3.

So F is a diffeomorphism iff the functions αi and βi take only integer values and
subject to the condition

α1β2 − α2β1 = ±1.

We return now to the equations (1) and (2),we obtain

(α1 − β2) sin (w + 2θ3)− (α1 + β2) sin (w − 2θ3)

+ (α2 − β1) cos (w − 2θ3)− (α2 + β1) cos (w + 2θ3) = 0.

Thus if w = ±2θ3, F is not invertible. In the contrary case, the quantities
sin (w + 2θ3) , sin (w − 2θ3) , cos (w − 2θ3) and cos (w + 2θ3) are linearly independant,
so αi = βi = 0.

In all cases this diffeomorphism do not exist and the contact structures [ω1] and [ω2]
are not isomorphic.
Consequently, there are infinitely many non-isomorphic contact structues [ωn] on the
torus T 3 given by

ωn = cos nθ3dθ1 + sinnθ3dθ2, (n ∈ N) .

This completes the proof of the theorem. �
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3. Conclusion

The technics used in this work to find non-isomorphic contact structures can
be extended to the sphere S3 in a first steep and may be to other manifolds suitably
choosen. It is also interesting to find the group of diffeomorphisms that leaves the
contact structure invariante.

Aknowledgements. The author is indebted to the referee for pointing out some
errors and his carrefull reading of the first version of this work.
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d’une structure de contact, C. R. Acad. Sci. Paris Sér. A-B, 290(1980), A241-A245.
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