A note on universally prestarlike functions

Tirunelveli Nellaiappan Shanmugam and Joseph Lourthu Mary

Abstract

Universally prestarlike functions of order $\alpha \leq 1$ in the slit domain $\Lambda=\mathcal{C} \backslash[1, \infty)$ have been recently introduced by S. Ruscheweyh. This notion generalizes the corresponding one for functions in the unit disk Δ (and other circular domains in \mathcal{C}). In this paper, we discuss the universally prestarlike functions defined through fractional derivatives.

Mathematics Subject Classification (2010): 30C45.
Keywords: Prestarlike functions, universally prestarlike functions, Fekete-Szegö inequality, fractional derivatives, Sălăgean derivative.

1. Introduction

Let $H(\Omega)$ denote the set of all analytic functions defined in a domain Ω. For domain Ω containing the origin $H_{0}(\Omega)$ stands for the set of all function $f \in H(\Omega)$ with $f(0)=1$. We also use the notation $H_{1}(\Omega)=\left\{z f: f \in H_{0}(\Omega)\right\}$. In the special case when Ω is the open unit disk $\Delta=\{z \in \mathcal{C}:|z|<1\}$, we use the abbreviation H, H_{0} and H_{1} respectively for $H(\Omega), H_{0}(\Omega)$ and $H_{1}(\Omega)$. A function $f \in H_{1}$ is called starlike of order α with $(0 \leq \alpha<1)$ satisfying the inequality

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in \Delta) \tag{1.1}
\end{equation*}
$$

and the set of all such functions is denoted by S_{α}. The convolution or Hadamard Product of two functions

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \text { and } g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}
$$

is defined as

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}
$$

A function $f \in H_{1}$ is called prestarlike of order α (with $\alpha \leq 1$) if

$$
\begin{equation*}
\frac{z}{(1-z)^{2-2 \alpha}} * f(z) \in S_{\alpha} \tag{1.2}
\end{equation*}
$$

The set of all such functions is denoted by \mathcal{R}_{α}. (see [4]) The notion of prestarlike functions has been extended from the unit disk to other disk and half planes containing the origin. Let Ω be one such disk or half plane. Then there are two unique parameters $\gamma \in \mathcal{C} \backslash\{0\}$ and $\rho \in[0,1]$ such that

$$
\begin{equation*}
\Omega_{\gamma, \rho}=\left\{w_{\gamma, \rho}(z): z \in \Delta\right\} \tag{1.3}
\end{equation*}
$$

where,

$$
\begin{equation*}
w_{\gamma, \rho}(z)=\frac{\gamma z}{1-\rho z} \tag{1.4}
\end{equation*}
$$

Note that $1 \notin \Omega_{\gamma, \rho}$ if and only if $|\gamma+\rho| \leq 1$.
Definition 1.1. (see [2], [3], [4]) Let $\alpha \leq 1$, and $\Omega=\Omega_{\gamma, \rho}$ for some admissible pair (γ, ρ). A function $f \in H_{1}\left(\Omega_{\gamma, \rho}\right)$ is called prestarlike of order α in $\Omega_{\gamma, \rho}$ if

$$
\begin{equation*}
f_{\gamma, \rho}(z)=\frac{1}{\gamma} f\left(w_{\gamma, \rho}(z)\right) \in \mathcal{R}_{\alpha} \tag{1.5}
\end{equation*}
$$

The set of all such functions f is denoted by $\mathcal{R}_{\alpha}(\Omega)$.
Let Λ be the slit domain $\mathcal{C} \backslash[1, \infty)$ (the slit being along the positive real axis).
Definition 1.2. (see [2], [3], [4]) Let $\alpha \leq 1$. A function $f \in H_{1}(\Lambda)$ is called universally prestarlike of order α if and only if f is prestarlike of order α in all sets $\Omega_{\gamma, \rho}$ with $|\gamma+\rho| \leq 1$. The set of all such functions is denoted by \mathcal{R}_{α}^{u}.

Definition 1.3. (see [4]) Let $\phi(z)$ be an analytic function with positive real part on Δ, which satisfies $\phi(0)=1, \phi^{\prime}(0)>0$ and which maps the unit disc Δ onto a region starlike with respect to 1 and symmetric with respect to the real axis. Then the class $\mathcal{R}_{\alpha}^{u}(\phi)$ consists of all analytic function $f \in H_{1}(\Lambda)$ satisfying

$$
\begin{equation*}
\frac{D^{3-2 \alpha} f}{D^{2-2 \alpha} f} \prec \phi(z) \tag{1.6}
\end{equation*}
$$

where, $\left(D^{\beta} f\right)(z)=\frac{z}{(1-z)^{\beta}} \star f$, for $\beta \geq 0$ and \prec denotes the subordination.
In particular, for $\beta=n \in \mathrm{~N}$, we have $D^{n+1} f=\frac{z}{n!}\left(z^{n-1} f\right)^{(n)}$.
Remark 1.4. We let $\mathcal{R}_{\alpha}^{u}(A, B)$ denote the class $\mathcal{R}_{\alpha}^{u}(\phi)$ where

$$
\phi(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)
$$

For suitable choices of $\mathrm{A}, \mathrm{B}, \alpha$ the class $\mathcal{R}_{\alpha}^{u}(A, B)$ reduces to several well known classes of functions. $\mathcal{R}_{\frac{1}{2}}^{u}(1,-1)$ is the class S^{*} of starlike univalent functions.

Lemma 1.5. (see [1]) If $P_{1}(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is an analytic function with positive real part in Δ, then

$$
\left|c_{2}-v c_{1}^{2}\right| \leq\left\{\begin{aligned}
-4 v+2, & v \leq 0 \\
2, & 0 \leq v \leq 1 \\
4 v+2, & v \geq 1
\end{aligned}\right.
$$

when $v<0$, or $v>1$, the equality holds if and only if $P_{1}(z)$ is $\frac{1+z}{1-z}$ or one of its rotations. When $0<v<1$, then the equality holds if and only if $P_{1}(z)$ is $\frac{1+z^{2}}{1-z^{2}}$ or one of its rotations. If $v=0$, the equality holds if and only if $P_{1}(z)=\left(\frac{1}{2}+\frac{\lambda}{2}\right) \frac{1+z}{1-z}+$ $\left(\frac{1}{2}-\frac{\lambda}{2}\right) \frac{1-z}{1+z}, 0 \leq \lambda \leq 1$ or one of its rotations. If $v=1$, the equality holds if and only if $P_{1}(z)$ is the reciprocal of one of the function for which the equality holds in the case of $v=0$. Also the above upper bound can be improved as follows when $0<v<1$

$$
\begin{array}{ll}
\left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}\right|^{2} \leq 2 & \left(0<v \leq \frac{1}{2}\right) \\
\left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}\right|^{2} \leq 2 & \left(\frac{1}{2}<v \leq 1\right) \tag{1.8}
\end{array}
$$

Lemma 1.6. (see [5]) If $P_{1}(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is an analytic function with positive real part in Δ, then $\left|c_{2}-v c_{1}^{2}\right| \leq 2 \max \{1,|2 v-1|\}$ the inequality is sharp for the function $P_{1}(z)=\frac{1+z}{1-z}$.
Remark 1.7. Let

$$
F(z)=\sum_{k=0}^{\infty} a_{k} z^{k}=\int_{0}^{1} \frac{d \mu(t)}{1-t z}
$$

where

$$
a_{k}=\int_{0}^{1} t^{k} d \mu(t)
$$

$\mu(t)$ is a probability measure on $[0,1]$. Let T denote the set of all such functions F which are analytic in the slit domain Λ.

To Prove our main result we need the following definition.
Definition 1.8. Let f be analytic in a simply connected region of the z-plane containing the origin. The fractional derivative of f of order λ is defined by

$$
\begin{equation*}
D_{z}^{\lambda} f(z):=\frac{1}{\Gamma(1-\lambda)} \frac{d}{d z} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{\lambda}} d \zeta \quad(0<\lambda<1) \tag{1.9}
\end{equation*}
$$

where the multiplicity of $(z-\zeta)^{\lambda}$ is removed by requiring that $\log (z-\zeta)$ is real for $z-\zeta>0$. Using the above definition and its known extensions involving fractional derivatives and fractional integrals, Owa and Srivastava introduced the operator Ω^{λ} : $\mathcal{A} \rightarrow \mathcal{A}$ for λ any positive real number $\neq 2,3,4, \ldots$ defined by

$$
\begin{equation*}
\left(\Omega^{\lambda} f\right)(z)=\Gamma(2-\lambda) z^{\lambda} D_{z}^{\lambda} f(z) \tag{1.10}
\end{equation*}
$$

and $\mathcal{A}=H_{1}(\Delta)$. The class $\left(\mathcal{R}_{\alpha}^{u}\right)^{\lambda}(\phi)$ consists of function $f \in \mathcal{A}$ for which $\Omega^{\lambda} f \in$ $\left(\mathcal{R}_{\alpha}^{u}\right)(\phi)$. Note that $\left(\mathcal{R}_{\alpha}^{u}\right)^{\lambda}(\phi)$ is the special case of the class $\left(\mathcal{R}_{\alpha}^{u}\right)^{g}(\phi)$ when

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} z^{n} \tag{1.11}
\end{equation*}
$$

Let

$$
g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n}\left(g_{n}>0\right)
$$

g be analytic in Δ and $f * g \neq 0$. Since

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in\left(\mathcal{R}_{\alpha}^{u}\right)^{g}(\phi)
$$

if and only if

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} g_{n} a_{n} z^{n} \in\left(\mathcal{R}_{\alpha}^{u}\right)(\phi), \tag{1.12}
\end{equation*}
$$

we obtain the coefficient estimate for functions in the class $\left(\mathcal{R}_{\alpha}^{u}\right)^{g}(\phi)$, from the corresponding estimate for functions in the class $\left(\mathcal{R}_{\alpha}^{u}\right)(\phi)$

2. Main Result

Theorem 2.1. Let the function ϕ given by $\phi(z)=1+B_{1} z+B_{2} z^{2}+\ldots$. If

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in\left(\mathcal{R}_{\alpha}^{u}\right)^{g}(\phi)
$$

then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{lr}
\frac{1}{g_{3}(3-2 \alpha)}\left(B_{2}+B_{1}^{2}(2-2 \alpha)+\frac{(3-2 \alpha) \mu g_{3} B_{1}^{2}}{g_{2}^{2}}\right), & \mu \leq \sigma_{1} \\
\frac{B_{1}}{g_{3}(3-2 \alpha)}, & \sigma_{1} \leq \mu \leq \sigma_{2} \\
\frac{1}{g_{3}(3-2 \alpha)}\left(-B_{2}-B_{1}^{2}(2-2 \alpha)+\frac{(3-2 \alpha) \mu g_{3} B_{1}^{2}}{g_{2}^{2}}\right), & \mu \geq \sigma_{2}
\end{array}\right.
$$

where

$$
\begin{align*}
\sigma_{1} & =\frac{g_{2}^{2}}{g_{3}}\left[\frac{\left(B_{2}-B_{1}\right)+(2-2 \alpha) B_{1}^{2}}{(3-2 \alpha) B_{1}^{2}}\right], \tag{2.1}\\
\sigma_{2} & =\frac{g_{2}^{2}}{g_{3}}\left[\frac{\left(B_{2}+B_{1}\right)+(2-2 \alpha) B_{1}^{2}}{(3-2 \alpha) B_{1}^{2}}\right] \tag{2.2}
\end{align*}
$$

the result is sharp.
Proof. If $f * g \in \mathcal{R}_{\alpha}^{u}$, then there is a schwartz function $w(z)$, analytic in Δ with $w(0)=0$ and $|w(z)|<1$ in Δ such that $\frac{D^{3-2 \alpha}(f * g)}{D^{2-2 \alpha}(f * g)}=\phi(w(z))$. Define the function $P_{1}(z)$ by,

$$
P_{1}(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\ldots
$$

Since $w(z)$ is a schwartz function, we see that $\operatorname{Re} P_{1}(z)>0$ and $P_{1}(0)=1$. Define the function

$$
\begin{equation*}
P(z)=\frac{D^{3-2 \alpha}(f * g)}{D^{2-2 \alpha}(f * g)}=1+b_{1} z+b_{2} z^{2}+\ldots \tag{2.3}
\end{equation*}
$$

Therefore,

$$
P(z)=\phi\left(\frac{P_{1}(z)-1}{P_{1}(z)+1}\right)
$$

Now,

$$
\begin{aligned}
\frac{P_{1}(z)-1}{P_{1}(z)+1} & =\frac{c_{1} z+c_{2} z^{2}+\ldots}{2+c_{1} z+c_{2} z^{2}+\ldots} \\
& =\frac{1}{2}\left[c_{1} z+\left[c_{2}-\frac{c_{1}^{2}}{2}\right] z^{2}+\left[c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4} z^{3}\right]+\ldots\right]
\end{aligned}
$$

Hence upon simplification, we get,

$$
\begin{equation*}
P(z)=1+\frac{B_{1} c_{1} z}{2}+\left[\frac{B_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{B_{2} c_{1}^{2}}{4}\right] z^{2}+\ldots \tag{2.4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
1+b_{1} z+b_{2} z^{2}+\ldots=1+\frac{B_{1} c_{1} z}{2}+\left[\frac{B_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{B_{2} c_{1}^{2}}{4}\right] z^{2}+\ldots \tag{2.5}
\end{equation*}
$$

Equating the like coefficients we get,

$$
\begin{gather*}
b_{1}=\frac{B_{1} c_{1}}{2} \tag{2.6}\\
b_{2}=\frac{B_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{B_{2} c_{1}^{2}}{4} \tag{2.7}
\end{gather*}
$$

Therefore, from the equation (2.3) we have

$$
\begin{equation*}
1+A_{1} z+A_{2} z^{2}+\ldots=1+b_{1} z+b_{2} z^{2}+\ldots \tag{2.8}
\end{equation*}
$$

where,

$$
\begin{gathered}
A_{1}=\left[\mathcal{C}^{\prime}(\alpha, 2) a_{2} g_{2}-\mathcal{C}(\alpha, 2) a_{2} g_{2}\right] \\
A_{2}=\left[\mathcal{C}^{\prime}(\alpha, 3) a_{3} g-\mathcal{C}(\alpha, 2) \mathcal{C}^{\prime}(\alpha, 2) a_{2}^{2}-\mathcal{C}(\alpha, 3) a_{3}+\left(\mathcal{C}(\alpha, 2) a_{2}\right)^{2}\right] \\
\mathcal{C}(\alpha, n)=\frac{\prod_{k=2}^{n}(k-2 \alpha)}{(n-1)!}, \mathcal{C}^{\prime}(\alpha, n)=\frac{\prod_{k=2}^{n}(k+1-2 \alpha)}{(n-1)!} \\
b_{n}=\int_{0}^{1} t^{n} d \mu(t)
\end{gathered}
$$

for $n=2,3, \ldots$ and $\mu(t)$ a probability measure on $[0,1]$.
Equating the coefficients of z and z^{2} respectively and simplifying we get,

$$
\begin{equation*}
a_{2}=\frac{b_{1}}{g_{2}} ; \quad a_{3}=\frac{b_{2}+(2-2 \alpha) b_{1}^{2}}{g_{3}(3-2 \alpha)} \tag{2.9}
\end{equation*}
$$

Applying the equations(2.6) and (2.7) in(2.9), we get,

$$
a_{2}=\frac{B_{1} c_{1}}{2 g_{2}} ; \quad a_{3}=\frac{1}{g_{3}(3-2 \alpha)}\left[\frac{B_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{B_{2} c_{1}^{2}}{4}+(2-2 \alpha) \frac{B_{1}^{2} c_{1}^{2}}{4}\right] .
$$

Now,

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2} & =\frac{1}{g_{3}(3-2 \alpha)}\left[\frac{B_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{B_{2} c_{1}^{2}}{4}+(2-2 \alpha) \frac{B_{1}^{2} c_{1}^{2}}{4}\right]-\mu \frac{B_{1}^{2} c_{1}^{2}}{4 g_{2}^{2}} \\
& =\frac{1}{g_{3}(3-2 \alpha)} \frac{B_{1}}{2}\left[c_{2}-c_{1}^{2}\left(\frac{1}{2}-\frac{B_{2}}{2 B_{1}}-(2-2 \alpha) \frac{B_{1}}{2}+(3-2 \alpha) \mu \frac{g_{3} B_{1}}{2 g_{2}^{2}}\right)\right] \\
& =\frac{B_{1}}{2 g_{3}(3-2 \alpha)}\left[c_{2}-c_{1}^{2} v\right]
\end{aligned}
$$

where,

$$
\begin{equation*}
v=\left[\frac{1}{2}-\frac{B_{2}}{2 B_{1}}-(2-2 \alpha) \frac{B_{1}}{2}+(3-2 \alpha) \mu \frac{g_{3} B_{1}}{2 g_{2}^{2}}\right] \tag{2.10}
\end{equation*}
$$

Now an application of lemma (1.5) (see [1]) yields the inequalities stated in the theorem under the respective conditions. For the sharpness of the results in the above theorem we have the following:

1. If $\mu=\sigma_{1}$, then the equality holds in the lemma (1.1) if and only if

$$
P_{1}(z)=\left(\frac{1}{2}+\frac{\lambda}{2}\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{\lambda}{2}\right) \frac{1-z}{1+z} 0 \leq \lambda \leq 1
$$

or one of its rotations.
2 . If $\mu=\sigma_{2}$, then

$$
\frac{1}{P_{1}(z)}=\frac{1}{\left(\frac{1}{2}+\frac{\lambda}{2}\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{\lambda}{2}\right) \frac{1-z}{1+z}}
$$

3. If $\sigma_{1}<\mu<\sigma_{2} P_{1}(z)=\frac{1+\lambda z^{2}}{1-\lambda z^{2}}$.

To show that the bounds are sharp, we define the function $K_{\alpha}^{\phi_{n}}(n=2,3, \ldots)$ by

$$
\begin{equation*}
\frac{D^{3-2 \alpha} K_{\alpha}^{\phi_{n}}}{D^{3-2 \alpha} K_{\alpha}^{\phi_{n}}}=\phi\left(z^{n-1}\right) \tag{2.11}
\end{equation*}
$$

$K_{\alpha}^{\phi_{n}}(0)=0,\left(K_{\alpha}^{\phi_{n}}\right)^{\prime}(0)=1$ and function F_{α}^{λ} and $G_{\alpha}^{\lambda}(0 \leq \lambda \leq 1)$ by

$$
\begin{equation*}
\frac{\left(D^{3-2 \alpha} F_{\alpha}^{\lambda}\right)(z)}{\left(D^{2-2 \alpha} F_{\alpha}^{\lambda}\right)(z)}=\phi\left(\frac{z(z+\lambda)}{1+\lambda z}\right) \tag{2.12}
\end{equation*}
$$

$F_{\alpha}^{\lambda}(0)=0,\left(F_{\alpha}^{\lambda}\right)^{\prime}(0)=1$ and similarly

$$
\begin{equation*}
\frac{\left(D^{3-2 \alpha} G_{\alpha}^{\lambda}\right)(z)}{\left(D^{2-2 \alpha} G_{\alpha}^{\lambda}\right)(z)}=\phi\left(\frac{z(z+\lambda)}{1+\lambda z}\right) \tag{2.13}
\end{equation*}
$$

$G_{\alpha}^{\lambda}(0)=0,\left(G_{\alpha}^{\lambda}\right)^{\prime}(0)=1$. Clearly, the functions $K_{\alpha}^{\phi_{n}}, F_{\alpha}^{\lambda}, G_{\alpha}^{\lambda} \in \mathcal{R}_{\alpha}^{u}$. Also we write $K_{\alpha}^{\phi}:=K_{\alpha}^{\phi_{2}}$. If $\mu<\sigma_{1}$ or $\mu<\sigma_{2}$, then the equality holds if and only if f is K_{α}^{ϕ} or one of its rotations. When $\sigma_{1}<\mu<\sigma_{2}$, then the equality holds if and only if f is $K_{\alpha}^{\phi_{3}}$ or one of its rotations. If $\mu=\sigma_{1}$, then the equality holds if and only if f is F_{α}^{λ} or one of its rotations If $\mu=\sigma_{2}$ then the equality holds if and only if f is G_{α}^{λ} or one of its rotations. Hence the result.

Corollary 2.2. If $g(z)=\frac{z}{1-z} \in \mathcal{R}_{0}^{u}$ in Theorem 2.1 we get our earlier result viz., Theorem 3.1 of (see [7]).

Corollary 2.3. Taking

$$
g(z)=\left(\Omega^{\lambda} f\right)(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} a_{n} z^{n}
$$

$(f * g)$ denotes the fractional derivative of f and hence if

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in\left(\mathcal{R}_{\alpha}^{u}\right)^{g}(\phi) \tag{2.14}
\end{equation*}
$$

then,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{lr}
\frac{(3-\lambda)(2-\lambda)}{6(3-2 \alpha)}\left(B_{2}+B_{1}^{2}(2-2 \alpha)+\frac{(3-2 \alpha) \mu g_{3} B_{1}^{2}}{g_{2}^{2}}\right), & \mu \leq \sigma_{1} \\
\frac{(3-\lambda)(2-\lambda) B_{1}}{6(3-2 \alpha)}, & \sigma_{1} \leq \mu \leq \sigma_{2} \\
\frac{(3-\lambda)(2-\lambda)}{6(3-2 \alpha)}\left(-B_{2}-B_{1}^{2}(2-2 \alpha)+\frac{(3-2 \alpha) \mu g_{3} B_{1}^{2}}{g_{2}^{2}}\right), & \mu \geq \sigma_{2}
\end{array}\right.
$$

where,

$$
\begin{align*}
\sigma_{1} & =\frac{2(3-\lambda)}{3(2-\lambda)}\left[\frac{\left(B_{2}-B_{1}\right)+(2-2 \alpha) B_{1}^{2}}{(3-2 \alpha) B_{1}^{2}}\right], \tag{2.15}\\
\sigma_{2} & =\frac{2(3-\lambda)}{3(2-\lambda)}\left[\frac{\left(B_{2}+B_{1}\right)+(2-2 \alpha) B_{1}^{2}}{(3-2 \alpha) B_{1}^{2}}\right] \tag{2.16}
\end{align*}
$$

the result is sharp.
Proof. This corollary follows from the observations

$$
\begin{equation*}
g_{2}:=\frac{\Gamma(3) \Gamma(2-\lambda)}{\Gamma(3-\lambda)}=\frac{2}{2-\lambda} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{3}:=\frac{\Gamma(4) \Gamma(2-\lambda)}{\Gamma(4-\lambda)}=\frac{6}{(2-\lambda)(3-\lambda)} . \tag{2.18}
\end{equation*}
$$

Corollary 2.4. Taking

$$
g(z)=z+\sum_{n=2}^{\infty} n^{m} z^{n}, \quad m \in \mathcal{N}_{o}=\{0\} \cup \mathcal{N}
$$

$(f * g)$ denotes the Sălăgean derivative of $f(s e e[6])$ and hence if

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in\left(\mathcal{R}_{\alpha}^{u}\right)^{g}(\phi)
$$

then,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{lr}
\frac{1}{3^{m}(3-2 \alpha)}\left(B_{2}+B_{1}^{2}(2-2 \alpha)+\frac{3^{m}(3-2 \alpha) \mu B_{1}^{2}}{2^{2 m}}\right), & \mu \leq \sigma_{1} \\
\frac{B_{1}}{3^{m}(3-2 \alpha)}, & \sigma_{1} \leq \mu \leq \sigma_{2} \\
\frac{1}{3^{m}(3-2 \alpha)}\left(-B_{2}-B_{1}^{2}(2-2 \alpha)+\frac{3^{m}(3-2 \alpha) \mu B_{1}^{2}}{2^{2 m}}\right), & \mu \geq \sigma_{2}
\end{array}\right.
$$

where,

$$
\begin{align*}
\sigma_{1} & =\frac{2^{2 m}}{3^{m}}\left[\frac{\left(B_{2}-B_{1}\right)+(2-2 \alpha) B_{1}^{2}}{(3-2 \alpha) B_{1}^{2}}\right], \tag{2.19}\\
\sigma_{2} & =\frac{2^{2 m}}{3^{m}}\left[\frac{\left(B_{2}+B_{1}\right)+(2-2 \alpha) B_{1}^{2}}{(3-2 \alpha) B_{1}^{2}}\right] \tag{2.20}
\end{align*}
$$

the result is sharp.
Proof. This corollary follows from the observations $g_{2}=2^{m}$ and $g_{3}=3^{m}$.

References

[1] Ma, W.C., Minda, D., A unified treatment of some special classes of univalent functions, Proc. Conf. on Complex Analysis, Z. (Eds: F. Li, L. Ren, L. Yang, S. Zhang), Int. Press (1994), 157-169.
[2] Ruscheweyh, S., Some properties of prestarlike and universally prestarlike functions, Journal name, 15(2007), 247-254.
[3] Ruscheweyh, S., Salinas,L., Universally prestarlike functions as convolution multipiers, Mathematische Zeitschrift, (2009), 607-617.
[4] Ruscheweyh, S., Salinas, L., Sugawa, T., Completely monotone sequences and universally prestarlike functions, Israel J. Math., 171(2009), 285-304.
[5] Ravichandran, V., Polatoglu, Y., Bolcol, M., Sen, A., Certain Subclasses of starlike and convex functions of complex order, Hacet. J.Math. Stat., 34(2005), 9-15.
[6] Sălăgean, G.S., Subclass of univalent functions, Lecture notes in Math Springer Verlag, 11013(1983), 362-372.
[7] Shanmugam, T.N., Lourthu Mary, J., Fekete-Szego inequality for universally prestarlike functions, Fract. Calc. Appl. Anal., 13(2010), no. 4, 385-394.
[8] Srivastava, H.M., Owa, S., An application of the fractional derivative, Math. Japan., 29(1984), 383-389.
[9] Srivastava, H.M., Owa, S., Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(1987), 1057-1077.
[10] Owa, S., On the distortion theorems I, Kyungpook Math. J., 18(1978), 53-58.
Tirunelveli Nellaiappan Shanmugam
Anna University, Department of Mathematics
Chennai-25, India
e-mail: shan@annauniv.edu
Joseph Lourthu Mary
Anna University, Department of Mathematics
Chennai-25, India
e-mail: lourthu_ mary@yahoo.com

