A note on universally prestarlike functions

Tirunelveli Nellaiappan Shanmugam and Joseph Lourthu Mary

Abstract. Universally prestarlike functions of order $\alpha \leq 1$ in the slit domain $\Lambda = C \setminus [1, \infty)$ have been recently introduced by S. Ruscheweyh. This notion generalizes the corresponding one for functions in the unit disk Δ (and other circular domains in C). In this paper, we discuss the universally prestarlike functions defined through fractional derivatives.

Mathematics Subject Classification (2010): 30C45.

Keywords: Prestarlike functions, universally prestarlike functions, Fekete-Szegö inequality, fractional derivatives, Sălăgean derivative.

1. Introduction

Let $H(\Omega)$ denote the set of all analytic functions defined in a domain Ω . For domain Ω containing the origin $H_0(\Omega)$ stands for the set of all function $f \in H(\Omega)$ with f(0) = 1. We also use the notation $H_1(\Omega) = \{zf : f \in H_0(\Omega)\}$. In the special case when Ω is the open unit disk $\Delta = \{z \in \mathcal{C} : |z| < 1\}$, we use the abbreviation H, H_0 and H_1 respectively for $H(\Omega), H_0(\Omega)$ and $H_1(\Omega)$. A function $f \in H_1$ is called starlike of order α with $(0 \le \alpha < 1)$ satisfying the inequality

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \qquad (z \in \Delta) \tag{1.1}$$

and the set of all such functions is denoted by S_{α} . The convolution or Hadamard Product of two functions

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 and $g(z) = \sum_{n=0}^{\infty} b_n z^n$

is defined as

$$(f*g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n$$

A function $f \in H_1$ is called prestarlike of order α (with $\alpha \leq 1$) if

$$\frac{z}{(1-z)^{2-2\alpha}} * f(z) \in S_{\alpha}.$$
 (1.2)

The set of all such functions is denoted by \mathcal{R}_{α} . (see [4]) The notion of prestarlike functions has been extended from the unit disk to other disk and half planes containing the origin. Let Ω be one such disk or half plane. Then there are two unique parameters $\gamma \in \mathcal{C} \setminus \{0\}$ and $\rho \in [0, 1]$ such that

$$\Omega_{\gamma,\rho} = \{ w_{\gamma,\rho}(z) : z \in \Delta \}$$
(1.3)

where,

$$w_{\gamma,\rho}(z) = \frac{\gamma z}{1 - \rho z}.$$
(1.4)

Note that $1 \notin \Omega_{\gamma,\rho}$ if and only if $|\gamma + \rho| \leq 1$.

Definition 1.1. (see [2], [3], [4]) Let $\alpha \leq 1$, and $\Omega = \Omega_{\gamma,\rho}$ for some admissible pair (γ, ρ) . A function $f \in H_1(\Omega_{\gamma,\rho})$ is called prestarlike of order α in $\Omega_{\gamma,\rho}$ if

$$f_{\gamma,\rho}(z) = \frac{1}{\gamma} f(w_{\gamma,\rho}(z)) \in \mathcal{R}_{\alpha}$$
(1.5)

The set of all such functions f is denoted by $\mathcal{R}_{\alpha}(\Omega)$.

Let Λ be the slit domain $\mathcal{C} \setminus [1, \infty)$ (the slit being along the positive real axis).

Definition 1.2. (see [2], [3], [4]) Let $\alpha \leq 1$. A function $f \in H_1(\Lambda)$ is called universally prestarlike of order α if and only if f is prestarlike of order α in all sets $\Omega_{\gamma,\rho}$ with $|\gamma + \rho| \leq 1$. The set of all such functions is denoted by \mathcal{R}^{u}_{α} .

Definition 1.3. (see [4]) Let $\phi(z)$ be an analytic function with positive real part on Δ , which satisfies $\phi(0) = 1$, $\phi'(0) > 0$ and which maps the unit disc Δ onto a region starlike with respect to 1 and symmetric with respect to the real axis. Then the class $\mathcal{R}^{u}_{\alpha}(\phi)$ consists of all analytic function $f \in H_{1}(\Lambda)$ satisfying

$$\frac{D^{3-2\alpha}f}{D^{2-2\alpha}f} \prec \phi(z) \tag{1.6}$$

where, $(D^{\beta}f)(z) = \frac{z}{(1-z)^{\beta}} \star f$, for $\beta \geq 0$ and \prec denotes the subordination.

In particular, for $\beta = n \in \mathbb{N}$, we have $D^{n+1}f = \frac{z}{n!}(z^{n-1}f)^{(n)}$.

Remark 1.4. We let $\mathcal{R}^{u}_{\alpha}(A, B)$ denote the class $\mathcal{R}^{u}_{\alpha}(\phi)$ where

$$\phi(z) = \frac{1 + Az}{1 + Bz} \ (-1 \le B < A \le 1).$$

For suitable choices of A,B, α the class $\mathcal{R}^{u}_{\alpha}(A,B)$ reduces to several well known classes of functions. $\mathcal{R}^{u}_{\frac{1}{2}}(1,-1)$ is the class S^{*} of starlike univalent functions.

Lemma 1.5. (see [1]) If $P_1(z) = 1 + c_1 z + c_2 z^2 + ...$ is an analytic function with positive real part in Δ , then

$$|c_2 - vc_1^2| \le \begin{cases} -4v + 2, & v \le 0\\ 2, & 0 \le v \le 1\\ 4v + 2, & v \ge 1 \end{cases}$$

when v < 0, or v > 1, the equality holds if and only if $P_1(z)$ is $\frac{1+z}{1-z}$ or one of its rotations. When 0 < v < 1, then the equality holds if and only if $P_1(z)$ is $\frac{1+z^2}{1-z^2}$ or one of its rotations. If v = 0, the equality holds if and only if $P_1(z) = (\frac{1}{2} + \frac{\lambda}{2}) \frac{1+z}{1-z} + (\frac{1}{2} - \frac{\lambda}{2}) \frac{1-z}{1+z}$, $0 \le \lambda \le 1$ or one of its rotations. If v = 1, the equality holds if and only if $P_1(z) = (\frac{1}{2} + \frac{\lambda}{2}) \frac{1+z}{1-z} + (\frac{1}{2} - \frac{\lambda}{2}) \frac{1-z}{1+z}$, $0 \le \lambda \le 1$ or one of its rotations. If v = 1, the equality holds if and only if $P_1(z)$ is the reciprocal of one of the function for which the equality holds in the case of v = 0. Also the above upper bound can be improved as follows when 0 < v < 1

$$|c_2 - vc_1^2| + v|c_1|^2 \le 2 \qquad (0 < v \le \frac{1}{2})$$
(1.7)

$$|c_2 - vc_1^2| + (1 - v)|c_1|^2 \le 2 \quad (\frac{1}{2} < v \le 1).$$
 (1.8)

Lemma 1.6. (see [5]) If $P_1(z) = 1 + c_1 z + c_2 z^2 + \ldots$ is an analytic function with positive real part in Δ , then $|c_2 - vc_1^2| \leq 2max\{1, |2v - 1|\}$ the inequality is sharp for the function $P_1(z) = \frac{1+z}{1-z}$.

Remark 1.7. Let

$$F(z) = \sum_{k=0}^{\infty} a_k z^k = \int_0^1 \frac{d\mu(t)}{1 - tz}$$

where

$$a_k = \int_0^1 t^k d\mu(t),$$

 $\mu(t)$ is a probability measure on [0, 1]. Let T denote the set of all such functions F which are analytic in the slit domain Λ .

To Prove our main result we need the following definition.

Definition 1.8. Let f be analytic in a simply connected region of the z-plane containing the origin. The fractional derivative of f of order λ is defined by

$$D_z^{\lambda} f(z) := \frac{1}{\Gamma(1-\lambda)} \frac{d}{dz} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{\lambda}} d\zeta \qquad (0 < \lambda < 1)$$
(1.9)

where the multiplicity of $(z - \zeta)^{\lambda}$ is removed by requiring that $\log(z - \zeta)$ is real for $z - \zeta > 0$. Using the above definition and its known extensions involving fractional derivatives and fractional integrals, Owa and Srivastava introduced the operator Ω^{λ} : $\mathcal{A} \to \mathcal{A}$ for λ any positive real number $\neq 2, 3, 4, \ldots$ defined by

$$(\Omega^{\lambda} f)(z) = \Gamma(2 - \lambda) z^{\lambda} D_{z}^{\lambda} f(z)$$
(1.10)

and $\mathcal{A} = H_1(\Delta)$. The class $(\mathcal{R}^u_{\alpha})^{\lambda}(\phi)$ consists of function $f \in \mathcal{A}$ for which $\Omega^{\lambda} f \in (\mathcal{R}^u_{\alpha})(\phi)$. Note that $(\mathcal{R}^u_{\alpha})^{\lambda}(\phi)$ is the special case of the class $(\mathcal{R}^u_{\alpha})^g(\phi)$ when

$$g(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} z^n$$
(1.11)

Let

$$g(z) = z + \sum_{n=2}^{\infty} g_n z^n \ (g_n > 0)$$

g be analytic in Δ and $f * g \neq 0$. Since

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in (\mathcal{R}^u_{\alpha})^g(\phi)$$

if and only if

$$(f*g)(z) = z + \sum_{n=2}^{\infty} g_n a_n z^n \in (\mathcal{R}^u_\alpha)(\phi), \qquad (1.12)$$

we obtain the coefficient estimate for functions in the class $(\mathcal{R}^{u}_{\alpha})^{g}(\phi)$, from the corresponding estimate for functions in the class $(\mathcal{R}^{u}_{\alpha})(\phi)$

2. Main Result

Theorem 2.1. Let the function ϕ given by $\phi(z) = 1 + B_1 z + B_2 z^2 + \dots$ If

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in (\mathcal{R}^u_\alpha)^g(\phi),$$

then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{1}{g_{3}(3-2\alpha)} \left(B_{2} + B_{1}^{2}(2-2\alpha) + \frac{(3-2\alpha)\mu g_{3}B_{1}^{2}}{g_{2}^{2}}\right), & \mu \leq \sigma_{1} \\ \frac{B_{1}}{g_{3}(3-2\alpha)}, & \sigma_{1} \leq \mu \leq \sigma_{2} \\ \frac{1}{g_{3}(3-2\alpha)} \left(-B_{2} - B_{1}^{2}(2-2\alpha) + \frac{(3-2\alpha)\mu g_{3}B_{1}^{2}}{g_{2}^{2}}\right), & \mu \geq \sigma_{2}, \end{cases}$$

where

$$\sigma_1 = \frac{g_2^2}{g_3} \left[\frac{(B_2 - B_1) + (2 - 2\alpha)B_1^2}{(3 - 2\alpha)B_1^2} \right],$$
(2.1)

$$\sigma_2 = \frac{g_2^2}{g_3} \left[\frac{(B_2 + B_1) + (2 - 2\alpha)B_1^2}{(3 - 2\alpha)B_1^2} \right]$$
(2.2)

the result is sharp.

Proof. If $f * g \in \mathcal{R}^u_{\alpha}$, then there is a schwartz function w(z), analytic in Δ with w(0) = 0 and |w(z)| < 1 in Δ such that $\frac{D^{3-2\alpha}(f*g)}{D^{2-2\alpha}(f*g)} = \phi(w(z))$. Define the function $P_1(z)$ by,

$$P_1(z) = \frac{1+w(z)}{1-w(z)} = 1 + c_1 z + c_2 z^2 + \dots$$

Since w(z) is a schwartz function, we see that $ReP_1(z) > 0$ and $P_1(0) = 1$. Define the function

$$P(z) = \frac{D^{3-2\alpha}(f*g)}{D^{2-2\alpha}(f*g)} = 1 + b_1 z + b_2 z^2 + \dots$$
(2.3)

Therefore,

$$P(z) = \phi\left(\frac{P_1(z) - 1}{P_1(z) + 1}\right).$$

Now,

$$\frac{P_1(z) - 1}{P_1(z) + 1} = \frac{c_1 z + c_2 z^2 + \dots}{2 + c_1 z + c_2 z^2 + \dots}$$
$$= \frac{1}{2} \left[c_1 z + [c_2 - \frac{c_1^2}{2}] z^2 + [c_3 - c_1 c_2 + \frac{c_1^3}{4} z^3] + \dots \right]$$

Hence upon simplification, we get,

$$P(z) = 1 + \frac{B_1 c_1 z}{2} + \left[\frac{B_1}{2}\left(c_2 - \frac{c_1^2}{2}\right) + \frac{B_2 c_1^2}{4}\right] z^2 + \dots$$
(2.4)

Therefore,

$$1 + b_1 z + b_2 z^2 + \ldots = 1 + \frac{B_1 c_1 z}{2} + \left[\frac{B_1}{2}\left(c_2 - \frac{c_1^2}{2}\right) + \frac{B_2 c_1^2}{4}\right] z^2 + \ldots$$
(2.5)

Equating the like coefficients we get,

$$b_1 = \frac{B_1 c_1}{2} \tag{2.6}$$

$$b_2 = \frac{B_1}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{B_2 c_1^2}{4}$$
(2.7)

Therefore, from the equation (2.3) we have

$$1 + A_1 z + A_2 z^2 + \ldots = 1 + b_1 z + b_2 z^2 + \ldots$$
(2.8)

where,

$$A_{1} = [\mathcal{C}'(\alpha, 2)a_{2}g_{2} - \mathcal{C}(\alpha, 2)a_{2}g_{2}]$$

$$A_{2} = [\mathcal{C}'(\alpha, 3)a_{3}g - \mathcal{C}(\alpha, 2)\mathcal{C}'(\alpha, 2)a_{2}^{2} - \mathcal{C}(\alpha, 3)a_{3} + (\mathcal{C}(\alpha, 2)a_{2})^{2}],$$

$$\mathcal{C}(\alpha, n) = \frac{\prod_{k=2}^{n} (k - 2\alpha)}{(n - 1)!}, \quad \mathcal{C}'(\alpha, n) = \frac{\prod_{k=2}^{n} (k + 1 - 2\alpha)}{(n - 1)!},$$

$$b_{n} = \int_{0}^{1} t^{n} d\mu(t)$$

for n = 2, 3, ... and $\mu(t)$ a probability measure on [0, 1]. Equating the coefficients of z and z^2 respectively and simplifying we get,

$$a_2 = \frac{b_1}{g_2}; \quad a_3 = \frac{b_2 + (2 - 2\alpha)b_1^2}{g_3(3 - 2\alpha)}.$$
 (2.9)

Applying the equations (2.6) and (2.7) $\operatorname{in}(2.9)$, we get,

$$a_2 = \frac{B_1 c_1}{2g_2}; \quad a_3 = \frac{1}{g_3(3-2\alpha)} \left[\frac{B_1}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{B_2 c_1^2}{4} + (2-2\alpha) \frac{B_1^2 c_1^2}{4} \right].$$

Now,

$$a_{3} - \mu a_{2}^{2} = \frac{1}{g_{3}(3 - 2\alpha)} \left[\frac{B_{1}}{2} \left(c_{2} - \frac{c_{1}^{2}}{2} \right) + \frac{B_{2}c_{1}^{2}}{4} + (2 - 2\alpha)\frac{B_{1}^{2}c_{1}^{2}}{4} \right] - \mu \frac{B_{1}^{2}c_{1}^{2}}{4g_{2}^{2}}$$
$$= \frac{1}{g_{3}(3 - 2\alpha)} \frac{B_{1}}{2} \left[c_{2} - c_{1}^{2} \left(\frac{1}{2} - \frac{B_{2}}{2B_{1}} - (2 - 2\alpha)\frac{B_{1}}{2} + (3 - 2\alpha)\mu \frac{g_{3}B_{1}}{2g_{2}^{2}} \right) \right]$$
$$= \frac{B_{1}}{2g_{3}(3 - 2\alpha)} \left[c_{2} - c_{1}^{2}v \right]$$

where,

$$v = \left[\frac{1}{2} - \frac{B_2}{2B_1} - (2 - 2\alpha)\frac{B_1}{2} + (3 - 2\alpha)\mu\frac{g_3B_1}{2g_2^2}\right]$$
(2.10)

Now an application of lemma (1.5) (see [1]) yields the inequalities stated in the theorem under the respective conditions. For the sharpness of the results in the above theorem we have the following:

1. If $\mu = \sigma_1$, then the equality holds in the lemma (1.1) if and only if

$$P_1(z) = \left(\frac{1}{2} + \frac{\lambda}{2}\right)\frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{\lambda}{2}\right)\frac{1-z}{1+z} \quad 0 \le \lambda \le 1$$

or one of its rotations.

2. If $\mu = \sigma_2$, then

$$\frac{1}{P_1(z)} = \frac{1}{\left(\frac{1}{2} + \frac{\lambda}{2}\right)\frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{\lambda}{2}\right)\frac{1-z}{1+z}}.$$

3. If $\sigma_1 < \mu < \sigma_2 P_1(z) = \frac{1+\lambda z^2}{1-\lambda z^2}$.

To show that the bounds are sharp, we define the function $K_{\alpha}^{\phi_n}$ (n = 2, 3, ...) by

$$\frac{D^{3-2\alpha}K_{\alpha}^{\phi_n}}{D^{3-2\alpha}K_{\alpha}^{\phi_n}} = \phi(z^{n-1})$$
(2.11)

$$K_{\alpha}^{\phi_n}(0) = 0, \ (K_{\alpha}^{\phi_n})'(0) = 1 \text{ and function } F_{\alpha}^{\lambda} \text{ and } G_{\alpha}^{\lambda} \ (0 \le \lambda \le 1) \text{ by}$$
$$\frac{\left(D^{3-2\alpha}F_{\alpha}^{\lambda}\right)(z)}{\left(D^{2-2\alpha}F_{\alpha}^{\lambda}\right)(z)} = \phi\left(\frac{z(z+\lambda)}{1+\lambda z}\right) \tag{2.12}$$

 $F_{\alpha}^{\lambda}(0) = 0, \ (F_{\alpha}^{\lambda})'(0) = 1$ and similarly

$$\frac{\left(D^{3-2\alpha}G_{\alpha}^{\lambda}\right)(z)}{\left(D^{2-2\alpha}G_{\alpha}^{\lambda}\right)(z)} = \phi\left(\frac{z(z+\lambda)}{1+\lambda z}\right)$$
(2.13)

 $G^{\lambda}_{\alpha}(0) = 0, \ (G^{\lambda}_{\alpha})'(0) = 1.$ Clearly, the functions $K^{\phi_n}_{\alpha}, F^{\lambda}_{\alpha}, G^{\lambda}_{\alpha} \in \mathcal{R}^u_{\alpha}$. Also we write $K^{\phi}_{\alpha} := K^{\phi_2}_{\alpha}$. If $\mu < \sigma_1$ or $\mu < \sigma_2$, then the equality holds if and only if f is K^{ϕ}_{α} or one of its rotations. When $\sigma_1 < \mu < \sigma_2$, then the equality holds if and only if f is $K^{\phi_3}_{\alpha}$ or one of its rotations. If $\mu = \sigma_1$, then the equality holds if and only if f is F^{λ}_{α} or one of its rotations. If $\mu = \sigma_2$ then the equality holds if and only if f is G^{λ}_{α} or one of its rotations. If $\mu = \sigma_2$ then the equality holds if and only if f is G^{λ}_{α} or one of its rotations. Hence the result.

Corollary 2.2. If $g(z) = \frac{z}{1-z} \in \mathcal{R}_0^u$ in Theorem 2.1 we get our earlier result viz., Theorem 3.1 of (see [7]).

58

Corollary 2.3. Taking

$$g(z) = (\Omega^{\lambda} f)(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} a_n z^n$$

(f * g) denotes the fractional derivative of f and hence if

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in (\mathcal{R}^u_\alpha)^g(\phi)$$
(2.14)

then,

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{(3-\lambda)(2-\lambda)}{6(3-2\alpha)} \left(B_{2} + B_{1}^{2}(2-2\alpha) + \frac{(3-2\alpha)\mu g_{3}B_{1}^{2}}{g_{2}^{2}}\right), & \mu \leq \sigma_{1} \\ \frac{(3-\lambda)(2-\lambda)B_{1}}{6(3-2\alpha)}, & \sigma_{1} \leq \mu \leq \sigma_{2} \\ \frac{(3-\lambda)(2-\lambda)}{6(3-2\alpha)} \left(-B_{2} - B_{1}^{2}(2-2\alpha) + \frac{(3-2\alpha)\mu g_{3}B_{1}^{2}}{g_{2}^{2}}\right), & \mu \geq \sigma_{2}, \end{cases}$$

where,

$$\sigma_1 = \frac{2(3-\lambda)}{3(2-\lambda)} \left[\frac{(B_2 - B_1) + (2-2\alpha)B_1^2}{(3-2\alpha)B_1^2} \right],$$
(2.15)

$$\sigma_2 = \frac{2(3-\lambda)}{3(2-\lambda)} \left[\frac{(B_2+B_1) + (2-2\alpha)B_1^2}{(3-2\alpha)B_1^2} \right]$$
(2.16)

 $the \ result \ is \ sharp.$

Proof. This corollary follows from the observations

$$g_2 := \frac{\Gamma(3)\Gamma(2-\lambda)}{\Gamma(3-\lambda)} = \frac{2}{2-\lambda}$$
(2.17)

and

$$g_3 := \frac{\Gamma(4)\Gamma(2-\lambda)}{\Gamma(4-\lambda)} = \frac{6}{(2-\lambda)(3-\lambda)}.$$
(2.18)

Corollary 2.4. Taking

$$g(z) = z + \sum_{n=2}^{\infty} n^m z^n, \quad m \in \mathcal{N}_o = \{0\} \cup \mathcal{N},$$

(f * g) denotes the Sălăgean derivative of f (see [6]) and hence if

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in (\mathcal{R}^u_\alpha)^g(\phi)$$

then,

$$\int_{-\infty} \frac{1}{3^m (3-2\alpha)} \left(B_2 + B_1^2 (2-2\alpha) + \frac{3^m (3-2\alpha)\mu B_1^2}{2^{2m}} \right), \qquad \mu \le \sigma_1$$

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{B_1}{3^m (3 - 2\alpha)}, & \sigma_1 \le \mu \le \sigma_2 \\ \frac{1}{3^m (3 - 2\alpha)} \left(-B_2 - B_1^2 (2 - 2\alpha) + \frac{3^m (3 - 2\alpha)\mu B_1^2}{2^{2m}} \right), & \mu \ge \sigma_2, \end{cases}$$

where,

$$\sigma_1 = \frac{2^{2m}}{3^m} \left[\frac{(B_2 - B_1) + (2 - 2\alpha)B_1^2}{(3 - 2\alpha)B_1^2} \right],$$
(2.19)

$$\sigma_2 = \frac{2^{2m}}{3^m} \left[\frac{(B_2 + B_1) + (2 - 2\alpha)B_1^2}{(3 - 2\alpha)B_1^2} \right]$$
(2.20)

the result is sharp.

Proof. This corollary follows from the observations $g_2 = 2^m$ and $g_3 = 3^m$.

References

- Ma, W.C., Minda, D., A unified treatment of some special classes of univalent functions, Proc. Conf. on Complex Analysis, Z. (Eds: F. Li, L. Ren, L. Yang, S. Zhang), Int. Press (1994), 157-169.
- Ruscheweyh, S., Some properties of prestarlike and universally prestarlike functions, Journal name, 15(2007), 247-254.
- [3] Ruscheweyh, S., Salinas, L., Universally prestarlike functions as convolution multipiers, Mathematische Zeitschrift, (2009), 607-617.
- [4] Ruscheweyh, S., Salinas, L., Sugawa, T., Completely monotone sequences and universally prestarlike functions, Israel J. Math., 171(2009), 285-304.
- [5] Ravichandran, V., Polatoglu, Y., Bolcol, M., Sen, A., Certain Subclasses of starlike and convex functions of complex order, Hacet. J.Math. Stat., 34(2005), 9-15.
- [6] Sălăgean, G.S., Subclass of univalent functions, Lecture notes in Math Springer Verlag, 11013(1983), 362-372.
- [7] Shanmugam, T.N., Lourthu Mary, J., Fekete-Szego inequality for universally prestarlike functions, Fract. Calc. Appl. Anal., 13(2010), no. 4, 385-394.
- [8] Srivastava, H.M., Owa, S., An application of the fractional derivative, Math. Japan., 29(1984), 383-389.
- [9] Srivastava, H.M., Owa, S., Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(1987), 1057-1077.
- [10] Owa, S., On the distortion theorems I, Kyungpook Math. J., 18(1978), 53-58.

Tirunelveli Nellaiappan Shanmugam Anna University, Department of Mathematics Chennai-25, India e-mail: shan@annauniv.edu

Joseph Lourthu Mary Anna University, Department of Mathematics Chennai-25, India e-mail: lourthu_mary@yahoo.com

60