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A note on universally prestarlike functions

Tirunelveli Nellaiappan Shanmugam and Joseph Lourthu Mary

Abstract. Universally prestarlike functions of order a@ < 1 in the slit domain
A = C\ [1,00) have been recently introduced by S. Ruscheweyh. This notion
generalizes the corresponding one for functions in the unit disk A (and other cir-
cular domains in C). In this paper, we discuss the universally prestarlike functions
defined through fractional derivatives.

Mathematics Subject Classification (2010): 30C45.

Keywords: Prestarlike functions, universally prestarlike functions, Fekete-Szego
inequality, fractional derivatives, Salagean derivative.

1. Introduction

Let H(Q) denote the set of all analytic functions defined in a domain €. For
domain Q containing the origin Hy(Q2) stands for the set of all function f € H(Q)
with f(0) = 1. We also use the notation H1(Q) = {zf : f € Ho(2)}. In the special
case when  is the open unit disk A = {z € C:|z| <1}, we use the abbreviation
H, Hy and H; respectively for H(Q2), Hy(Q2) and H1(2). A function f € Hj is called
starlike of order o with (0 < « < 1) satisfying the inequality

Zf’(Z)}
R > o z€eA 1.1
§© e d) .
and the set of all such functions is denoted by S,. The convolution or Hadamard
Product of two functions

flz) = i anz™ and g(z) = ibnz"
n=0 n=0

is defined as -
(f*xg9)(z) = Za”bnz".
n=0
A function f € H; is called prestarlike of order o (with a < 1) if

e ) €5 (12)
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The set of all such functions is denoted by R,. (see [4]) The notion of prestarlike
functions has been extended from the unit disk to other disk and half planes containing

the origin. Let €2 be one such disk or half plane.Then there are two unique parameters
v € C\ {0} and p € [0, 1] such that

Oy, ={wy,(2) 1 2 € A} (1.3)
where,
vz
w'Y:P(Z) = 1 _ pz' (14)

Note that 1 ¢ Q, , if and only if |y + p| < 1.

Definition 1.1. (see [2], [3], [4]) Let a < 1, and Q = Q, , for some admissible pair
(7, p)- A function f € Hi(Qy,,) is called prestarlike of order o in S, , if

1
fryp(2) = ;f(w%p(z)) € Ra (1.5)
The set of all such functions f is denoted by R ().
Let A be the slit domain C \ [1, c0)(the slit being along the positive real axis).

Definition 1.2. (see [2], [3], [4]) Let a < 1. A function f € Hy(A) is called universally
prestariike of order o if and only if f is prestarlike of order a in all sets €2 , with
|7+ p| < 1. The set of all such functions is denoted by R.

Definition 1.3. (see [4]) Let ¢(z) be an analytic function with positive real part on A,
which satisfies ¢(0) = 1, ¢'(0) > 0 and which maps the unit disc A onto a region
starlike with respect to 1 and symmetric with respect to the real axis. Then the class
RY(p) consists of all analytic function f € Hi(A) satisfying
D372af
D272o¢f

where, (DA f)(z) = =z * [, for 20 and < denotes the subordination.
In particular, for 3 =n € N, we have D" f = Z(z"=1 f)(),

n!
Remark 1.4. We let R%(A, B) denote the class R%(¢) where
1+ Az
9(z) = 1+ Bz

For suitable choices of A,B,a the class RY (A, B) reduces to several well known classes
of functions. RY (1, —1) is the class S* of starlike univalent functions.
2

< ¢(2) (1.6)

(-1<B<ALI).

Lemma 1.5. (see [1]) If Pi(2) = 1+ c12 + 222 + ... is an analytic function with
positive real part in A, then

dw+2, ©<0
leo —vet| < 2, 0<v<1
v+2, v>1
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when v < 0, or v > 1, the equality holds if and only if Pi(z) is }f‘z or one of its

rotations. When 0 < v < 1, then the equality holds if and only if Py(z)is 1+z or

one of its rotations. If v =0, the equality holds if and only if P(z) = (3 + 3) H= +
(% — A) 1+z’ 0 < X <1 or one of its rotations. If v =1, the equality holds if and only
if P1(2) is the reciprocal of one of the function for which the equality holds in the case

of v =0. Also the above upper bound can be improved as follows when 0 < v < 1

1
lea —ved| +vle|? <2 (0<ov< 5) (1.7)
1
lca —vet| + (1 —v)|e > < 2 (5 <v<1). (1.8)

Lemma 1.6. (see [5]) If Pi(2) = 1 + c1z + c22? + ... is an analytic function with
positive real part in A, then |co —ve?| < 2max{l,|2v — 1|} the inequality is sharp for
the function Pi(z) = 12

1—=z°
Remark 1.7. Let

where .
akz/ thdu(t),
0

u(t) is a probability measure on [0,1]. Let T denote the set of all such functions F'
which are analytic in the slit domain A.

To Prove our main result we need the following definition.

Definition 1.8. Let f be analytic in a simply connected region of the z-plane containing
the origin. The fractional derivative of f of order \ is defined by

Ld [
D2 f(z) = — d 0<A<1 1.9
MO s | ek (0<a<y (19)
where the multiplicity of (z — ¢)* is removed by requiring that log(z — () is real for
z — ¢ > 0. Using the above definition and its known extensions involving fractional
derivatives and fractional integrals, Owa and Srivastava introduced the operator Q* :
A — A for X any positive real number # 2,3,4, ... defined by

(D f)(2) =T(2 = N)=*D2f(2) (1.10)

and A = Hy(A). The class (RY)*(¢) consists of function f € A for which Q f €
(RY)(¢). Note that (RL)*(¢) is the special case of the class (R%)9(¢) when

o) =2+ S am

Let
—z—i—Zgn (gn > 0),
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g be analytic in A and f x g # 0. Since

f2) =2+ Y ans" € (RE)(9)

n=2

if and only if
(f*9)(2) =2+ Y gnanz" € (RY)(9), (1.12)

n=2
we obtain the coefficient estimate for functions in the class (R%)9(¢), from the corre-
sponding estimate for functions in the class (RY)(¢)

2. Main Result
Theorem 2.1. Let the function ¢ given by ¢(z) =1+ Bz + Baz? +.... If

_z+Zan (Ra2)4(9),

then
_ . 2
M(BQJFB%(Q—QQ)Jr%)’ 4< o
|(13 7#’0’%' S ﬁa o1 S 7] S o)
—2a B%
oz (B2 — Bi(2 - 20) + 2palil) >0y,
where )
By — B 2—-2a)B
01:[( 2= B1) 42— 20) 1}, (2.1)
93 (3 —2a)B?
2[(Bo+B 2 — 20/) B2
0'2:‘972 ( 2+ 1)+( 20[) 1 (22)
93 (3 — 2a)B?

the result is sharp.

Proof. If f %+ g € RY, then there is a schwartz function w(z), analytic in A with

w(0) = 0 and |w(z)| < 1 in A such that ngg; = ¢(w(2)). Define the function
Py(z) by,
1
Pi(z) = 11—222 =1+4c1z+c2+...
Since w(z) is a schwartz function, we see that ReP;(z) > 0 and P;(0) = 1. Define the
function s
D=~ a(f*g) 9

P(Z):DQTM:1+b12+bQZ + ... (23)

Therefore,
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Now,

Pi(z)—1 c1z+ e+ ...
Pi(z)+1 T 24 ciz+ 22+,

1 [ C%]2 [ C:% 3]
=—lciz+|cg— —=—|z"+|cg —ci1ca + —=2°| + ...
9 1 2 9 3 162 |

Hence upon simplification, we get,

Biciz | By i Baci] »
P(z)=1 — - = — 2.4
(2) + 5 + [ 5 (02 5 + 1 + (2.4)
Therefore,
B B 2 Byc?
Tdbiztbo?4.. =1+ 202 (20, G 224 2, (2.5)
2 2 2 4
Equating the like coefficients we get,
Bic
b=~ (2.6)
Bl C% BQC%
B a 2.
ba 5 <C2 9 ) + 1 (2.7)
Therefore, from the equation (2.3) we have
14+ A1z4+ A2+ ... =14 bz +by2?+ ... (2.8)
where,
Ay = [C'(a,2)azgs — Cla, 2)asgs)
Ay = [C'(a,3)azg — C(, 2)C'(a,2)a3 — C(ev, 3)az + (C(a, 2)as)?]
sk —20) e (k+1—20a)
Clan) = =0y Clan) = ===
1
b, = / t"du(t)
0
for n=2,3,... and u(t) a probability measure on [0, 1].
Equating the coefficients of z and z? respectively and simplifying we get,
b b 2 —2a)b?
as=—: a ——2+( a)1. (2.9)

T T gs(3-20)
Applying the equations(2.6) and (2.7) in(2.9) , we get,

3101 1 Bl C% BQC% B%C%
= . = — —_— _—— 2 —_ 2
az 295 as [ 5 (275 + 1 + ( @) 1
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Now,
1 B c? Byc? B2c? B?¢?
2 1 1 261 1% 1¢1
T 1 kA Gt ) e SRR U S
1 By o (1 B By g3B1
- - P2 (-2 220y (32
9:(3—2a) 2 {CQ Cl(z op, (2205 (B 20 292
_ By 2
2953 2y 12~ 1Y)
where,
1 B By g93B1
— -2 2202 (32 2.1
5 - o B ool (2.10)

Now an application of lemma (1.5) (see [1]) yields the inequalities stated in the
theorem under the respective conditions. For the sharpness of the results in the above
theorem we have the following:

1. If u = o1, then the equality holds in the lemma (1.1) if and only if

Pl(z)=<1+A>1+Z+<1—A>1_ZOSA§1

2 2)1—=z 2 2)14=z

or one of its rotations.
2. If u = o9, then

3. If o1 < n < og Pl(Z) = 11_?;2
To show that the bounds are sharp, we define the function K¢» (n =2,3,...) by
D32 [ én

DBTQKZ%R =¢(z") (2.11)
K2(0) =0, (K2)'(0) = 1 and function F> and G (0 < A < 1) by
(D372F)) (z)  (2(z+))
oy () 212

F2(0) =0, (F2)'(0) = 1 and similarly
D372O¢G>\ A
(D763 (=) _ a) (2) _ (2242 (2.13)
(D?=22G)) (2) 1+ Az
GA(0) = 0, (G2)'(0) = 1. Clearly, the functions K¢, F} G2 € R%. Also we write
K¢ := K22 1If i < 01 or 1 < 09, then the equality holds if and only if f is K¢ or one
of its rotations. When o1 < p < 09, then the equality holds if and only if f is K23 or
one of its rotations. If ;1 = o, then the equality holds if and only if f is F?> or one
of its rotations If 1 = o9 then the equality holds if and only if f is G2 or one of its
rotations. Hence the result. O

Corollary 2.2. If g(z) = 1% € RY in Theorem 2.1 we get our earlier result viz.,
Theorem 3.1 of (see [7]).
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Corollary 2.3. Taking

n + 1 /\) n
o(2) = (@ +Z r T e
(f x g) denotes the fractional derivative off and hence if
f(2) =2+ anz" € (RY)%(9) (2.14)
n=2
then,
BRC (B, 4 BY(2 — 20) + 2Bl ) p< o
las — pa| < | EEZ o1 <p<o
2
e (*32 - B{(2-2a) + %) , 1> o2,
where,
23—-X) [(B.—B 2 —2a)B?
oy = 28N (B2 = Bu) # (2 20)B; | (2.15)
3(2-X) (3 —2a) B3
23=X) [(B2+ B 2 — 2a)B?
oy = 282 [(Bot B) + (2 20)By (2.16)
32—\ (3 — 20)B2

the result is sharp.

Proof. This corollary follows from the observations

CT3)rE2-) 2
92="FE %)~ 3N (2.17)

and

g3 = =5 . (2.18)

Corollary 2.4. Taking
—z—l—an" meN,={0}UN,
(f * g) denotes the Salagean derivative of f (see [6]) and hence if

f2) =2+ anz" € (RL ()

n=2
then,
3M(3-2 B2
3""(3172(1) (B2 + B%(Q - 2&) + ( 225)# s ) ; w <o
las — pa3] < < FEmay o1 < <oy

3™ (3—2a)uB?
smmy (—B2 — BH2 - 20) + OB > o,
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where,
22m [(By — By) + (2 — 2a) B?
= 2.19
717 3m [ (3—20)B? ’ (2.19)
22m [(By + By) + (2 — 2a) B?
= — 2.20
727 gm [ (3 —20)B? (2.20)
the result is sharp.
Proof. This corollary follows from the observations go = 2™ and g3 = 3™. O
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