Some properties of certain class of multivalent analytic functions

Mohamed Kamal Aouf, Rabha Mohamed El-Ashwah and Ekram Elsayed Ali

Abstract. In this paper we introduce a certain general class $\Phi_p^{\beta}(a, c, A, B)$ ($\beta \ge 0$, $a > 0, c > 0, -1 \le B < A \le 1, p \in N = \{1, 2, ...\}$) of multivalent analytic functions in the open unit disc $U = \{z : |z| < 1\}$ involving the linear operator $L_p(a, c)$. The aim of the present paper is to investigate various properties and characteristics of this class by using the techniques of Briot-Bouquet differential subordination. Also we obtain coefficient estimates and maximization theorem concerning the coefficients.

Mathematics Subject Classification (2010): 30C45.

Keywords: Analytic, multivalent, differential subordination.

1. Introduction

Let A(p) denote the class of functions of the form:

$$f(z) = z^{p} + \sum_{k=1}^{\infty} a_{p+k} z^{p+k} \qquad (p \in N = \{1, 2, \dots\}),$$
(1.1)

which are analytic and p-valent in the open unit disc $U = \{z : |z| < 1\}$. Let Ω denotes the class of bounded analytic functions w(0) = 0 and $|w(z)| \le |z|$ for $z \in U$. If f and g are analytic in U, we say that f subordinate to g, written symbolically as follows:

$$f \prec g \ (z \in U) \text{ or } f(z) \prec g(z),$$

if there exists a Schwarz function w, which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 ($z \in U$) such that f(z) = g(w(z)) ($z \in U$). In particular, if the function g(z) is univalent in U, then we have the following equivalence (cf., e.g., [5], [18]; see also [19, p. 4]):

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \text{ and } f(U) \subset g(U).$$

For functions $f(z) \in A(p)$, given by (1.1), and $g(z) \in A(p)$ given by

$$g(z) = z^{p} + \sum_{k=1}^{\infty} b_{p+k} z^{p+k} \quad (p \in N),$$
(1.2)

then the Hadamard product (or convolution) of f(z) and q(z) is defined by

$$(f * g)(z) = z^p + \sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{p+k} = (g * f)(z).$$
(1.3)

We now define the function $\varphi_p(a,c;z)$ by

$$\varphi_p(a,c;z) = z^p + \sum_{k=1}^{\infty} \frac{(a)_k}{(c)_k} z^{p+k} \quad \left(z \in U; a \in R; c \in R \setminus Z_0^- : Z_0^- = \{0, -1, -2, \ldots\}\right),$$

where $(\lambda)_{\nu}$ denoted the Pochhammer symbol defined (for $\lambda, \nu \in C$ and in terms of the Gamma function) by

$$(\lambda)_{\nu} = \frac{\Gamma(\lambda+\nu)}{\Gamma(\lambda)} = \begin{cases} 1 & (\nu=0; \lambda \in C \setminus \{0\}), \\ \lambda(\lambda+1)...(\lambda+n-1) & (\nu \in N; \lambda \in C). \end{cases}$$
(1.5)

With the aid of the function $\varphi_p(a,c;z)$ defined by (1.4), we consider a function $\varphi_p^+(a,c;z)$ given by the following convolution:

$$\varphi_p(a,c;z) * \varphi_p^+(a,c;z) = \frac{z^p}{(1-z)^{\lambda+p}} \quad (\lambda > -p \; ; \; z \in U),$$
 (1.6)

which yields the following family of linear operator $I_p^{\lambda}(a,c)$:

$$I_{p}^{\lambda}(a,c)f(z) = \varphi_{p}^{+}(a,c;z) * f(z) \quad (a,c \in R \setminus Z_{0}^{-};\lambda > -p;z \in U) .$$
(1.7)

For a function $f(z) \in A(p)$, given by (1.1), it is easily seen from (1.6) that

$$I_p^{\lambda}(a,c)f(z) = z^p + \sum_{k=1}^{\infty} \frac{(c)_k(\lambda+p)_k}{(a)_k(1)_k} a_{p+k} z^{p+k} \quad (z \in U) .$$
(1.8)

It is readily verified from the definition (1.8) that

$$z\left(I_{p}^{\lambda}(a,c)f(z)\right)' = (a-1)I_{p}^{\lambda}(a-1,c)f(z) + (p+1-a)I_{p}^{\lambda}(a,c)f(z) .$$
(1.9)

The operator $I_p^{\lambda}(a,c)$ was recently introduced by Cho et al. [6].

We observe also that:

(i) $I_p^1(p+1,1)f(z) = f(z)$ and $I_p^1(p,1)f(z) = \frac{zf'(z)}{p}$; (ii) $I_p^n(a,a)f(z) = D^{n+p-1}f(z)$ (n > -p), where $D^{n+p-1}f(z)$ is the (n+p-1)-th

order Ruscheweyh derivative of a function $f(z) \in A(p)$ (see Kumar and Shukla [15]); (iii) $I_p^{\delta}(\delta+p+1,1)f(z) = F_{\delta,p}(f)(z)$ ($\delta > -p$), where $F_{\delta,p}(f)(z)$ is the generalized Bernardi-Livingston operator (see [7]), defined by

$$F_{\delta,p}(f)(z) = \frac{\delta+p}{z^{\delta}} \int_{0}^{z} t^{\delta-1} f(t) dt = z^{p} + \sum_{k=1}^{\infty} \left(\frac{\delta+p}{\delta+p+k}\right) a_{p+k} z^{p+k} (\delta > -p; p \in N);$$
(1.10)

(iv) $I_p^1(n+p,1)f(z) = I_{n,p}f(z)$ (n > -p), where the operator $I_{n,p}$ is the (n+p-1)-th Noor operator, considered by Liu and Noor [16];

(v) $I_p^1(p+1-\mu,1)f(z) = \Omega_z^{(\mu,p)}f(z)(-\infty < \mu < p+1)$, where $\Omega_z^{(\mu,p)}(-\infty < \mu < p+1)$ is the extended fractional differential integral operator (see [26]), defined by

$$\Omega_{z}^{(\mu,p)}f(z) = z^{p} + \sum_{k=1}^{\infty} \frac{\Gamma(k+p+1)\Gamma(p+1-\mu)}{\Gamma(p+1)\Gamma(k+p+1-\mu)} a_{p+k} z^{p+k}$$
$$= \frac{\Gamma(p+1-\mu)}{\Gamma(p+1)} z^{\mu} D_{z}^{\mu} f(z) \quad (-\infty < \mu < p+1; z \in U),$$
(1.11)

where $D_z^{\mu} f(z)$ is, respectively, the fractional integral of f(z) of order $-\mu$ when $-\infty < \mu < 0$ and the fractional derivative of f(z) of order μ when $0 \le \mu (see, for details [23], [25] and [26]). The fractional differential operator <math>\Omega_z^{(\mu,p)}$ with $0 \le \mu < 1$ was investigated by Srivastava and Aouf [29].

Making use of the operator $I_p^{\lambda}(a,c)$, we now introduce a subclass of A(p) as follows:

Definition 1.1. A function $f(z) \in A(p)$ is said to be in the class $\Phi_p^{\beta}(\lambda, a, c, A, B)$ $(\beta > 0, a, c \in R \setminus Z_0^-, a > 1; \lambda > -p, p \in N, -1 \leq B < A \leq 1)$ if and only if it satisfies

$$(1-\beta)\frac{I_p^{\lambda}(a,c)f(z)}{z^p} + \beta \frac{I_p^{\lambda}(a-1,c)f(z)}{z^p} \prec \frac{1+Az}{1+Bz} \qquad (z \in U).$$
(1.12)

By specializing the parameters β , λ , a, c, A and B, we obtain the following subclasses of analytic functions studied by various authors:

(i) $\Phi_p^1(1, p+1, 1, 1, \frac{1}{M} - 1) = S_p(M) \ (M > \frac{1}{2}) \ (Sohi \ [28]);$

 $\begin{array}{l} (ii) \ \Phi_p^1(1, p+1, 1, \beta[B + (A - B)(p - \alpha)], \beta B) = S_p(\alpha, \beta, A, B), \ 0 \leq \alpha < p, \ p \in N, \\ 0 < \beta \leq 1 \ (see \ Aouf \ [2]); \end{array}$

(*iii*) $\Phi_p^1(1, p+1, 1, [B + (A - B)(p - \alpha)], B) = S_p(A, B, \alpha), \ 0 \le \alpha < p, \ p \in N$ (see Aouf and Chen [4]);

(iv) $\Phi_1^1(1,2,1,1,\frac{1}{M}-1) = R(M) \ (M > \frac{1}{2})$ (see Goel [9]);

(v) $\Phi_1^1(1,2,1,2\alpha\beta-1,2\beta-1) = R_1(\alpha,\beta)$ $(0 \le \alpha < 1, 0 < \beta \le 1)$ (see Mogra [20]);

(vi) $\Phi_1^1(1,2,1,(1-2\alpha)\beta,-\beta) = R(\alpha,\beta) \ (0 \le \alpha < 1, \ 0 < \beta \le 1)$ (see Juneja and Mogra [12]);

 $(vii) \Phi_p^1(1,2,1,(1-2\alpha)\beta,-\beta) = S_p(\alpha,\beta) \ (0 \le \alpha < 1, \ 0 < \beta \le 1) \ (see \ Owa [24]);$

 $\begin{array}{l} (viii) \ \Phi_1^1(n+1, a, a-1, A, B) = V_n(A, B) \ (n \in N_0 = N \cup \{0\}) \ (see \ Kumar \ [14]); \\ (ix) \ \Phi_1^1(n+1, a, a-1, [B+(A-B)(1-\alpha)], B) = V_n(A, B, \alpha) \ (n \in N_0, \ 0 \le \alpha < 1) \\ (see \ Aouf \ [3]); \end{array}$

 $\begin{array}{l} (x) \ \Phi_p^\beta(\lambda,a,c,1,\frac{1}{M}-1) = \Phi_p^\beta[\lambda,a,c,M] \ (M>\frac{1}{2}), \ where \ \Phi_p^\beta[\lambda,a,c,M] \ denotes \\ the \ class \ of \ functions \ f(z) \in A(p) \ satisfying \ the \ condition: \end{array}$

$$\left| \left[(1-\beta) \frac{I_p^{\lambda}(a,c)f(z)}{z^p} + \beta \frac{I_p^{\lambda}(a-1,c)f(z)}{z^p} \right] - M \right| < M \quad (M > \frac{1}{2}; z \in U) ;$$

(xi) $\Phi_p^1(1, p + 1 - \mu, 1, 1, \frac{1}{M} - 1) = \Phi_p[\mu, M]$ $(M > \frac{1}{2}, -\infty < \mu < p)$, where $\Phi_p[\mu, M]$ denotes the class of functions $f(z) \in A(p)$ satisfying the condition:

$$\left| \frac{\Omega_z^{(\mu, 1+p)} f(z)}{z^p} - M \right| < M \quad (M > \frac{1}{2}; -\infty < \mu < p; z \in U) .$$

2. Preliminaries

To establish our main results, we shall need the following lemmas.

Lemma 2.1. [11] Let h be a convex (univalent) in U with h(0) = 1 and let the function φ given by

$$\varphi(z) = 1 + d_1 z + d_2 z^2 + \dots, \tag{2.1}$$

is analytic in U. If

$$\varphi(z) + \frac{1}{\gamma} z \varphi'(z) \prec h(z) \quad (z \in U),$$
(2.2)

where $\gamma \neq 0$ and $\operatorname{Re}(\gamma) \geq 0$, then

$$\varphi(z) \prec \psi(z) = \frac{\gamma}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} h(t) dt \prec h(z) \qquad (z \in U),$$

and ψ is the best dominant of (2.2).

Lemma 2.2. [27] Let $\Phi(z)$ be analytic in U with

$$\Phi(0) = 1 \text{ and } \operatorname{Re} \{ \Phi(z) \} > \frac{1}{2} \quad (z \in U)$$

Then, for any F(z) analytic in U, the set $(\Phi * F)(U)$ is contained in the convex hull of F(U), i.e., $(\Phi * F)U \subset co F(U)$.

For complex numbers a, b and $c(c \neq 0, -1, -2, ...)$, the Gaussian hypergeometric function is defined by

$${}_{2}F_{1}(a,b;c;z) = 1 + \frac{a.b}{c}\frac{z}{1!} + \frac{a(a+1)b(b+1)}{c(c+1)}\frac{z^{2}}{2!} + \dots, \ z \in U \ .$$

$$(2.3)$$

We note that the above series converges absolutely for $z \in U$ and hence represents an analytic function in U (see, for details, [30, Chapter 14]).

Each of the identities (asserted by Lemmas below) is well-known (cf., e.g., [30, Chapter 14]).

Lemma 2.3. [30] For complex numbers a, b and $c (c \neq 0, -1, -2, ...)$, the next equalities hold:

$$\int_{0}^{1} t^{b-1} (1-t)^{c-b-1} (1-tz)^{-a} dt = \frac{\Gamma(b)\Gamma(c-b)}{\Gamma(c)} {}_{2}F_{1}(a,b;c;z),$$
(2.4)

$$(\operatorname{Re}(c) > \operatorname{Re}(b) > 0),$$

$${}_{2}F_{1}(a,b;c;z) = (1-z)^{-a} {}_{2}F_{1}(a,c-b;c;\frac{z}{z-1});$$
(2.5)

and

$$(b+1) {}_{2}F_{1}(1,b;b+1;z) = (b+1) + bz {}_{2}F_{1}(1,b+1;b+2;z)$$
. (2.6)

Lemma 2.4. [13] Let
$$w(z) = \sum_{k=1}^{\infty} d_k z^k \in \Omega$$
, if ν is any complex number, then
 $\left| d_2 - \nu d_1^2 \right| \le \max\left\{ 1, |\nu| \right\}.$ (2.7)

Equality may be attained with the functions $w(z) = z^2$ and w(z) = z.

3. Main results

Unless otherwise mentioned, we assume throughout of this paper that $\beta > 0$, $a, c \in R \setminus Z_0^-$, $\lambda > -p$, $p \in N$ and $-1 \le B < A \le 1$.

Theorem 3.1. Let the function f defined by (1.1) be in the class $\Phi_p^{\beta}(\lambda, a, c, A, B)$. Then

$$\frac{I_p^{\lambda}(a,c)f(z)}{z^p} \prec Q(z) \prec \frac{1+Az}{1+Bz} \qquad (z \in U),$$
(3.1)

where the function Q(z) given by

$$Q(z) = \begin{cases} \frac{A}{B} + (1 - \frac{A}{B})(1 + Bz)^{-1}{}_2F_1(1, 1, \frac{a-1}{\beta} + 1, \frac{Bz}{Bz+1}), & B \neq 0, \\ 1 + \frac{a-1}{a-1+\beta}Az, & B = 0, \end{cases}$$

is the best dominant of (3.1). Furthermore,

$$\operatorname{Re}\left\{\frac{I_{p}^{\lambda}(a,c)f(z)}{z^{p}}\right\} > \eta(\beta, a, A, B) \quad (z \in U),$$
(3.2)

where

$$\eta(\beta, a, A, B) = \begin{cases} \frac{A}{B} + (1 - \frac{A}{B})(1 - B)^{-1}{}_{2}F_{1}(1, 1, \frac{a - 1}{\beta} + 1, \frac{B}{B - 1}), & B \neq 0, \\ 1 - \frac{a - 1}{a - 1 + \beta}A, & B = 0. \end{cases}$$

The estimate in (3.2) is the best possible.

Proof. Consider the function $\varphi(z)$ defined by

$$\varphi(z) = \frac{I_p^{\lambda}(a,c)f(z)}{z^p} \quad (z \in U) .$$
(3.3)

Then $\varphi(z)$ is of the form (2.1) and is analytic in U. Differentiating (3.3) logarithmically with respect to z and using the identity (1.9) in the resulting equation, we obtain

$$(1-\beta)\frac{I_{p}^{\lambda}(a,c)f(z)}{z^{p}} + \beta\frac{I_{p}^{\lambda}(a-1,c)f(z)}{z^{p}} = \varphi(z) + \frac{z\varphi'(z)}{(a-1)/\beta} \prec \frac{1+Az}{1+Bz} \qquad (z \in U).$$

Now, by using Lemma 2.1 for $\gamma = \frac{a-1}{\beta}$, we deduce that

$$\begin{split} \frac{I_p^{\lambda}(a,c)f(z)}{z^p} \prec Q(z) &= \frac{a-1}{\beta} z^{\frac{1-a}{\beta}} \int_0^z t^{\frac{a-1}{\beta}-1} \left(\frac{1+At}{1+Bt}\right) dt \\ &= \begin{cases} \frac{A}{B} + (1-\frac{A}{B})(1+Bz)^{-1} {}_2F_1(1,1,\frac{a-1}{\beta}+1;\frac{Bz}{Bz+1}) , & B \neq 0, \\ 1+\frac{a-1}{a-1+\beta}Az , & B = 0, \end{cases} \end{split}$$

by change of variables followed by use of the identities (2.4), (2.5) and (2.6) (with $a = 1, c = b + 1, b = \frac{a-1}{\beta}$). This proves the assertion (3.1) of Theorem 3.1.

Next, in order to prove the assertion (3.2) of Theorem 3.1, it suffices to show that

$$\inf_{|z|<1} \{ \operatorname{Re}(Q(z)) \} = Q(-1) .$$
(3.4)

Indeed we have, for $|z| \leq r < 1$,

$$\operatorname{Re}\left(\frac{1+Az}{1+Bz}\right) \ge \frac{1-Ar}{1-Br}$$

Upon setting

$$g(s,z) = \frac{1 + Asz}{1 + Bsz} \text{ and } d\nu(s) = \left(\frac{a-1}{\beta}\right)s^{\frac{a-1}{\beta}}ds \ (0 \le s \le 1) \ ,$$

which is a positive measure on the closed interval [0, 1], we get

$$Q(z) = \int_0^1 g(s,z) d\nu(s) ,$$

so that

$$\operatorname{Re} \left\{ Q(z) \right\} \ge \int_{0}^{1} \left(\frac{1 - Asr}{1 - Bsr} \right) dv(s) = Q(-r) \quad (|z| \le r < 1).$$

Letting $r \to 1^-$ in the above inequality, we obtain the assertion (3.2) of Theorem 3.1. Finally, the estimate in (3.2) is the best possible as the function Q(z) is the best dominant of (3.1).

Corollary 3.2. For $0 < \beta_2 < \beta_1$, we have

$$\Phi_p^{\beta_1}(\lambda, a, c, A, B) \subset \Phi_p^{\beta_2}(\lambda, a, c, A, B)$$

Proof. Let $f \in \Phi_p^{\beta_1}(\lambda, a, c, A, B)$. Then by Theorem 3.1, we have

$$\frac{I_p^{\lambda}(a,c)f(z)}{z^p} \prec \frac{1+Az}{1+Bz} \qquad (z \in U).$$

Since

$$(1-\beta_2)\frac{I_p^{\lambda}(a,c)f(z)}{z^p} + \beta_2\frac{I_p^{\lambda}(a-1,c)f(z)}{z^p}$$

$$= \left(1-\frac{\beta_2}{\beta_1}\right)\frac{I_p^{\lambda}(a,c)f(z)}{z^p} + \frac{\beta_2}{\beta_1}\left\{(1-\beta_1)\frac{I_p^{\lambda}(a,c)f(z)}{z^p} + \beta_1\frac{I_p^{\lambda}(a-1,c)f(z)}{z^p}\right\}$$

$$\prec \quad \frac{1+Az}{1+Bz} \quad (z \in U) ,$$

we see that $f \in \Phi_p^{\beta_2}(\lambda, a, c, A, B)$. This proves Corollary 3.2.

Taking $\beta = c = 1$, $a = \delta + p + 1$ ($\delta > -p$), $\lambda = \delta$, $A = 1 - \frac{2\alpha}{p}$ ($0 \le \alpha < p$) and B = -1 in Theorem 3.1, we obtain the the following corollary.

Corollary 3.3. If $f \in A(p)$ satisfies

$$\operatorname{Re}\left\{\frac{f(z)}{z^p}\right\} > \frac{\alpha}{p} \quad (0 \le \alpha < p; z \in U) ,$$

then the function $F_{\delta,p}(f)(z)$ defined by (1.10) satisfies

$$\operatorname{Re}\left\{\frac{F_{\delta,p}(f)(z)}{z^p}\right\} > \frac{\alpha}{p} + \left(1 - \frac{\alpha}{p}\right) \left[{}_2F_1(1,1;p+\delta+1;\frac{1}{2}) - 1\right] \quad (z \in U) \ .$$

The result is the best possible.

Remark 3.4. We note that Corollary 3.3 improves the corresponding result obtained by Obradovic [22] for p = 1.

Taking $\lambda = \beta = c = 1$, $a = p + 1 - \mu$, $-\infty < \mu < p$, $A = 1 - \frac{2\alpha}{p}$ $(0 \le \alpha < p)$ B = -1 in Theorem 3.1, we obtain the following corollary.

Corollary 3.5. Let the function f(z) given by (1.1) satisfy

$$\operatorname{Re}\left\{\frac{\Omega_z^{(1+\mu,p)}f(z)}{z^p}\right\} > \frac{\alpha}{p} \quad (-\infty < \mu < p; 0 \le \alpha < p; p \in N; z \in U) \ .$$

Then

$$\operatorname{Re}\left\{\frac{\Omega_{z}^{(\mu,p)}f(z)}{z^{p}}\right\} > \frac{\alpha}{p} + \left(1 - \frac{\alpha}{p}\right)\left[{}_{2}F_{1}(1,1;p+1-\mu;\frac{1}{2}) - 1\right] \quad (z \in U) \ .$$

The result is the best possible.

Taking $\mu = 0$ in Corollary 3.5, we obtain the following corollary.

Corollary 3.6. Let the function f(z) given by (1.1) satisfy

$$\operatorname{Re}\left\{\frac{f'(z)}{z^{p-1}}\right\} > \alpha \quad (0 \le \alpha < p; z \in U) \ ,$$

Then

$$\operatorname{Re}\left\{\frac{f(z)}{z^{p}}\right\} > \frac{\alpha}{p} + \left(1 - \frac{\alpha}{p}\right) \left[{}_{2}F_{1}(1, 1; p+1; \frac{1}{2}) - 1\right] \quad (z \in U) \ .$$

The result is the best possible.

Remark 3.7. We note that Corollary 3.6 improves the corresponding result obtained by Lee and Owa [17, Theorem 1] with n = 1.

Remark 3.8. If $f \in A(p)$ satisfies $\operatorname{Re}\left\{f'(z)/z^{p-1}\right\} > \alpha \ (0 \le \alpha < p; z \in U)$, then with the aid of Corollaries 2 and 4, we deduce that

$$\operatorname{Re}\left\{\frac{F_{\delta,p}(f)(z)}{z^{p}}\right\} > \frac{\alpha}{p} + \left(1 - \frac{\alpha}{p}\right) \left[\left({}_{2}F_{1}(1,1;p+1;\frac{1}{2}) - 1\right) + \left({}_{2}F_{1}(1,1;p+\delta+1;\frac{1}{2}) - 1\right)\left(2 - \left({}_{2}F_{1}(1,1;p+1;\frac{1}{2})\right)\right)\right],$$

which improve the result of Fukui et al. [8] for p = 1.

Corollary 3.9. Let the function f(z) given by (1.1) satisfy

$$\operatorname{Re}\left\{\frac{I_p^n(n-1,n)f(z)}{z^p}\right\} > \frac{\alpha}{p} \quad (0 \le \alpha < p; z \in U) \ ,$$

Then

$$\operatorname{Re}\left\{\frac{D^{n+p-1}f(z)}{z^p}\right\} > \frac{\alpha}{p} + \left(1 - \frac{\alpha}{p}\right)\left[{}_2F_1(1,1;n;\frac{1}{2}) - 1\right] \quad (z \in U) \ .$$

The result is the best possible.

Theorem 3.10. Let $f(z) \in \Phi_p^0(\lambda, a, c, A, B)$ and let the function $F_{\delta,p}(f)(z)$ defined by (1.10). Then

$$\frac{I_p^{\lambda}(a,c)F_{\delta,p}(f)(z)}{z^p} \prec q(z) \prec \frac{1+Az}{1+Bz} , \qquad (3.5)$$

where the function q(z) given by

$$q(z) = \begin{cases} \frac{A}{B} + (1 - \frac{A}{B})(1 + Bz)^{-1}{}_2F_1(1, 1, p + \delta + 1; \frac{Bz}{Bz + 1}) , & B \neq 0\\ 1 + \frac{p + \delta}{p + \delta + 1}Az , & B = 0. \end{cases}$$

is the best dominant of (3.5). Furthermore,

$$\operatorname{Re}\left\{\frac{I_{p}^{\lambda}(a,c)F_{\delta,p}(f)(z)}{z^{p}}\right\} > \zeta^{*} \quad (z \in U) , \qquad (3.6)$$

where

$$\zeta^* = \begin{cases} \frac{A}{B} + (1 - \frac{A}{B})(1 - B)^{-1}{}_2F_1(1, 1; p + \delta + 1; \frac{B}{B - 1}) , & B \neq 0 , \\ 1 - \frac{p + \delta}{p + \delta + 1}A , & B = 0 . \end{cases}$$

The estimate in (3.6) is the best possible.

Proof. From (1.10) it follows that

$$z\left(I_p^{\lambda}(a,c)F_{\delta,p}(f)(z)\right) = (\delta+p)I_p^{\lambda}(a,c)f(z) - \delta I_p^{\lambda}(a,c)F_{\delta,p}(f)(z) .$$
(3.7)

By setting

$$\varphi(z) = \frac{I_p^{\lambda}(a,c)F_{\delta,p}(f)(z)}{z^p} \qquad (z \in U) , \qquad (3.8)$$

we note that $\varphi(z)$ is of the form (2.1) and is analytic in U. Differentiating (3.8) with respect to z and using the identity (3.7) in the resulting equation, we get

$$\varphi(z) + \frac{z\varphi'(z)}{\delta + p} = \frac{I_p^{\lambda}(a,c)f(z)}{z^p} \prec \frac{1 + Az}{1 + Bz} \quad (z \in U) ,$$

which with the aid of Lemma 2.1 with $\gamma = \delta + p$, yields

$$\frac{I_p^{\lambda}(a,c)F_{\delta,p}(f)(z)}{z^p} \prec q(z) = (\delta+p)z^{-(\delta+p)} \int_0^z t^{\delta+p-1} \left(\frac{1+At}{1+Bt}\right) dt .$$
(3.9)

Now the remaining part of Theorem 3.10 follows by employing the techniques that we used in proving Theorem 3.1 above.

Taking $A = 1 - \frac{2\alpha}{p}$ $(0 \le \alpha < p)$ and B = -1 in Theorem 3.10, we obtain the following corollary.

Corollary 3.11. If $f \in A(p)$ satisfies

$$\operatorname{Re}\left\{\frac{I_p^{\lambda}(a,c)f(z)}{z^p}\right\} > \frac{\alpha}{p} \quad (0 \le \alpha < p; z \in U) ,$$

then

$$\operatorname{Re}\left\{\frac{I_p^{\lambda}(a,c)F_{\delta,p}(f)(z)}{z^p}\right\} > \frac{\alpha}{p} + \left(1 - \frac{\alpha}{p}\right)\left\{{}_2F_1(1,1;p+\delta+1;\frac{1}{2}) - 1\right\} \quad (z \in U) \ .$$

The result is the best possible.

Taking $\lambda = c = 1$ and a = p in Corollary 3.11, we get the following corollary which in turn improves the corresponding result of Fukui et al. [8] for p = 1.

Corollary 3.12. If $f \in A(p)$ satisfies

$$\operatorname{Re}\left\{\frac{f^{'}(z)}{z^{p-1}}\right\} > \alpha \quad (0 \le \alpha < p; z \in U) \ ,$$

then

$$\operatorname{Re}\left\{\frac{F_{\delta,p}'(f)(z)}{z^{p-1}}\right\} > \alpha + (p-\alpha)\left\{{}_2F_1(1,1;p+\delta+1;\frac{1}{2}) - 1\right\} \quad (z \in U)$$

The result is the best possible.

Taking $\lambda = c = 1$ and $a = p + 1 - \mu$ $(-\infty < \mu < p + 1, p \in N)$ in Corollary 3.11, we obtain the following corollary.

Corollary 3.13. If $f(z) \in A(p)$ satisfies

$$\operatorname{Re}\left\{\frac{\Omega_z^{(\mu,p)}f(z)}{z^p}\right\} > \frac{\alpha}{p} \quad (0 \le \alpha < p; -\infty < \mu < p+1; p \in N; z \in U) \ ,$$

then

$$\operatorname{Re}\left\{\frac{\Omega_{z}^{(\mu,p)}F_{\delta,p}(f)(z)}{z^{p}}\right\} > \frac{\alpha}{p} + \left(1 - \frac{\alpha}{p}\right)\left\{{}_{2}F_{1}(1,1;p+\delta+1;\frac{1}{2}) - 1\right\} \quad (z \in U) \ .$$

The result is the best possible.

Theorem 3.14. We have

$$f \in \Phi_p^0(a, c, A, B) \Leftrightarrow F_{a-p-1}(f)(z) \in \Phi_p^1(a, c, A, B)$$

Proof. Using the identity (3.7) and

į

$$z\left(I_p^{\lambda}(a,c)F_{\delta,p}(f)(z)\right)' = (a-1)I_p^{\lambda}(a-1,c)F_{\delta,p}(f)(z) + (p+1-a)I_p^{\lambda}(a,c)F_{\delta,p}(f)(z) ,$$

for $\delta = a-p-1$, we deduce that

$$I_p^{\lambda}(a,c)f(z) = I_p^{\lambda}(a-1,c)F_{a-p-1}(f)(z)$$

and the assertion of Theorem 3.14 follows by using the definition of the class $\Phi_p^{\beta}(a, c, A, B)$.

Theorem 3.15. If f, given by (1.1), belongs to the class $\Phi_p^{\beta}(a, c, A, B)$, then

$$|a_{p+k}| \le \frac{(A-B)(a-1)_{k+1}}{(a-1+\beta k)(c)_k} \frac{(1)_k}{(\lambda+p)_k} \quad (k\ge 1) .$$
(3.10)

The result is sharp.

Proof. Since $f \in \Phi_p^\beta(a, c, A, B)$, we have

$$(1-\beta)\frac{I_p^{\lambda}(a,c)f(z)}{z^p} + \beta \frac{I_p^{\lambda}(a-1,c)f(z)}{z^p} = p(z) , \qquad (3.11)$$

where $p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k \in P(A, B)$. Substituting the power series expansion of $I_p^{\lambda}(a,c)f(z)$, $I_p^{\lambda}(a-1,c)f(z)$ and p(z) in (3.11) and equating the coefficients of z^k on both sides of the resulting equation, we obtain

$$\frac{(a-1+\beta k)(\lambda+k)_k}{(a-1)_{k+1}}\frac{(c)_k}{(1)_k}a_{p+k} = p_k \quad (k \ge 1) .$$
(3.12)

Using the well-known [1] coefficient estimates

$$|p_k| \le (A - B) \quad (k \ge 1)$$

in (3.12), we get the required estimate (3.10).

In order to establish the sharpness of (3.10), consider the functions $f_k(z)$ defined by

$$(1-\beta)\frac{I_p^{\lambda}(a,c)f(z)}{z^p} + \beta \frac{I_p^{\lambda}(a-1,c)f(z)}{z^p} = \frac{1+Az^k}{1+Bz^k} \quad (k \ge 1)$$

Clearly, $f_k(z) \in \Phi_p^\beta(\lambda, a, c, A, B)$ for each $k \ge 1$. It is easy to see that the functions $f_k(z)$ have the expansion

$$f_k(z) = z^p + \frac{(A-B)(a-1)_{k+1}}{(a-1+\beta k)(\lambda+p)_k} \frac{(1)_k}{(c)_k} z^{p+k} + \dots$$

showing that the estimates in (3.10) are sharp.

Taking $\beta = \lambda = c = A = 1$, $a = p + 1 - \mu$, $-\infty < \mu < p$ and $B = \frac{1}{M} - 1$ $(M > \frac{1}{2})$ in Theorem 3.15, we obtain the following corollary.

Corollary 3.16. If f, given by (1.1), belongs to the class $\Phi_p[\mu, M]$, then

$$|a_{p+k}| \le \frac{\left(\frac{2M-1}{M}\right)(p-\mu)_k}{(p+1)_k} \quad (k\ge 1)$$

The result is sharp.

Theorem 3.17. Let f, given by (1.1), belongs to the class $\Phi_p^{\beta}(\lambda, a, c, A, B)$ and ζ is any complex number. Then

$$\left|a_{p+2} - \zeta a_{p+1}^{2}\right| \leq \frac{(A-B)(a-1)_{3}(1)_{2}}{(c)_{2}(\lambda+p)_{2}(a-1+2\beta)} \max\left\{1, \\ B + \zeta \frac{(A-B)(a-1)_{2}(\lambda+p+1)(c+1)(a-1+2\beta)}{2c(a+1)(\lambda+p)(a-1+\beta)^{2}}\right\}.$$
(3.13)

The result is sharp.

Proof. From (1.12), we have

$$(1-\beta)\frac{I_{p}^{\lambda}(a,c)f(z)}{z^{p}} + \beta \frac{I_{p}^{\lambda}(a-1,c)f(z)}{z^{p}} - 1$$
$$= \left[A - B\left\{(1-\beta)\frac{I_{p}^{\lambda}(a,c)f(z)}{z^{p}} + \beta \frac{I_{p}^{\lambda}(a-1,c)f(z)}{z^{p}}\right\}\right]w(z), \qquad (3.14)$$

where

$$w(z) = \sum_{k=1}^{\infty} d_k z^k \in \Omega.$$

Substituting the power series expansion of $I_p^{\lambda}(a,c)f(z)$, $I_p^{\lambda}(a-1,c)f(z)$ and w(z) in (3.14), and equating the coefficients of z and z^2 we obtain

$$a_{p+1} = \frac{(A-B)(a-1)_2}{(a-1+\beta)(c)(\lambda+p)}d_1$$
(3.15)

and

$$a_{p+2} = \frac{2(A-B)(a-1)_3}{(a-1+2\beta)(c)_2(\lambda+p)_2}(d_2 - Bd_1^2) .$$
(3.16)

Using (2.7), (3.15) and (3.16), we get:

$$\left|a_{p+2} - \zeta a_{p+1}^2\right| = \frac{(A-B)(a-1)_3}{(c)_2(\lambda+p)_2(a-1+2\beta)} \left|d_2 - \nu d_1^2\right| ,$$

where

$$\nu = B + \zeta \frac{(A-B)(a-1+2\beta)(c+1)(\lambda+p+1)(a-1)_2}{2c(a+1)(a-1+\beta)^2(\lambda+p)}$$

Since (2.7) is sharp, (3.13) is also sharp.

Taking $\beta = \lambda = c = A = 1$, $a = p+1-\mu$ $(-\infty < \mu < p)$ and $B = \frac{1}{M}-1$ $(M > \frac{1}{2})$ in Theorem 3.17, we obtain the following corollary.

Corollary 3.18. If f, given by (1.1), belongs to the class $\Phi_p[\mu, M]$, then

$$\left|a_{p+2} - \zeta a_{p+1}^2\right| \le \frac{\left(\frac{2M-1}{M}\right)(p-\mu)_3}{(1+p)_2(p+2-\mu)} \max\left\{1, \left|\frac{1}{M} - 1 + \zeta \frac{\left(\frac{2M-1}{M}\right)(p-\mu)(p+2)}{(p+1-\mu)(p+1)}\right\}\right|.$$

The result is sharp.

Theorem 3.19. Let $f \in \Phi_p^\beta(a, c, A, B)$ and $g \in A(p)$ with $\operatorname{Re}\left(\frac{g(z)}{z^p}\right) > \frac{1}{2}$ $(z \in U)$. Then $h = f * g \in \Phi_p^\beta(a, c, A, B)$.

Proof. We have

$$(1-\beta)\frac{I_{p}^{\lambda}(a,c)h(z)}{z^{p}} + \beta \frac{I_{p}^{\lambda}(a-1,c)h(z)}{z^{p}} = \left\{ (1-\beta)\frac{I_{p}^{\lambda}(a,c)f(z)}{z^{p}} + \beta \frac{I_{p}^{\lambda}(a-1,c)f(z)}{z^{p}} \right\} * \frac{g(z)}{z^{p}} \quad (z \in U).$$
(3.17)

Since $\operatorname{Re}\left\{\frac{g(z)}{z^p}\right\} > \frac{1}{2}$ $(z \in U)$ and the function $\frac{1+Az}{1+Bz}$ is convex (univalent) in U, it follows from (3.17) and Lemma 2.2 that $h(z) = (f * g)(z) \in \Phi_p^\beta(a, c, A, B)$. This completes the proof of Theorem 3.19.

Corollary 3.20. Let $f \in \Phi_p^\beta(a, c, A, B)$ and $g(z) \in A(p)$ satisfy

$$\operatorname{Re}\left\{(1-\mu)\frac{g(z)}{z^{p}} + \mu\frac{g'(z)}{pz^{p-1}}\right\} > \frac{3-2 \ _{2}F_{1}(1,1;\frac{p}{\mu}+1;\frac{1}{2})}{2\left[2- \ _{2}F_{1}(1,1;\frac{p}{\mu}+1;\frac{1}{2})\right]}, \ (\mu > 0; \ z \in U). \ (3.18)$$

Then $f * g \in \Phi_p^\beta(a, c, A, B)$.

Proof. From Theorem 3.1 (for a = p+1, c = 1, $\beta = \mu > 0$, $A = \frac{{}_{2}F_{1}(1,1;\frac{p}{\mu}+1;\frac{1}{2})-1}{2-{}_{2}F_{1}(1,1;\frac{p}{\mu}+1;\frac{1}{2})}$ and B = -1), condition (3.18) implies

$$\operatorname{Re}\left\{\frac{g(z)}{z^p}\right\} > \frac{1}{2} \quad (z \in U) \;.$$

Using this, it follows from Theorem 3.19, that $(f * g)(z) \in \Phi_p^{\beta}(a, c, A, B)$.

Theorem 3.21. If each of the functions f(z) given by (1.1) and

$$g(z) = z^p + \sum_{k=1}^{\infty} b_{p+k} z^{p+k}$$

belongs to the class $\Phi_p^\beta(\lambda, a, c, A, B)$, then so does the function

$$h(z) = (1 - \beta)I_p^{\lambda}(a, c)(f * g)(z) + \beta I_p^{\lambda}(a - 1, c)(f * g)(z) .$$

Proof. Since $f \in \Phi_p^{\beta}(a, c, A, B)$, it follows from (3.14) that

$$\left| (1-\beta)\frac{I_p^{\lambda}(a,c)f(z)}{z^p} + \beta \frac{I_p^{\lambda}(a-1,c)f(z)}{z^p} - 1 \right|$$

$$< \left| A - B\left\{ (1-\beta)\frac{I_p^{\lambda}(a,c)f(z)}{z^p} + \beta \frac{I_p^{\lambda}(a-1,c)f(z)}{z^p} \right\} \right| ,$$

which is equivalent to

$$\left| (1-\beta) \frac{I_p^{\lambda}(a,c)f(z)}{z^p} + \beta \frac{I_p^{\lambda}(a-1,c)f(z)}{z^p} - \xi \right| < \eta \quad (z \in U) , \qquad (3.19)$$

where $\xi = \frac{1 - AB}{1 - B^2}$ and $\eta = \frac{A - B}{1 - B^2}$. It is known [21] that $H(z) = \sum_{k=0}^{\infty} h_k z^k$ is analytic in U and $|H(z)| \leq M$, then

$$\sum_{k=0}^{\infty} |h_k|^2 \le M^2 .$$
 (3.20)

Applying (3.18) to (3.19), we get

$$(1-\xi)^2 + \sum_{k=1}^{\infty} \left\{ \frac{(a-1+\beta k)(c)_k(\lambda+p)_k}{(a-1)_{k+1}(1)_k} \right\}^2 |a_{p+k}|^2 \le \eta^2 ,$$

that is, that

$$\sum_{k=1}^{\infty} \left\{ \frac{(a-1+\beta k)(c)_k(\lambda+k)_k}{(a-1)_{k+1}(1)_k} \right\}^2 |a_{p+k}|^2 \le \frac{(A-B)^2}{1-B^2} .$$
(3.21)

Similarly, we have

$$\sum_{k=1}^{\infty} \left\{ \frac{(a-1+\beta k)(c)_k(\lambda+k)_k}{(a-1)_{k+1}(1)_k} \right\}^2 |b_{p+k}|^2 \le \frac{(A-B)^2}{1-B^2} .$$
(3.22)

Now, for |z| = r < 1, by applying Cauchy-Schwarz inequality, we find that

$$\begin{split} \left| (1-\beta) \frac{I_p^{\lambda}(a,c)h(z)}{z^p} + \beta \frac{I_p^{\lambda}(a-1,c)h(z)}{z^p} - \xi \right|^2 \\ &= \left| (1-\xi) + \sum_{k=1}^{\infty} \left\{ \frac{(a-1+\beta k)(c)_k(\lambda+p)_k}{(a-1)_{k+1}(1)_k} \right\}^2 a_{p+k} b_{p+k} z^k \right|^2 \\ &\leq (1-\xi)^2 + 2(1-\xi) \sum_{k=1}^{\infty} \left\{ \frac{(a-1+\beta k)(c)_k(\lambda+p)_k}{(a-1)_{k+1}(1)_k} \right\}^2 |a_{p+k}| |b_{p+k}| r^k \\ &+ \left| \sum_{k=1}^{\infty} \left\{ \frac{(a-1+\beta k)(c)_k(\lambda+p)_k}{(a-1)_{k+1}(1)_k} \right\}^2 a_{p+k} b_{p+k} z^k \right|^2 \\ &\leq (1-\xi)^2 + 2(1-\xi) \left[\sum_{k=1}^{\infty} \left\{ \frac{(a-1+\beta k)(c)_k(\lambda+p)_k}{(a-1)_{k+1}(1)_k} \right\}^2 |a_{p+k}|^2 r^k \right]^{\frac{1}{2}} \\ &\cdot \left[\sum_{k=1}^{\infty} \left\{ \frac{(a-1+\beta k)(c)_k(\lambda+p)_k}{(a-1)_{k+1}(1)_k} \right\}^2 |b_{p+k}|^2 r^k \right]^{\frac{1}{2}} \\ &\cdot \left[\sum_{k=1}^{\infty} \left\{ \frac{(a-1+\beta k)(c)_k(\lambda+p)_k}{(a-1)_{k+1}(1)_k} \right\}^2 |b_{p+k}|^2 r^k \right] \\ &\leq (1-\xi)^2 + 2(1-\xi) \left[\sum_{k=1}^{\infty} \left\{ \frac{(a-1+\beta k)(c)_k(\lambda+p)_k}{(a-1)_{k+1}(1)_k} \right\}^2 |b_{p+k}|^2 r^k \right] \\ &\leq (1-\xi)^2 + 2(1-\xi) \left[\sum_{k=1}^{\infty} \left\{ \frac{(a-1+\beta k)(c)_k(\lambda+p)_k}{(a-1)_{k+1}(1)_k} \right\}^2 |b_{p+k}|^2 \right]^{\frac{1}{2}} \\ &\cdot \left[\sum_{k=1}^{\infty} \left\{ \frac{(a-1+\beta k)(c)_k(\lambda+p)_k}{(a-1)_{k+1}(1)_k} \right\}^2 |b_{p+k}|^2 \right] \\ &\leq (1-\xi)^2 + 2(1-\xi) \left[\sum_{k=1}^{\infty} \left\{ \frac{(a-1+\beta k)(c)_k(\lambda+p)_k}{(a-1)_{k+1}(1)_k} \right\}^2 |b_{p+k}|^2 \right] \\ &\quad \cdot \left[\sum_{k=1}^{\infty} \left\{ \frac{(a-1+\beta k)(c)_k(\lambda+p)_k}{(a-1)_{k+1}(1)_k} \right\}^2 |b_{p+k}|^2 \right] \\ &\leq (1-\xi)^2 + 2(1-\xi) \frac{(A-B)^2}{(a-1)_{k+1}(1)_k} \\ &\leq (1-\xi)^2 + 2(1-\xi) \frac{(A-B)^2}{(1-B^2)^2} + \frac{(A-B)^4}{(1-B^2)^2} \\ &= \left\{ \frac{B(A-B)}{1-B^2} \right\}^2 + 2 \frac{B(A-B)^3}{(1-B^2)^2} + \frac{(A-B)^4}{(1-B^2)^2} \\ &= \left\{ \frac{B(A-B)}{1-B^2} \right\}^2 + 2 \frac{B(A-B)^3}{(1-B^2)^2} + \frac{(A-B)^4}{(1-B^2)^2} \\ &= A^2(A-B). \end{aligned}$$

Theorem 3.22. Let $f \in \Phi_p^\beta(\lambda, a, c, A, B)$ $(\beta > 0)$ and

$$S_n(z) = z^p + \sum_{k=1}^{n-1} a_{p+k} z^{p+k} \ (n \ge 2).$$

Then for $z \in U$, we have

$$\operatorname{Re}\left\{\frac{\displaystyle\int\limits_{0}^{z}t^{-p}(I_{p}^{\lambda}(a,c)S_{n}(t))dt}{\displaystyle\frac{z}{\displaystyle}}\right\}>\eta(\beta,a,A,B)\ ,$$

where $\eta(\beta, a, A, B)$ is defined as in Theorem 3.1.

Proof. Singh and Singh [27] prove that

z

$$\operatorname{Re}\left\{1+\sum_{k=1}^{n-1}\frac{z^k}{k+1}\right\} > \frac{1}{2} \quad (z \in U) \ . \tag{3.23}$$

Writing

$$\frac{\int_{0}^{\infty} t^{-p} I_p^{\lambda}(a,c) S_n(t) dt}{z} = \frac{I_p^{\lambda}(a,c) f(z)}{z^p} * \left\{ 1 + \sum_{k=1}^{n-1} \frac{z^k}{k+1} \right\}$$

and making use of (3.23), Theorem 3.1 and Lemma 2.2, the assertion of Theorem 3.22 follows at once.

Taking $\beta = \lambda = c = 1$, a = p + 1, $A = 1 - \frac{2\alpha}{p}$ $(0 \le \alpha < p)$ and B = -1 in Theorem 3.22, we obtain the following corollary.

Corollary 3.23. Let $f \in A(p)$ satisfies $\operatorname{Re}\left\{\frac{f'(z)}{z^{p-1}}\right\} > \alpha \ (0 \le \alpha < p)$ in U, then

$$\operatorname{Re}\left[\frac{\int\limits_{0}^{z} t^{-p} S_{n}(t) dt}{z}\right] > \frac{\alpha}{p} + \left(1 - \frac{\alpha}{p}\right) \left\{ {}_{2}F_{1}\left(1, 1; p+1; \frac{1}{2}\right) - 1 \right\} \quad (z \in U) \ .$$

Acknowledgments. The authors thank the referees for their valuable suggestions to improve the paper.

References

 Anh, V., K-fold symmetric starlike univalent functions, Bull. Austral. Math. Soc., 32(1985), 419-436.

- 40 Mohamed Kamal Aouf, Rabha Mohamed El-Ashwah and Ekram Elsayed Ali
- [2] Aouf, M.K., On certain subclass of analytic p-valent functions II, Math. Japon., 34(1989), no. 5, 683-691.
- [3] Aouf, M.K., On new criterion for univalent functions of order alpha, Rend. di Mat., Ser. VII, 11 Roma, 1991, 47-59.
- [4] Aouf, M.K., Chen, M.P., On the radius of convexity of a certain class of p-valent analytic functions, Proc. Meeting Math. Soc., 1994, 189-206.
- [5] Bulboaca, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
- [6] Cho, N.E., Kwon, O.S., Srivastava, H.M., Inclusion relationships and argument properties for certain subclass of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292(2004), 470-483.
- [7] Choi, J.H., Saigo, M., Srivastava, H.M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276(2002), 432-445.
- [8] Fukui, S., Kim, J.A., Srivastava, H.M., On certain subclass of univalent functions by some integral operators, Math. Japon., 50(1999), 359-370.
- [9] Goel, R.M., A class of analytic functions whose derivative have positive real part in the unit disc, Indian J. Math., 13(1971), no. 3, 141-145.
- [10] Goel, R.M., Radius of convexity of convex combination of certain class of analytic functions, Tamkang J. Math., 10(1979), no. 1, 75-79.
- [11] Hallenbeck, D.Z., Ruscheweyh, S., Subordination by convex functions, Proc. Amer. Math. Soc., 52(1975), 191-195.
- [12] Juneja, O.P., Mogra, M.L., A class of univalent functions, Bull. Sci. Math. 2 Ser., 103(1979), 435-447.
- [13] Keogh, F.R., Merkes, E.P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12.
- [14] Kumar, V., On a new criterion for univalent functions, Demonstratio Math., 17(1984), no. 4, 875-886.
- [15] Kumar, V., Shukla, S.L., Multivalent functions defined by Ruscheweyh derivatives, I and II, Indian J. Pure Appl. Math., 15(1984), no. 11, 1216-1227, 1228-1238.
- [16] Liu, J.L., Noor, K.I., Some properties of Noor integral operator, J. Natur. Geometry, 21(2002), 81-90.
- [17] Lee, S.K., Owa, S., A subclass of p-valently close-to-convex functions of order α, Appl. Math. Letters, 5(1992), no. 5, 3-6.
- [18] Miller, S.S., Mocanu, P.T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289-305.
- [19] Miller, S.S., Mocanu, P.T., Differential Subodination: Theory and Applications, Series in Monographs and Texbooks in Pure and Appl. Math. No. 225 Marcel Dekker, Inc., New York, 2000.
- [20] Mogra, M.L., On a class of univalent functions, Riv. Mat. Univ. Parma, 4(1981), no. 7, 163-172.
- [21] Nehari, Z., Conformal Mapping, McGraw Hill, New York, 1952.
- [22] Obradovic, M., On certain inequalities for some regular functions in |z| < 1, Internat. J. Math. Math. Sci., 8(1985), 671-681.
- [23] Owa, S., On the distortion theorems I, Kyungpook Math. J., 18(1978), 53-59.

Some properties of certain class of multivalent analytic functions

- [24] Owa, S., On certain subclass of analytic p-valent functions, Math. Japon., 29(1984), no. 2, 191-198.
- [25] Owa, S., Srivastava, H.M., Univalent and starlike generalized hypergeometric functions, Canada. J. Math., 39(1987), 1057-1077.
- [26] Patel, J., Mishra, A.K., On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl., 332(2007), 109-122.
- [27] Singh, R., Singh, S., Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 108(1989), 145-152.
- [28] Sohi, N.S., A class of p-valent analytic functions, Indian J. Pure Appl. Math., 10(1979), no. 7, 826-834.
- [29] Srivastava, H.M., Aouf, M.K., A certain fractional derivative operator and its application to new class of analytic and multivalent functions with negative coefficients I and II, J. Math. Anal. Appl., 171(1992), 1-13, 192(1995), 673-688.
- [30] Whittaker, E.T., Watson, G.N., A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth Edition, Cambridge University Press, Cambridge, 1927.

Mohamed Kamal Aouf

Department of Mathematics, Faculty of Science Mansoura University, Mansoura 35516, Egypt e-mail: mkaouf127@yahoo.com

Rabha Mohamed El-Ashwah Department of Mathematics, Faculty of Science Mansoura University, Mansoura 35516, Egypt e-mail: r_elashwah@yahoo.com

Ekram Elsayed Ali Department of Mathematics, Faculty of Science Mansoura University, Mansoura 35516, Egypt e-mail: ekram_008eg@yahoo.com