Some properties of certain class of multivalent analytic functions

Mohamed Kamal Aouf, Rabha Mohamed El-Ashwah and Ekram Elsayed Ali

Abstract

In this paper we introduce a certain general class $\Phi_{p}^{\beta}(a, c, A, B)(\beta \geq 0$, $a>0, c>0,-1 \leq B<A \leq 1, p \in N=\{1,2, \ldots\}$) of multivalent analytic functions in the open unit disc $U=\{z:|z|<1\}$ involving the linear operator $L_{p}(a, c)$. The aim of the present paper is to investigate various properties and characteristics of this class by using the techniques of Briot-Bouquet differential subordination. Also we obtain coefficient estimates and maximization theorem concerning the coefficients.

Mathematics Subject Classification (2010): 30C45.
Keywords: Analytic, multivalent, differential subordination.

1. Introduction

Let $A(p)$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \quad(p \in N=\{1,2, \ldots .\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disc $U=\{z:|z|<1\}$. Let Ω denotes the class of bounded analytic functions $w(0)=0$ and $|w(z)| \leq|z|$ for $z \in U$. If f and g are analytic in U, we say that f subordinate to g, written symbolically as follows:

$$
f \prec g \quad(z \in U) \text { or } f(z) \prec g(z),
$$

if there exists a Schwarz function w, which (by definition) is analytic in U with $w(0)=0$ and $|w(z)|<1(z \in U)$ such that $f(z)=g(w(z))(z \in U)$. In particular, if the function $g(z)$ is univalent in U, then we have the following equivalence (cf., e.g., [5], [18]; see also [19, p. 4]):

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U) .
$$

For functions $f(z) \in A(p)$, given by (1.1), and $g(z) \in A(p)$ given by

$$
\begin{equation*}
g(z)=z^{p}+\sum_{k=1}^{\infty} b_{p+k} z^{p+k} \quad(p \in N) \tag{1.2}
\end{equation*}
$$

then the Hadamard product (or convolution) of $f(z)$ and $g(z)$ is defined by

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{p+k}=(g * f)(z) \tag{1.3}
\end{equation*}
$$

We now define the function $\varphi_{p}(a, c ; z)$ by

$$
\begin{equation*}
\varphi_{p}(a, c ; z)=z^{p}+\sum_{k=1}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{p+k} \quad\left(z \in U ; a \in R ; c \in R \backslash Z_{0}^{-}: Z_{0}^{-}=\{0,-1,-2, \ldots\}\right), \tag{1.4}
\end{equation*}
$$

where $(\lambda)_{\nu}$ denoted the Pochhammer symbol defined (for $\lambda, \nu \in C$ and in terms of the Gamma function) by

$$
(\lambda)_{\nu}=\frac{\Gamma(\lambda+\nu)}{\Gamma(\lambda)}= \begin{cases}1 & (\nu=0 ; \lambda \in C \backslash\{0\}) \tag{1.5}\\ \lambda(\lambda+1) \ldots(\lambda+n-1) & (\nu \in N ; \lambda \in C)\end{cases}
$$

With the aid of the function $\varphi_{p}(a, c ; z)$ defined by (1.4), we consider a function $\varphi_{p}^{+}(a, c ; z)$ given by the following convolution:

$$
\begin{equation*}
\varphi_{p}(a, c ; z) * \varphi_{p}^{+}(a, c ; z)=\frac{z^{p}}{(1-z)^{\lambda+p}} \quad(\lambda>-p ; z \in U) \tag{1.6}
\end{equation*}
$$

which yields the following family of linear operator $I_{p}^{\lambda}(a, c)$:

$$
\begin{equation*}
I_{p}^{\lambda}(a, c) f(z)=\varphi_{p}^{+}(a, c ; z) * f(z) \quad\left(a, c \in R \backslash Z_{0}^{-} ; \lambda>-p ; z \in U\right) \tag{1.7}
\end{equation*}
$$

For a function $f(z) \in A(p)$, given by (1.1), it is easily seen from (1.6) that

$$
\begin{equation*}
I_{p}^{\lambda}(a, c) f(z)=z^{p}+\sum_{k=1}^{\infty} \frac{(c)_{k}(\lambda+p)_{k}}{(a)_{k}(1)_{k}} a_{p+k} z^{p+k} \quad(z \in U) \tag{1.8}
\end{equation*}
$$

It is readily verified from the definition (1.8) that

$$
\begin{equation*}
z\left(I_{p}^{\lambda}(a, c) f(z)\right)^{\prime}=(a-1) I_{p}^{\lambda}(a-1, c) f(z)+(p+1-a) I_{p}^{\lambda}(a, c) f(z) \tag{1.9}
\end{equation*}
$$

The operator $I_{p}^{\lambda}(a, c)$ was recently introduced by Cho et al. [6].
We observe also that:
(i) $I_{p}^{1}(p+1,1) f(z)=f(z)$ and $I_{p}^{1}(p, 1) f(z)=\frac{z f^{\prime}(z)}{p}$;
(ii) $I_{p}^{n}(a, a) f(z)=D^{n+p-1} f(z)(n>-p)$, where $D^{n+p-1} f(z)$ is the $(n+p-1)-t h$ order Ruscheweyh derivative of a function $f(z) \in A(p)$ (see Kumar and Shukla [15]);
(iii) $I_{p}^{\delta}(\delta+p+1,1) f(z)=F_{\delta, p}(f)(z)(\delta>-p)$, where $F_{\delta, p}(f)(z)$ is the generalized Bernardi-Livingston operator (see [7]), defined by

$$
\begin{equation*}
F_{\delta, p}(f)(z)=\frac{\delta+p}{z^{\delta}} \int_{0}^{z} t^{\delta-1} f(t) d t=z^{p}+\sum_{k=1}^{\infty}\left(\frac{\delta+p}{\delta+p+k}\right) a_{p+k} z^{p+k}(\delta>-p ; p \in N) \tag{1.10}
\end{equation*}
$$

(iv) $I_{p}^{1}(n+p, 1) f(z)=I_{n, p} f(z)(n>-p)$, where the operator $I_{n, p}$ is the $(n+p-1)-t h$ Noor operator, considered by Liu and Noor [16];
(v) $I_{p}^{1}(p+1-\mu, 1) f(z)=\Omega_{z}^{(\mu, p)} f(z)(-\infty<\mu<p+1)$, where $\Omega_{z}^{(\mu, p)}$ $(-\infty<\mu<p+1)$ is the extended fractional differential integral operator (see [26]), defined by

$$
\begin{align*}
\Omega_{z}^{(\mu, p)} f(z) & =z^{p}+\sum_{k=1}^{\infty} \frac{\Gamma(k+p+1) \Gamma(p+1-\mu)}{\Gamma(p+1) \Gamma(k+p+1-\mu)} a_{p+k} z^{p+k} \\
& =\frac{\Gamma(p+1-\mu)}{\Gamma(p+1)} z^{\mu} D_{z}^{\mu} f(z) \quad(-\infty<\mu<p+1 ; z \in U) \tag{1.11}
\end{align*}
$$

where $D_{z}^{\mu} f(z)$ is, respectively, the fractional integral of $f(z)$ of order $-\mu$ when $-\infty<$ $\mu<0$ and the fractional derivative of $f(z)$ of order μ when $0 \leq \mu<p+1$ (see, for details [23], [25] and [26]). The fractional differential operator $\Omega_{z}^{(\mu, p)}$ with $0 \leq \mu<1$ was investigated by Srivastava and Aouf [29].

Making use of the operator $I_{p}^{\lambda}(a, c)$, we now introduce a subclass of $A(p)$ as follows:

Definition 1.1. A function $f(z) \in A(p)$ is said to be in the class $\Phi_{p}^{\beta}(\lambda, a, c, A, B)$ ($\beta>0, a, c \in R \backslash Z_{0}^{-}, a>1 ; \lambda>-p, p \in N,-1 \leq B<A \leq 1$) if and only if it satisfies

$$
\begin{equation*}
(1-\beta) \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}+\beta \frac{I_{p}^{\lambda}(a-1, c) f(z)}{z^{p}} \prec \frac{1+A z}{1+B z} \quad(z \in U) . \tag{1.12}
\end{equation*}
$$

By specializing the parameters β, λ, a, c, A and B, we obtain the following subclasses of analytic functions studied by various authors:
(i) $\Phi_{p}^{1}\left(1, p+1,1,1, \frac{1}{M}-1\right)=S_{p}(M)\left(M>\frac{1}{2}\right)$ (Sohi [28]);
(ii) $\Phi_{p}^{1}(1, p+1,1, \beta[B+(A-B)(p-\alpha)], \beta B)=S_{p}(\alpha, \beta, A, B), 0 \leq \alpha<p, p \in N$, $0<\beta \leq 1$ (see Aouf [2]);
(iii) $\Phi_{p}^{1}(1, p+1,1,[B+(A-B)(p-\alpha)], B)=S_{p}(A, B, \alpha), 0 \leq \alpha<p, p \in N$ (see Aouf and Chen [4]);
(iv) $\Phi_{1}^{1}\left(1,2,1,1, \frac{1}{M}-1\right)=R(M)\left(M>\frac{1}{2}\right)($ see Goel [9]);
(v) $\Phi_{1}^{1}(1,2,1,2 \alpha \beta-1,2 \beta-1)=R_{1}(\alpha, \beta)(0 \leq \alpha<1,0<\beta \leq 1)$ (see Mogra [20]);
(vi) $\Phi_{1}^{1}(1,2,1,(1-2 \alpha) \beta,-\beta)=R(\alpha, \beta)(0 \leq \alpha<1,0<\beta \leq 1)$ (see Juneja and Mogra [12]);
(vii) $\Phi_{p}^{1}(1,2,1,(1-2 \alpha) \beta,-\beta)=S_{p}(\alpha, \beta)(0 \leq \alpha<1,0<\beta \leq 1)$ (see Owa [24]);
(viii) $\Phi_{1}^{1}(n+1, a, a-1, A, B)=V_{n}(A, B)\left(n \in N_{0}=N \cup\{0\}\right)$ (see Kumar [14]);
(ix) $\Phi_{1}^{1}(n+1, a, a-1,[B+(A-B)(1-\alpha)], B)=V_{n}(A, B, \alpha)\left(n \in N_{0}, 0 \leq \alpha<1\right)$ (see Aouf [3]);
(x) $\Phi_{p}^{\beta}\left(\lambda, a, c, 1, \frac{1}{M}-1\right)=\Phi_{p}^{\beta}[\lambda, a, c, M]\left(M>\frac{1}{2}\right)$, where $\Phi_{p}^{\beta}[\lambda, a, c, M]$ denotes the class of functions $f(z) \in A(p)$ satisfying the condition:

$$
\left|\left[(1-\beta) \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}+\beta \frac{I_{p}^{\lambda}(a-1, c) f(z)}{z^{p}}\right]-M\right|<M \quad\left(M>\frac{1}{2} ; z \in U\right)
$$

(xi) $\Phi_{p}^{1}\left(1, p+1-\mu, 1,1, \frac{1}{M}-1\right)=\Phi_{p}[\mu, M]\left(M>\frac{1}{2},-\infty<\mu<p\right)$, where $\Phi_{p}[\mu, M]$ denotes the class of functions $f(z) \in A(p)$ satisfying the condition:

$$
\left|\frac{\Omega_{z}^{(\mu, 1+p)} f(z)}{z^{p}}-M\right|<M \quad\left(M>\frac{1}{2} ;-\infty<\mu<p ; z \in U\right)
$$

2. Preliminaries

To establish our main results, we shall need the following lemmas.
Lemma 2.1. [11] Let h be a convex (univalent) in U with $h(0)=1$ and let the function φ given by

$$
\begin{equation*}
\varphi(z)=1+d_{1} z+d_{2} z^{2}+\ldots \tag{2.1}
\end{equation*}
$$

is analytic in U. If

$$
\begin{equation*}
\varphi(z)+\frac{1}{\gamma} z \varphi^{\prime}(z) \prec h(z) \quad(z \in U) \tag{2.2}
\end{equation*}
$$

where $\gamma \neq 0$ and $\operatorname{Re}(\gamma) \geq 0$, then

$$
\varphi(z) \prec \psi(z)=\frac{\gamma}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} h(t) d t \prec h(z) \quad(z \in U),
$$

and ψ is the best dominant of (2.2).
Lemma 2.2. [27] Let $\Phi(z)$ be analytic in U with

$$
\Phi(0)=1 \text { and } \operatorname{Re}\{\Phi(z)\}>\frac{1}{2} \quad(z \in U)
$$

Then, for any $F(z)$ analytic in U, the set $(\Phi * F)(U)$ is contained in the convex hull of $F(U)$, i.e., $(\Phi * F) U \subset \operatorname{co} F(U)$.

For complex numbers a, b and $c(c \neq 0,-1,-2, \ldots)$, the Gaussian hypergeometric function is defined by

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=1+\frac{a \cdot b}{c} \frac{z}{1!}+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{z^{2}}{2!}+\ldots, z \in U . \tag{2.3}
\end{equation*}
$$

We note that the above series converges absolutely for $z \in U$ and hence represents an analytic function in U (see, for details, [30, Chapter 14]).

Each of the identities (asserted by Lemmas below) is well-known (cf., e.g., [30, Chapter 14]).

Lemma 2.3. [30] For complex numbers a, b and $c(c \neq 0,-1,-2, \ldots)$, the next equalities hold:

$$
\begin{gather*}
\int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a} d t=\frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)}{ }_{2} F_{1}(a, b ; c ; z), \tag{2.4}\\
(\operatorname{Re}(c)>\operatorname{Re}(b)>0), \\
{ }_{2} F_{1}(a, b ; c ; z)=(1-z)^{-a}{ }_{2} F_{1}\left(a, c-b ; c ; \frac{z}{z-1}\right) ; \tag{2.5}
\end{gather*}
$$

and

$$
\begin{equation*}
(b+1){ }_{2} F_{1}(1, b ; b+1 ; z)=(b+1)+b z{ }_{2} F_{1}(1, b+1 ; b+2 ; z) . \tag{2.6}
\end{equation*}
$$

Lemma 2.4. [13] Let $w(z)=\sum_{k=1}^{\infty} d_{k} z^{k} \in \Omega$, if ν is any complex number, then

$$
\begin{equation*}
\left|d_{2}-\nu d_{1}^{2}\right| \leq \max \{1,|\nu|\} . \tag{2.7}
\end{equation*}
$$

Equality may be attained with the functions $w(z)=z^{2}$ and $w(z)=z$.

3. Main results

Unless otherwise mentioned, we assume throughout of this paper that $\beta>0$, $a, c \in R \backslash Z_{0}^{-}, \lambda>-p, p \in N$ and $-1 \leq B<A \leq 1$.
Theorem 3.1. Let the function f defined by (1.1) be in the class $\Phi_{p}^{\beta}(\lambda, a, c, A, B)$. Then

$$
\begin{equation*}
\frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}} \prec Q(z) \prec \frac{1+A z}{1+B z} \quad(z \in U) \tag{3.1}
\end{equation*}
$$

where the function $Q(z)$ given by

$$
Q(z)= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1}{ }_{2} F_{1}\left(1,1, \frac{a-1}{\beta}+1, \frac{B z}{B z+1}\right), & B \neq 0 \\ 1+\frac{a-1}{a-1+\beta} A z, & B=0\end{cases}
$$

is the best dominant of (3.1). Furthermore,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}\right\}>\eta(\beta, a, A, B) \quad(z \in U) \tag{3.2}
\end{equation*}
$$

where

$$
\eta(\beta, a, A, B)= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1-B)^{-1}{ }_{2} F_{1}\left(1,1, \frac{a-1}{\beta}+1, \frac{B}{B-1}\right), & B \neq 0 \\ 1-\frac{a-1}{a-1+\beta} A, & B=0\end{cases}
$$

The estimate in (3.2) is the best possible.

Proof. Consider the function $\varphi(z)$ defined by

$$
\begin{equation*}
\varphi(z)=\frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}} \quad(z \in U) . \tag{3.3}
\end{equation*}
$$

Then $\varphi(z)$ is of the form (2.1) and is analytic in U. Differentiating (3.3) logarithmically with respect to z and using the identity (1.9) in the resulting equation, we obtain

$$
(1-\beta) \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}+\beta \frac{I_{p}^{\lambda}(a-1, c) f(z)}{z^{p}}=\varphi(z)+\frac{z \varphi^{\prime}(z)}{(a-1) / \beta} \prec \frac{1+A z}{1+B z} \quad(z \in U) .
$$

Now, by using Lemma 2.1 for $\gamma=\frac{a-1}{\beta}$, we deduce that

$$
\begin{aligned}
& \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}} \prec Q(z)=\frac{a-1}{\beta} z^{\frac{1-a}{\beta}} \int_{0}^{z} t^{\frac{a-1}{\beta}-1}\left(\frac{1+A t}{1+B t}\right) d t \\
= & \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1} F_{1}\left(1,1, \frac{a-1}{\beta}+1 ; \frac{B z}{B z+1}\right), & B \neq 0, \\
1+\frac{a-1}{a-1+\beta} A z, & B=0,\end{cases}
\end{aligned}
$$

by change of variables followed by use of the identities (2.4), (2.5) and (2.6) (with $a=1, c=b+1, b=\frac{a-1}{\beta}$). This proves the assertion (3.1) of Theorem 3.1.

Next, in order to prove the assertion (3.2) of Theorem 3.1, it suffices to show that

$$
\begin{equation*}
\inf _{|z|<1}\{\operatorname{Re}(Q(z)\}=Q(-1) \tag{3.4}
\end{equation*}
$$

Indeed we have, for $|z| \leq r<1$,

$$
\operatorname{Re}\left(\frac{1+A z}{1+B z}\right) \geq \frac{1-A r}{1-B r}
$$

Upon setting

$$
g(s, z)=\frac{1+A s z}{1+B s z} \text { and } d \nu(s)=\left(\frac{a-1}{\beta}\right) s^{\frac{a-1}{\beta}} d s(0 \leq s \leq 1)
$$

which is a positive measure on the closed interval $[0,1]$, we get

$$
Q(z)=\int_{0}^{1} g(s, z) d \nu(s)
$$

so that

$$
\operatorname{Re}\{Q(z)\} \geq \int_{0}^{1}\left(\frac{1-A s r}{1-B s r}\right) d v(s)=Q(-r) \quad(|z| \leq r<1)
$$

Letting $r \rightarrow 1^{-}$in the above inequality, we obtain the assertion (3.2) of Theorem 3.1. Finally, the estimate in (3.2) is the best possible as the function $Q(z)$ is the best dominant of (3.1).

Corollary 3.2. For $0<\beta_{2}<\beta_{1}$, we have

$$
\Phi_{p}^{\beta_{1}}(\lambda, a, c, A, B) \subset \Phi_{p}^{\beta_{2}}(\lambda, a, c, A, B) .
$$

Proof. Let $f \in \Phi_{p}^{\beta_{1}}(\lambda, a, c, A, B)$. Then by Theorem 3.1, we have

$$
\frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}} \prec \frac{1+A z}{1+B z} \quad(z \in U) .
$$

Since

$$
\begin{aligned}
& \left(1-\beta_{2}\right) \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}+\beta_{2} \frac{I_{p}^{\lambda}(a-1, c) f(z)}{z^{p}} \\
= & \left(1-\frac{\beta_{2}}{\beta_{1}}\right) \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}+\frac{\beta_{2}}{\beta_{1}}\left\{\left(1-\beta_{1}\right) \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}+\beta_{1} \frac{I_{p}^{\lambda}(a-1, c) f(z)}{z^{p}}\right\} \\
\prec & \frac{1+A z}{1+B z} \quad(z \in U),
\end{aligned}
$$

we see that $f \in \Phi_{p}^{\beta_{2}}(\lambda, a, c, A, B)$. This proves Corollary 3.2.
Taking $\beta=c=1, a=\delta+p+1(\delta>-p), \lambda=\delta, A=1-\frac{2 \alpha}{p}(0 \leq \alpha<p)$ and $B=-1$ in Theorem 3.1, we obtain the the following corollary.

Corollary 3.3. If $f \in A(p)$ satisfies

$$
\operatorname{Re}\left\{\frac{f(z)}{z^{p}}\right\}>\frac{\alpha}{p} \quad(0 \leq \alpha<p ; z \in U)
$$

then the function $F_{\delta, p}(f)(z)$ defined by (1.10) satisfies

$$
\operatorname{Re}\left\{\frac{F_{\delta, p}(f)(z)}{z^{p}}\right\}>\frac{\alpha}{p}+\left(1-\frac{\alpha}{p}\right)\left[{ }_{2} F_{1}\left(1,1 ; p+\delta+1 ; \frac{1}{2}\right)-1\right] \quad(z \in U)
$$

The result is the best possible.
Remark 3.4. We note that Corollary 3.3 improves the corresponding result obtained by Obradovic [22] for $p=1$.

Taking $\lambda=\beta=c=1, a=p+1-\mu,-\infty<\mu<p, A=1-\frac{2 \alpha}{p}(0 \leq \alpha<p)$ $B=-1$ in Theorem 3.1, we obtain the following corollary.
Corollary 3.5. Let the function $f(z)$ given by (1.1) satisfy

$$
\operatorname{Re}\left\{\frac{\Omega_{z}^{(1+\mu, p)} f(z)}{z^{p}}\right\}>\frac{\alpha}{p} \quad(-\infty<\mu<p ; 0 \leq \alpha<p ; p \in N ; z \in U)
$$

Then

$$
\operatorname{Re}\left\{\frac{\Omega_{z}^{(\mu, p)} f(z)}{z^{p}}\right\}>\frac{\alpha}{p}+\left(1-\frac{\alpha}{p}\right)\left[{ }_{2} F_{1}\left(1,1 ; p+1-\mu ; \frac{1}{2}\right)-1\right] \quad(z \in U)
$$

The result is the best possible.
Taking $\mu=0$ in Corollary 3.5, we obtain the following corollary.

32 Mohamed Kamal Aouf, Rabha Mohamed El-Ashwah and Ekram Elsayed Ali

Corollary 3.6. Let the function $f(z)$ given by (1.1) satisfy

$$
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>\alpha \quad(0 \leq \alpha<p ; z \in U)
$$

Then

$$
\operatorname{Re}\left\{\frac{f(z)}{z^{p}}\right\}>\frac{\alpha}{p}+\left(1-\frac{\alpha}{p}\right)\left[{ }_{2} F_{1}\left(1,1 ; p+1 ; \frac{1}{2}\right)-1\right] \quad(z \in U) .
$$

The result is the best possible.
Remark 3.7. We note that Corollary 3.6 improves the corresponding result obtained by Lee and Owa [17, Theorem 1] with $n=1$.

Remark 3.8. If $f \in A(p)$ satisfies $\operatorname{Re}\left\{f^{\prime}(z) / z^{p-1}\right\}>\alpha(0 \leq \alpha<p ; z \in U)$, then with the aid of Corollaries 2 and 4, we deduce that

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{F_{\delta, p}(f)(z)}{z^{p}}\right\}>\frac{\alpha}{p}+\left(1-\frac{\alpha}{p}\right)\left[\left({ }_{2} F_{1}\left(1,1 ; p+1 ; \frac{1}{2}\right)-1\right)\right. \\
& \left.+\left({ }_{2} F_{1}\left(1,1 ; p+\delta+1 ; \frac{1}{2}\right)-1\right)\left(2-\left({ }_{2} F_{1}\left(1,1 ; p+1 ; \frac{1}{2}\right)\right)\right)\right]
\end{aligned}
$$

which improve the result of Fukui et al. [8] for $p=1$.
Corollary 3.9. Let the function $f(z)$ given by (1.1) satisfy

$$
\operatorname{Re}\left\{\frac{I_{p}^{n}(n-1, n) f(z)}{z^{p}}\right\}>\frac{\alpha}{p} \quad(0 \leq \alpha<p ; z \in U),
$$

Then

$$
\operatorname{Re}\left\{\frac{D^{n+p-1} f(z)}{z^{p}}\right\}>\frac{\alpha}{p}+\left(1-\frac{\alpha}{p}\right)\left[{ }_{2} F_{1}\left(1,1 ; n ; \frac{1}{2}\right)-1\right] \quad(z \in U)
$$

The result is the best possible.
Theorem 3.10. Let $f(z) \in \Phi_{p}^{0}(\lambda, a, c, A, B)$ and let the function $F_{\delta, p}(f)(z)$ defined by (1.10). Then

$$
\begin{equation*}
\frac{I_{p}^{\lambda}(a, c) F_{\delta, p}(f)(z)}{z^{p}} \prec q(z) \prec \frac{1+A z}{1+B z}, \tag{3.5}
\end{equation*}
$$

where the function $q(z)$ given by

$$
q(z)= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1} F_{1}\left(1,1, p+\delta+1 ; \frac{B z}{B z+1}\right), & B \neq 0 \\ 1+\frac{p+\delta}{p+\delta+1} A z, & B=0\end{cases}
$$

is the best dominant of (3.5). Furthermore,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{I_{p}^{\lambda}(a, c) F_{\delta, p}(f)(z)}{z^{p}}\right\}>\zeta^{*} \quad(z \in U) \tag{3.6}
\end{equation*}
$$

where

$$
\zeta^{*}= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1-B)^{-1}{ }_{2} F_{1}\left(1,1 ; p+\delta+1 ; \frac{B}{B-1}\right), & B \neq 0 \\ 1-\frac{p+\delta}{p+\delta+1} A, & B=0\end{cases}
$$

The estimate in (3.6) is the best possible.
Proof. From (1.10) it follows that

$$
\begin{equation*}
z\left(I_{p}^{\lambda}(a, c) F_{\delta, p}(f)(z)\right)^{\prime}=(\delta+p) I_{p}^{\lambda}(a, c) f(z)-\delta I_{p}^{\lambda}(a, c) F_{\delta, p}(f)(z) \tag{3.7}
\end{equation*}
$$

By setting

$$
\begin{equation*}
\varphi(z)=\frac{I_{p}^{\lambda}(a, c) F_{\delta, p}(f)(z)}{z^{p}} \quad(z \in U) \tag{3.8}
\end{equation*}
$$

we note that $\varphi(z)$ is of the form (2.1) and is analytic in U. Differentiating (3.8) with respect to z and using the identity (3.7) in the resulting equation, we get

$$
\varphi(z)+\frac{z \varphi^{\prime}(z)}{\delta+p}=\frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}} \prec \frac{1+A z}{1+B z} \quad(z \in U)
$$

which with the aid of Lemma 2.1 with $\gamma=\delta+p$, yields

$$
\begin{equation*}
\frac{I_{p}^{\lambda}(a, c) F_{\delta, p}(f)(z)}{z^{p}} \prec q(z)=(\delta+p) z^{-(\delta+p)} \int_{0}^{z} t^{\delta+p-1}\left(\frac{1+A t}{1+B t}\right) d t \tag{3.9}
\end{equation*}
$$

Now the remaining part of Theorem 3.10 follows by employing the techniques that we used in proving Theorem 3.1 above.

Taking $A=1-\frac{2 \alpha}{p}(0 \leq \alpha<p)$ and $B=-1$ in Theorem 3.10, we obtain the following corollary.

Corollary 3.11. If $f \in A(p)$ satisfies

$$
\operatorname{Re}\left\{\frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}\right\}>\frac{\alpha}{p} \quad(0 \leq \alpha<p ; z \in U)
$$

then

$$
\operatorname{Re}\left\{\frac{I_{p}^{\lambda}(a, c) F_{\delta, p}(f)(z)}{z^{p}}\right\}>\frac{\alpha}{p}+\left(1-\frac{\alpha}{p}\right)\left\{{ }_{2} F_{1}\left(1,1 ; p+\delta+1 ; \frac{1}{2}\right)-1\right\} \quad(z \in U) .
$$

The result is the best possible.
Taking $\lambda=c=1$ and $a=p$ in Corollary 3.11, we get the following corollary which in turn improves the corresponding result of Fukui et al. [8] for $p=1$.

Corollary 3.12. If $f \in A(p)$ satisfies

$$
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>\alpha \quad(0 \leq \alpha<p ; z \in U)
$$

34 Mohamed Kamal Aouf, Rabha Mohamed El-Ashwah and Ekram Elsayed Ali
then

$$
\operatorname{Re}\left\{\frac{F_{\delta, p}^{\prime}(f)(z)}{z^{p-1}}\right\}>\alpha+(p-\alpha)\left\{{ }_{2} F_{1}\left(1,1 ; p+\delta+1 ; \frac{1}{2}\right)-1\right\} \quad(z \in U)
$$

The result is the best possible.
Taking $\lambda=c=1$ and $a=p+1-\mu(-\infty<\mu<p+1, p \in N)$ in Corollary 3.11, we obtain the following corollary.
Corollary 3.13. If $f(z) \in A(p)$ satisfies

$$
\operatorname{Re}\left\{\frac{\Omega_{z}^{(\mu, p)} f(z)}{z^{p}}\right\}>\frac{\alpha}{p} \quad(0 \leq \alpha<p ;-\infty<\mu<p+1 ; p \in N ; z \in U)
$$

then

$$
\operatorname{Re}\left\{\frac{\Omega_{z}^{(\mu, p)} F_{\delta, p}(f)(z)}{z^{p}}\right\}>\frac{\alpha}{p}+\left(1-\frac{\alpha}{p}\right)\left\{{ }_{2} F_{1}\left(1,1 ; p+\delta+1 ; \frac{1}{2}\right)-1\right\} \quad(z \in U)
$$

The result is the best possible.
Theorem 3.14. We have

$$
f \in \Phi_{p}^{0}(a, c, A, B) \Leftrightarrow F_{a-p-1}(f)(z) \in \Phi_{p}^{1}(a, c, A, B)
$$

Proof. Using the identity (3.7) and
$z\left(I_{p}^{\lambda}(a, c) F_{\delta, p}(f)(z)\right)^{\prime}=(a-1) I_{p}^{\lambda}(a-1, c) F_{\delta, p}(f)(z)+(p+1-a) I_{p}^{\lambda}(a, c) F_{\delta, p}(f)(z)$, for $\delta=a-p-1$, we deduce that

$$
I_{p}^{\lambda}(a, c) f(z)=I_{p}^{\lambda}(a-1, c) F_{a-p-1}(f)(z)
$$

and the assertion of Theorem 3.14 follows by using the definition of the class $\Phi_{p}^{\beta}(a, c, A, B)$.

Theorem 3.15. If f, given by (1.1), belongs to the class $\Phi_{p}^{\beta}(a, c, A, B)$, then

$$
\begin{equation*}
\left|a_{p+k}\right| \leq \frac{(A-B)(a-1)_{k+1}}{(a-1+\beta k)(c)_{k}} \frac{(1)_{k}}{(\lambda+p)_{k}} \quad(k \geq 1) . \tag{3.10}
\end{equation*}
$$

The result is sharp.
Proof. Since $f \in \Phi_{p}^{\beta}(a, c, A, B)$, we have

$$
\begin{equation*}
(1-\beta) \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}+\beta \frac{I_{p}^{\lambda}(a-1, c) f(z)}{z^{p}}=p(z) \tag{3.11}
\end{equation*}
$$

where $p(z)=1+\sum_{k=1}^{\infty} p_{k} z^{k} \in P(A, B)$. Substituting the power series expansion of $I_{p}^{\lambda}(a, c) f(z), I_{p}^{\lambda}(a-1, c) f(z)$ and $p(z)$ in (3.11) and equating the coefficients of z^{k} on both sides of the resulting equation, we obtain

$$
\begin{equation*}
\frac{(a-1+\beta k)(\lambda+k)_{k}}{(a-1)_{k+1}} \frac{(c)_{k}}{(1)_{k}} a_{p+k}=p_{k} \quad(k \geq 1) \tag{3.12}
\end{equation*}
$$

Using the well-known [1] coefficient estimates

$$
\left|p_{k}\right| \leq(A-B) \quad(k \geq 1)
$$

in (3.12), we get the required estimate (3.10).
In order to establish the sharpness of (3.10), consider the functions $f_{k}(z)$ defined by

$$
(1-\beta) \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}+\beta \frac{I_{p}^{\lambda}(a-1, c) f(z)}{z^{p}}=\frac{1+A z^{k}}{1+B z^{k}} \quad(k \geq 1) .
$$

Clearly, $f_{k}(z) \in \Phi_{p}^{\beta}(\lambda, a, c, A, B)$ for each $k \geq 1$. It is easy to see that the functions $f_{k}(z)$ have the expansion

$$
f_{k}(z)=z^{p}+\frac{(A-B)(a-1)_{k+1}}{(a-1+\beta k)(\lambda+p)_{k}} \frac{(1)_{k}}{(c)_{k}} z^{p+k}+\ldots
$$

showing that the estimates in (3.10) are sharp.
Taking $\beta=\lambda=c=A=1, a=p+1-\mu,-\infty<\mu<p$ and $B=\frac{1}{M}-1\left(M>\frac{1}{2}\right)$ in Theorem 3.15, we obtain the following corollary.

Corollary 3.16. If f, given by (1.1), belongs to the class $\Phi_{p}[\mu, M]$, then

$$
\left|a_{p+k}\right| \leq \frac{\left(\frac{2 M-1}{M}\right)(p-\mu)_{k}}{(p+1)_{k}} \quad(k \geq 1)
$$

The result is sharp.
Theorem 3.17. Let f, given by (1.1), belongs to the class $\Phi_{p}^{\beta}(\lambda, a, c, A, B)$ and ζ is any complex number. Then

$$
\begin{gather*}
\left|a_{p+2}-\zeta a_{p+1}^{2}\right| \leq \frac{(A-B)(a-1)_{3}(1)_{2}}{(c)_{2}(\lambda+p)_{2}(a-1+2 \beta)} \max \{1 \\
\left.\left|B+\zeta \frac{(A-B)(a-1)_{2}(\lambda+p+1)(c+1)(a-1+2 \beta)}{2 c(a+1)(\lambda+p)(a-1+\beta)^{2}}\right|\right\} \tag{3.13}
\end{gather*}
$$

The result is sharp.
Proof. From (1.12), we have

$$
\begin{align*}
& (1-\beta) \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}+\beta \frac{I_{p}^{\lambda}(a-1, c) f(z)}{z^{p}}-1 \\
= & {\left[A-B\left\{(1-\beta) \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}+\beta \frac{I_{p}^{\lambda}(a-1, c) f(z)}{z^{p}}\right\}\right] w(z), } \tag{3.14}
\end{align*}
$$

where

$$
w(z)=\sum_{k=1}^{\infty} d_{k} z^{k} \in \Omega
$$

Substituting the power series expansion of $I_{p}^{\lambda}(a, c) f(z), I_{p}^{\lambda}(a-1, c) f(z)$ and $w(z)$ in (3.14), and equating the coefficients of z and z^{2} we obtain

$$
\begin{equation*}
a_{p+1}=\frac{(A-B)(a-1)_{2}}{(a-1+\beta)(c)(\lambda+p)} d_{1} \tag{3.15}
\end{equation*}
$$

36 Mohamed Kamal Aouf, Rabha Mohamed El-Ashwah and Ekram Elsayed Ali
and

$$
\begin{equation*}
a_{p+2}=\frac{2(A-B)(a-1)_{3}}{(a-1+2 \beta)(c)_{2}(\lambda+p)_{2}}\left(d_{2}-B d_{1}^{2}\right) . \tag{3.16}
\end{equation*}
$$

Using (2.7), (3.15) and (3.16), we get:

$$
\left|a_{p+2}-\zeta a_{p+1}^{2}\right|=\frac{(A-B)(a-1)_{3}}{(c)_{2}(\lambda+p)_{2}(a-1+2 \beta)}\left|d_{2}-\nu d_{1}^{2}\right|
$$

where

$$
\nu=B+\zeta \frac{(A-B)(a-1+2 \beta)(c+1)(\lambda+p+1)(a-1)_{2}}{2 c(a+1)(a-1+\beta)^{2}(\lambda+p)}
$$

Since (2.7) is sharp, (3.13) is also sharp.
Taking $\beta=\lambda=c=A=1, a=p+1-\mu(-\infty<\mu<p)$ and $B=\frac{1}{M}-1\left(M>\frac{1}{2}\right)$ in Theorem 3.17, we obtain the following corollary.

Corollary 3.18. If f, given by (1.1), belongs to the class $\Phi_{p}[\mu, M]$, then

$$
\left.\left|a_{p+2}-\zeta a_{p+1}^{2}\right| \leq \frac{\left(\frac{2 M-1}{M}\right)(p-\mu)_{3}}{(1+p)_{2}(p+2-\mu)} \max \left\{1, \left\lvert\, \frac{1}{M}-1+\zeta \frac{\left(\frac{2 M-1}{M}\right)(p-\mu)(p+2)}{(p+1-\mu)(p+1)}\right.\right\} \right\rvert\,
$$

The result is sharp.
Theorem 3.19. Let $f \in \Phi_{p}^{\beta}(a, c, A, B)$ and $g \in A(p)$ with $\operatorname{Re}\left(\frac{g(z)}{z^{p}}\right)>\frac{1}{2}(z \in U)$. Then $h=f * g \in \Phi_{p}^{\beta}(a, c, A, B)$.

Proof. We have

$$
\begin{align*}
& (1-\beta) \frac{I_{p}^{\lambda}(a, c) h(z)}{z^{p}}+\beta \frac{I_{p}^{\lambda}(a-1, c) h(z)}{z^{p}} \\
= & \left\{(1-\beta) \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}+\beta \frac{I_{p}^{\lambda}(a-1, c) f(z)}{z^{p}}\right\} * \frac{g(z)}{z^{p}} \quad(z \in U) . \tag{3.17}
\end{align*}
$$

Since $\operatorname{Re}\left\{\frac{g(z)}{z^{p}}\right\}>\frac{1}{2}(z \in U)$ and the function $\frac{1+A z}{1+B z}$ is convex (univalent) in U, it follows from (3.17) and Lemma 2.2 that $h(z)=(f * g)(z) \in \Phi_{p}^{\beta}(a, c, A, B)$. This completes the proof of Theorem 3.19.

Corollary 3.20. Let $f \in \Phi_{p}^{\beta}(a, c, A, B)$ and $g(z) \in A(p)$ satisfy

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\mu) \frac{g(z)}{z^{p}}+\mu \frac{g^{\prime}(z)}{p z^{p-1}}\right\}>\frac{3-2{ }_{2} F_{1}\left(1,1 ; \frac{p}{\mu}+1 ; \frac{1}{2}\right)}{2\left[2-{ }_{2} F_{1}\left(1,1 ; \frac{p}{\mu}+1 ; \frac{1}{2}\right)\right]},(\mu>0 ; z \in U) . \tag{3.18}
\end{equation*}
$$

Then $f * g \in \Phi_{p}^{\beta}(a, c, A, B)$.

Proof. From Theorem 3.1 (for $a=p+1, c=1, \beta=\mu>0, A=\frac{{ }_{2} F_{1}\left(1,1 ; \frac{p}{\mu}+1 ; \frac{1}{2}\right)-1}{2-{ }_{2} F_{1}\left(1,1 ; \frac{p}{\mu}+1 ; \frac{1}{2}\right)}$ and $B=-1$), condition (3.18) implies

$$
\operatorname{Re}\left\{\frac{g(z)}{z^{p}}\right\}>\frac{1}{2} \quad(z \in U)
$$

Using this, it follows from Theorem 3.19, that $(f * g)(z) \in \Phi_{p}^{\beta}(a, c, A, B)$.
Theorem 3.21. If each of the functions $f(z)$ given by (1.1) and

$$
g(z)=z^{p}+\sum_{k=1}^{\infty} b_{p+k} z^{p+k}
$$

belongs to the class $\Phi_{p}^{\beta}(\lambda, a, c, A, B)$, then so does the function

$$
h(z)=(1-\beta) I_{p}^{\lambda}(a, c)(f * g)(z)+\beta I_{p}^{\lambda}(a-1, c)(f * g)(z)
$$

Proof. Since $f \in \Phi_{p}^{\beta}(a, c, A, B)$, it follows from (3.14) that

$$
\begin{aligned}
& \left|(1-\beta) \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}+\beta \frac{I_{p}^{\lambda}(a-1, c) f(z)}{z^{p}}-1\right| \\
< & \left|A-B\left\{(1-\beta) \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}+\beta \frac{I_{p}^{\lambda}(a-1, c) f(z)}{z^{p}}\right\}\right|
\end{aligned}
$$

which is equivalent to

$$
\begin{equation*}
\left|(1-\beta) \frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}}+\beta \frac{I_{p}^{\lambda}(a-1, c) f(z)}{z^{p}}-\xi\right|<\eta \quad(z \in U) \tag{3.19}
\end{equation*}
$$

where $\xi=\frac{1-A B}{1-B^{2}}$ and $\eta=\frac{A-B}{1-B^{2}}$. It is known [21] that $H(z)=\sum_{k=0}^{\infty} h_{k} z^{k}$ is analytic in U and $|H(z)| \leq M$, then

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|h_{k}\right|^{2} \leq M^{2} \tag{3.20}
\end{equation*}
$$

Applying (3.18) to (3.19), we get

$$
(1-\xi)^{2}+\sum_{k=1}^{\infty}\left\{\frac{(a-1+\beta k)(c)_{k}(\lambda+p)_{k}}{(a-1)_{k+1}(1)_{k}}\right\}^{2}\left|a_{p+k}\right|^{2} \leq \eta^{2}
$$

that is, that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left\{\frac{(a-1+\beta k)(c)_{k}(\lambda+k)_{k}}{(a-1)_{k+1}(1)_{k}}\right\}^{2}\left|a_{p+k}\right|^{2} \leq \frac{(A-B)^{2}}{1-B^{2}} \tag{3.21}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left\{\frac{(a-1+\beta k)(c)_{k}(\lambda+k)_{k}}{(a-1)_{k+1}(1)_{k}}\right\}^{2}\left|b_{p+k}\right|^{2} \leq \frac{(A-B)^{2}}{1-B^{2}} \tag{3.22}
\end{equation*}
$$

38 Mohamed Kamal Aouf, Rabha Mohamed El-Ashwah and Ekram Elsayed Ali

Now, for $|z|=r<1$, by applying Cauchy-Schwarz inequality, we find that

$$
\begin{aligned}
& \left|(1-\beta) \frac{I_{p}^{\lambda}(a, c) h(z)}{z^{p}}+\beta \frac{I_{p}^{\lambda}(a-1, c) h(z)}{z^{p}}-\xi\right|^{2} \\
& =\left|(1-\xi)+\sum_{k=1}^{\infty}\left\{\frac{(a-1+\beta k)(c)_{k}(\lambda+p)_{k}}{(a-1)_{k+1}(1)_{k}}\right\}^{2} a_{p+k} b_{p+k} z^{k}\right|^{2} \\
& \leq(1-\xi)^{2}+2(1-\xi) \sum_{k=1}^{\infty}\left\{\frac{(a-1+\beta k)(c)_{k}(\lambda+p)_{k}}{(a-1)_{k+1}(1)_{k}}\right\}^{2}\left|a_{p+k}\right|\left|b_{p+k}\right| r^{k} \\
& +\left|\sum_{k=1}^{\infty}\left\{\frac{(a-1+\beta k)(c)_{k}(\lambda+p)_{k}}{(a-1)_{k+1}(1)_{k}}\right\}^{2} a_{p+k} b_{p+k} z^{k}\right|^{2} \\
& \leq(1-\xi)^{2}+2(1-\xi)\left[\sum_{k=1}^{\infty}\left\{\frac{(a-1+\beta k)(c)_{k}(\lambda+p)_{k}}{(a-1)_{k+1}(1)_{k}}\right\}^{2}\left|a_{p+k}\right|^{2} r^{k}\right]^{\frac{1}{2}} \text {. } \\
& \cdot\left[\sum_{k=1}^{\infty}\left\{\frac{(a-1+\beta k)(c)_{k}(\lambda+p)_{k}}{(a-1)_{k+1}(1)_{k}}\right\}^{2}\left|b_{p+k}\right|^{2} r^{k}\right]^{\frac{1}{2}}+ \\
& {\left[\sum_{k=1}^{\infty}\left\{\frac{(a-1+\beta k)(c)_{k}(\lambda+p)_{k}}{(a-1)_{k+1}(1)_{k}}\right\}^{2}\left|a_{p+k}\right|^{2} r^{k}\right] \text {. }} \\
& \cdot\left[\sum_{k=1}^{\infty}\left\{\frac{(a-1+\beta k)(c)_{k}(\lambda+p)_{k}}{(a-1)_{k+1}(1)_{k}}\right\}^{2}\left|b_{p+k}\right|^{2} r^{k}\right] \\
& \leq(1-\xi)^{2}+2(1-\xi)\left[\sum_{k=1}^{\infty}\left\{\frac{(a-1+\beta k)(c)_{k}(\lambda+p)_{k}}{(a-1)_{k+1}(1)_{k}}\right\}^{2}\left|a_{p+k}\right|^{2}\right]^{\frac{1}{2}} \text {. } \\
& \cdot\left[\sum_{k=1}^{\infty}\left\{\frac{(a-1+\beta k)(c)_{k}(\lambda+p)_{k}}{(a-1)_{k+1}(1)_{k}}\right\}^{2}\left|b_{p+k}\right|^{2}\right]^{\frac{1}{2}}+ \\
& {\left[\sum_{k=1}^{\infty}\left\{\frac{(a-1+\beta k)(c)_{k}(\lambda+p)_{k}}{(a-1)_{k+1}(1)_{k}}\right\}^{2}\left|a_{p+k}\right|^{2}\right] \text {. }} \\
& \cdot\left[\sum_{k=1}^{\infty}\left\{\frac{(a-1+\beta k)(c)_{k}(\lambda+p)_{k}}{(a-1)_{k+1}(1)_{k}}\right\}^{2}\left|b_{p+k}\right|^{2}\right] \\
& \leq(1-\xi)^{2}+2(1-\xi) \frac{(A-B)^{2}}{1-B^{2}}+\frac{(A-B)^{4}}{\left(1-B^{2}\right)^{2}} \\
& =\left\{\frac{B(A-B)}{1-B^{2}}\right\}^{2}+2 \frac{B(A-B)^{3}}{\left(1-B^{2}\right)^{2}}+\frac{(A-B)^{4}}{\left(1-B^{2}\right)^{2}}=\frac{A^{2}(A-B)^{2}}{\left(1-B^{2}\right)^{2}}<\eta^{2},
\end{aligned}
$$

by using (3.21) and (3.22).
Thus, again with the aid of (3.20), we have $h \in \Phi_{p}^{\beta}(\lambda, a, c, A, B)$.

Theorem 3.22. Let $f \in \Phi_{p}^{\beta}(\lambda, a, c, A, B)(\beta>0)$ and

$$
S_{n}(z)=z^{p}+\sum_{k=1}^{n-1} a_{p+k} z^{p+k}(n \geq 2)
$$

Then for $z \in U$, we have

$$
\operatorname{Re}\left\{\frac{\int_{0}^{z} t^{-p}\left(I_{p}^{\lambda}(a, c) S_{n}(t)\right) d t}{z}\right\}>\eta(\beta, a, A, B)
$$

where $\eta(\beta, a, A, B)$ is defined as in Theorem 3.1.
Proof. Singh and Singh [27] prove that

$$
\begin{equation*}
\operatorname{Re}\left\{1+\sum_{k=1}^{n-1} \frac{z^{k}}{k+1}\right\}>\frac{1}{2} \quad(z \in U) \tag{3.23}
\end{equation*}
$$

Writing

$$
\frac{\int_{0}^{z} t^{-p} I_{p}^{\lambda}(a, c) S_{n}(t) d t}{z}=\frac{I_{p}^{\lambda}(a, c) f(z)}{z^{p}} *\left\{1+\sum_{k=1}^{n-1} \frac{z^{k}}{k+1}\right\}
$$

and making use of (3.23), Theorem 3.1 and Lemma 2.2, the assertion of Theorem 3.22 follows at once.

Taking $\beta=\lambda=c=1, a=p+1, A=1-\frac{2 \alpha}{p}(0 \leq \alpha<p)$ and $B=-1$ in Theorem 3.22, we obtain the following corollary.

Corollary 3.23. Let $f \in A(p)$ satisfies $\operatorname{Re}\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>\alpha(0 \leq \alpha<p)$ in U, then

$$
\operatorname{Re}\left[\frac{\int_{0}^{z} t^{-p} S_{n}(t) d t}{z}\right]>\frac{\alpha}{p}+\left(1-\frac{\alpha}{p}\right)\left\{{ }_{2} F_{1}\left(1,1 ; p+1 ; \frac{1}{2}\right)-1\right\} \quad(z \in U)
$$

Acknowledgments. The authors thank the referees for their valuable suggestions to improve the paper.

References

[1] Anh, V., K-fold symmetric starlike univalent functions, Bull. Austral. Math. Soc., 32(1985), 419-436.

40 Mohamed Kamal Aouf, Rabha Mohamed El-Ashwah and Ekram Elsayed Ali
[2] Aouf, M.K., On certain subclass of analytic p-valent functions II, Math. Japon., 34(1989), no. 5, 683-691.
[3] Aouf, M.K., On new criterion for univalent functions of order alpha, Rend. di Mat., Ser. VII, 11 Roma, 1991, 47-59.
[4] Aouf, M.K., Chen, M.P., On the radius of convexity of a certain class of p-valent analytic functions, Proc. Meeting Math. Soc., 1994, 189-206.
[5] Bulboaca, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[6] Cho, N.E., Kwon, O.S., Srivastava, H.M., Inclusion relationships and argument properties for certain subclass of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292(2004), 470-483.
[7] Choi, J.H., Saigo, M., Srivastava, H.M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276(2002), 432-445.
[8] Fukui, S., Kim, J.A., Srivastava, H.M., On certain subclass of univalent functions by some integral operators, Math. Japon., 50(1999), 359-370.
[9] Goel, R.M., A class of analytic functions whose derivative have positive real part in the unit disc, Indian J. Math., 13(1971), no. 3, 141-145.
[10] Goel, R.M., Radius of convexity of convex combination of certain class of analytic functions, Tamkang J. Math., 10(1979), no. 1, 75-79.
[11] Hallenbeck, D.Z., Ruscheweyh, S., Subordination by convex functions, Proc. Amer. Math. Soc., 52(1975), 191-195.
[12] Juneja, O.P., Mogra, M.L., A class of univalent functions, Bull. Sci. Math. 2 Ser., 103(1979), 435-447.
[13] Keogh, F.R., Merkes, E.P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12.
[14] Kumar, V., On a new criterion for univalent functions, Demonstratio Math., 17(1984), no. 4, 875-886.
[15] Kumar, V., Shukla, S.L., Multivalent functions defined by Ruscheweyh derivatives, I and II, Indian J. Pure Appl. Math., 15(1984), no. 11, 1216-1227, 1228-1238.
[16] Liu, J.L., Noor, K.I., Some properties of Noor integral operator, J. Natur. Geometry, 21(2002), 81-90.
[17] Lee, S.K., Owa, S., A subclass of p-valently close-to-convex functions of order α, Appl. Math. Letters, 5(1992), no. 5, 3-6.
[18] Miller, S.S., Mocanu, P.T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289-305.
[19] Miller, S.S., Mocanu, P.T., Differential Subodination: Theory and Applications, Series in Monographs and Texbooks in Pure and Appl. Math. No. 225 Marcel Dekker, Inc., New York, 2000.
[20] Mogra, M.L., On a class of univalent functions, Riv. Mat. Univ. Parma, 4(1981), no. 7, 163-172.
[21] Nehari, Z., Conformal Mapping, McGraw Hill, New York, 1952.
[22] Obradovic, M., On certain inequalities for some regular functions in $|z|<1$, Internat. J. Math. Math. Sci., 8(1985), 671-681.
[23] Owa, S., On the distortion theorems I, Kyungpook Math. J., 18(1978), 53-59.
[24] Owa, S., On certain subclass of analytic p-valent functions, Math. Japon., 29(1984), no. 2, 191-198.
[25] Owa, S., Srivastava, H.M., Univalent and starlike generalized hypergeometric functions, Canada. J. Math., 39(1987), 1057-1077.
[26] Patel, J., Mishra, A.K., On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl., 332(2007), 109-122.
[27] Singh, R., Singh, S., Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 108(1989), 145-152.
[28] Sohi, N.S., A class of p-valent analytic functions, Indian J. Pure Appl. Math., 10(1979), no. $7,826-834$.
[29] Srivastava, H.M., Aouf, M.K., A certain fractional derivative operator and its application to new class of analytic and multivalent functions with negative coefficients I and II, J. Math. Anal. Appl., 171(1992), 1-13, 192(1995), 673-688.
[30] Whittaker, E.T., Watson, G.N., A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth Edition, Cambridge University Press, Cambridge, 1927.

Mohamed Kamal Aouf
Department of Mathematics, Faculty of Science
Mansoura University, Mansoura 35516, Egypt
e-mail: mkaouf127@yahoo.com
Rabha Mohamed El-Ashwah
Department of Mathematics, Faculty of Science
Mansoura University, Mansoura 35516, Egypt
e-mail: r_elashwah@yahoo.com

Ekram Elsayed Ali
Department of Mathematics, Faculty of Science
Mansoura University, Mansoura 35516, Egypt
e-mail: ekram_008eg@yahoo.com

