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Some properties of certain class of multivalent
analytic functions
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Abstract. In this paper we introduce a certain general class Φβ
p (a, c, A, B) (β ≥ 0,

a > 0, c > 0, −1 ≤ B < A ≤ 1, p ∈ N = {1, 2, ...}) of multivalent analytic
functions in the open unit disc U = {z : |z| < 1} involving the linear operator
Lp(a, c). The aim of the present paper is to investigate various properties and
characteristics of this class by using the techniques of Briot-Bouquet differential
subordination. Also we obtain coefficient estimates and maximization theorem
concerning the coefficients.
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1. Introduction

Let A(p) denote the class of functions of the form:

f(z) = zp +
∞∑

k=1

ap+kz
p+k (p ∈ N = {1, 2, ....}), (1.1)

which are analytic and p-valent in the open unit disc U = {z : |z| < 1}. Let Ω denotes
the class of bounded analytic functions w(0) = 0 and |w(z)| ≤ |z| for z ∈ U . If f and
g are analytic in U , we say that f subordinate to g, written symbolically as follows:

f ≺ g (z ∈ U) or f(z) ≺ g(z),

if there exists a Schwarz function w, which (by definition) is analytic in U with
w(0) = 0 and |w(z)| < 1 (z ∈ U) such that f(z) = g(w(z)) (z ∈ U). In particular, if
the function g(z) is univalent in U , then we have the following equivalence (cf., e.g.,
[5], [18]; see also [19, p. 4]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).
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For functions f(z) ∈ A(p), given by (1.1), and g(z) ∈ A(p) given by

g(z) = zp +
∞∑

k=1

bp+kz
p+k (p ∈ N), (1.2)

then the Hadamard product (or convolution) of f(z) and g(z) is defined by

(f ∗ g)(z) = zp +
∞∑

k=1

ap+kbp+kz
p+k = (g ∗ f)(z) . (1.3)

We now define the function ϕp(a, c; z) by

ϕp(a, c; z) = zp +
∞∑

k=1

(a)k

(c)k
zp+k

(
z ∈ U ; a ∈ R; c ∈ R\Z−0 : Z−0 = {0,−1,−2, ...}

)
,

(1.4)
where (λ)ν denoted the Pochhammer symbol defined (for λ, ν ∈ C and in terms of
the Gamma function) by

(λ)ν =
Γ(λ+ ν)

Γ(λ)
=

{
1 (ν = 0;λ ∈ C\{0}),
λ(λ+ 1)...(λ+ n− 1) (ν ∈ N ;λ ∈ C).

(1.5)

With the aid of the function ϕp(a, c; z) defined by (1.4), we consider a function
ϕ+

p (a, c; z) given by the following convolution:

ϕp(a, c; z) ∗ ϕ+
p (a, c; z) =

zp

(1− z)λ+p
(λ > −p ; z ∈ U), (1.6)

which yields the following family of linear operator Iλ
p (a, c):

Iλ
p (a, c)f(z) = ϕ+

p (a, c; z) ∗ f(z) (a, c ∈ R\Z−0 ;λ > −p; z ∈ U) . (1.7)

For a function f(z) ∈ A(p), given by (1.1), it is easily seen from (1.6) that

Iλ
p (a, c)f(z) = zp +

∞∑
k=1

(c)k(λ+ p)k

(a)k(1)k
ap+kz

p+k (z ∈ U) . (1.8)

It is readily verified from the definition (1.8) that

z
(
Iλ
p (a, c)f(z)

)′
= (a− 1)Iλ

p (a− 1, c)f(z) + (p+ 1− a)Iλ
p (a, c)f(z) . (1.9)

The operator Iλ
p (a, c) was recently introduced by Cho et al. [6].

We observe also that:
(i) I1

p(p+ 1, 1)f(z) = f(z) and I1
p(p, 1)f(z) = zf

′
(z)

p ;
(ii) In

p (a, a)f(z) = Dn+p−1f(z) (n > −p), whereDn+p−1f(z) is the (n+p−1)−th
order Ruscheweyh derivative of a function f(z) ∈ A(p) (see Kumar and Shukla [15]);

(iii) Iδ
p(δ+p+1, 1)f(z) = Fδ,p(f)(z) (δ > −p), where Fδ,p(f)(z) is the generalized

Bernardi-Livingston operator (see [7]), defined by

Fδ,p(f)(z) =
δ + p

zδ

z∫
0

tδ−1f(t)dt = zp +
∞∑

k=1

(
δ + p

δ + p+ k

)
ap+kz

p+k(δ > −p; p ∈ N);

(1.10)



Some properties of certain class of multivalent analytic functions 27

(iv) I1
p(n + p, 1)f(z) = In,pf(z) (n > −p), where the operator In,p is the

(n+ p− 1)− th Noor operator, considered by Liu and Noor [16];
(v) I1

p(p+ 1− µ, 1)f(z) = Ω(µ,p)
z f(z)(−∞ < µ < p+ 1), where Ω(µ,p)

z

(−∞ < µ < p+ 1) is the extended fractional differential integral operator (see [26]),
defined by

Ω(µ,p)
z f(z) = zp +

∞∑
k=1

Γ(k + p+ 1)Γ(p+ 1− µ)
Γ(p+ 1)Γ(k + p+ 1− µ)

ap+kz
p+k

=
Γ(p+ 1− µ)

Γ(p+ 1)
zµDµ

z f(z) (−∞ < µ < p+ 1; z ∈ U), (1.11)

where Dµ
z f(z) is, respectively, the fractional integral of f(z) of order −µ when −∞ <

µ < 0 and the fractional derivative of f(z) of order µ when 0 ≤ µ < p + 1 (see, for
details [23], [25] and [26]). The fractional differential operator Ω(µ,p)

z with 0 ≤ µ < 1
was investigated by Srivastava and Aouf [29].

Making use of the operator Iλ
p (a, c), we now introduce a subclass of A(p) as

follows:

Definition 1.1. A function f(z) ∈ A(p) is said to be in the class Φβ
p (λ, a, c, A,B)

(β > 0, a, c ∈ R\Z−0 , a > 1; λ > −p, p ∈ N, −1 ≤ B < A ≤ 1) if and only if it
satisfies

(1− β)
Iλ
p (a, c)f(z)

zp
+ β

Iλ
p (a− 1, c)f(z)

zp
≺ 1 +Az

1 +Bz
(z ∈ U). (1.12)

By specializing the parameters β, λ, a, c, A and B, we obtain the following sub-
classes of analytic functions studied by various authors:

(i) Φ1
p(1, p+ 1, 1, 1, 1

M − 1) = Sp(M) (M > 1
2 ) (Sohi [28]);

(ii) Φ1
p(1, p+1, 1, β[B+(A−B)(p−α)], βB) = Sp(α, β,A,B), 0 ≤ α < p, p ∈ N ,

0 < β ≤ 1 (see Aouf [2]);
(iii) Φ1

p(1, p + 1, 1, [B + (A − B)(p − α)], B) = Sp(A,B, α), 0 ≤ α < p, p ∈ N
(see Aouf and Chen [4]);

(iv) Φ1
1(1, 2, 1, 1,

1
M − 1) = R(M) (M > 1

2 ) (see Goel [9]);
(v) Φ1

1(1, 2, 1, 2αβ − 1, 2β − 1) = R1(α, β) (0 ≤ α < 1, 0 < β ≤ 1) (see Mogra
[20]);

(vi) Φ1
1(1, 2, 1, (1 − 2α)β,−β) = R(α, β) (0 ≤ α < 1, 0 < β ≤ 1) (see Juneja

and Mogra [12]);
(vii) Φ1

p(1, 2, 1, (1 − 2α)β,−β) = Sp(α, β) (0 ≤ α < 1, 0 < β ≤ 1) (see Owa
[24]);

(viii) Φ1
1(n+1, a, a−1, A,B) = Vn(A,B) (n ∈ N0 = N ∪{0}) (see Kumar [14]);

(ix) Φ1
1(n+1, a, a−1, [B+(A−B)(1−α)], B) = Vn(A,B, α) (n ∈ N0, 0 ≤ α < 1)

(see Aouf [3]);
(x) Φβ

p (λ, a, c, 1, 1
M − 1) = Φβ

p [λ, a, c,M ] (M > 1
2 ), where Φβ

p [λ, a, c,M ] denotes
the class of functions f(z) ∈ A(p) satisfying the condition:
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∣∣∣∣∣
[
(1− β)

Iλ
p (a, c)f(z)

zp
+ β

Iλ
p (a− 1, c)f(z)

zp

]
−M

∣∣∣∣∣ < M (M >
1
2
; z ∈ U) ;

(xi) Φ1
p(1, p + 1 − µ, 1, 1, 1

M − 1) = Φp[µ,M ] (M > 1
2 ,−∞ < µ < p), where

Φp[µ,M ] denotes the class of functions f(z) ∈ A(p) satisfying the condition:∣∣∣∣∣Ω(µ,1+p)
z f(z)

zp
−M

∣∣∣∣∣ < M (M >
1
2
;−∞ < µ < p; z ∈ U) .

2. Preliminaries

To establish our main results, we shall need the following lemmas.

Lemma 2.1. [11] Let h be a convex (univalent) in U with h(0) = 1 and let the function
ϕ given by

ϕ(z) = 1 + d1z + d2z
2 + ..., (2.1)

is analytic in U . If

ϕ(z) +
1
γ
zϕ

′
(z) ≺ h(z) (z ∈ U), (2.2)

where γ 6= 0 and Re(γ) ≥ 0, then

ϕ(z) ≺ ψ(z) =
γ

zγ

z∫
0

tγ−1h(t)dt ≺ h(z) (z ∈ U),

and ψ is the best dominant of (2.2).

Lemma 2.2. [27] Let Φ(z) be analytic in U with

Φ(0) = 1 and Re {Φ(z)} > 1
2

(z ∈ U) .

Then, for any F (z) analytic in U , the set (Φ ∗ F )(U) is contained in the convex hull
of F (U), i.e., (Φ ∗ F )U ⊂ co F (U).

For complex numbers a, b and c(c 6= 0,−1,−2, ...), the Gaussian hypergeometric
function is defined by

2F1(a, b; c; z) = 1 +
a.b

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)
z2

2!
+ ..., z ∈ U . (2.3)

We note that the above series converges absolutely for z ∈ U and hence represents an
analytic function in U (see, for details, [30, Chapter 14]).

Each of the identities (asserted by Lemmas below) is well-known (cf., e.g., [30,
Chapter 14]).
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Lemma 2.3. [30] For complex numbers a, b and c (c 6= 0,−1,−2, ...), the next equalities
hold:

1∫
0

tb−1(1− t)c−b−1(1− tz)−adt =
Γ(b)Γ(c− b)

Γ(c) 2F1(a, b; c; z), (2.4)

(Re(c) > Re(b) > 0),

2F1(a, b; c; z) = (1− z)−a
2F1(a, c− b; c;

z

z − 1
); (2.5)

and
(b+ 1) 2F1(1, b; b+ 1; z) = (b+ 1) + bz 2F1(1, b+ 1; b+ 2; z) . (2.6)

Lemma 2.4. [13] Let w(z) =
∞∑

k=1

dkz
k ∈ Ω, if ν is any complex number, then

∣∣d2 − νd2
1

∣∣ ≤ max {1, |ν|} . (2.7)

Equality may be attained with the functions w(z) = z2 and w(z) = z.

3. Main results

Unless otherwise mentioned, we assume throughout of this paper that β > 0,
a, c ∈ R\Z−0 , λ > −p, p ∈ N and −1 ≤ B < A ≤ 1.

Theorem 3.1. Let the function f defined by (1.1) be in the class Φβ
p (λ, a, c, A,B).

Then
Iλ
p (a, c)f(z)

zp
≺ Q(z) ≺ 1 +Az

1 +Bz
(z ∈ U), (3.1)

where the function Q(z) given by

Q(z) =


A

B
+ (1− A

B
)(1 +Bz)−1

2F1(1, 1,
a− 1
β

+ 1,
Bz

Bz + 1
) , B 6= 0,

1 +
a− 1

a− 1 + β
Az , B = 0,

is the best dominant of (3.1). Furthermore,

Re

{
Iλ
p (a, c)f(z)

zp

}
> η(β, a,A,B) (z ∈ U), (3.2)

where

η(β, a,A,B) =


A

B
+ (1− A

B
)(1−B)−1

2F1(1, 1,
a− 1
β

+ 1,
B

B − 1
) , B 6= 0,

1− a− 1
a− 1 + β

A , B = 0.

The estimate in (3.2) is the best possible.
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Proof. Consider the function ϕ(z) defined by

ϕ(z) =
Iλ
p (a, c)f(z)

zp
(z ∈ U) . (3.3)

Then ϕ(z) is of the form (2.1) and is analytic in U . Differentiating (3.3) logarithmically
with respect to z and using the identity (1.9) in the resulting equation, we obtain

(1− β)
Iλ
p (a, c)f(z)

zp
+ β

Iλ
p (a− 1, c)f(z)

zp
= ϕ(z) +

zϕ
′
(z)

(a− 1)/β
≺ 1 +Az

1 +Bz
(z ∈ U).

Now, by using Lemma 2.1 for γ = a−1
β , we deduce that

Iλ
p (a, c)f(z)

zp
≺ Q(z) =

a− 1
β

z
1−a

β

z∫
0

t
a−1

β −1

(
1 +At

1 +Bt

)
dt

=


A

B
+ (1− A

B
)(1 +Bz)−1

2F1(1, 1,
a− 1
β

+ 1;
Bz

Bz + 1
) , B 6= 0,

1 +
a− 1

a− 1 + β
Az , B = 0,

by change of variables followed by use of the identities (2.4), (2.5) and (2.6) (with
a = 1, c = b+ 1, b = a−1

β ). This proves the assertion (3.1) of Theorem 3.1.
Next, in order to prove the assertion (3.2) of Theorem 3.1, it suffices to show

that
inf
|z|<1

{Re(Q(z)} = Q(−1) . (3.4)

Indeed we have, for |z| ≤ r < 1,

Re
(

1 +Az

1 +Bz

)
≥ 1−Ar

1−Br
.

Upon setting

g(s, z) =
1 +Asz

1 +Bsz
and dν(s) =

(
a− 1
β

)
s

a−1
β ds (0 ≤ s ≤ 1) ,

which is a positive measure on the closed interval [0, 1], we get

Q(z) =

1∫
0

g(s, z)dν(s) ,

so that

Re {Q(z)} ≥
1∫

0

(
1−Asr

1−Bsr

)
dv(s) = Q(−r) (|z| ≤ r < 1).

Letting r → 1− in the above inequality, we obtain the assertion (3.2) of Theorem
3.1. Finally, the estimate in (3.2) is the best possible as the function Q(z) is the best
dominant of (3.1).
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Corollary 3.2. For 0 < β2 < β1, we have

Φβ1
p (λ, a, c, A,B) ⊂ Φβ2

p (λ, a, c, A,B) .

Proof. Let f ∈ Φβ1
p (λ, a, c, A,B). Then by Theorem 3.1, we have

Iλ
p (a, c)f(z)

zp
≺ 1 +Az

1 +Bz
(z ∈ U).

Since

(1− β2)
Iλ
p (a, c)f(z)

zp
+ β2

Iλ
p (a− 1, c)f(z)

zp

=
(

1− β2

β1

)
Iλ
p (a, c)f(z)

zp
+
β2

β1

{
(1− β1)

Iλ
p (a, c)f(z)

zp
+ β1

Iλ
p (a− 1, c)f(z)

zp

}

≺ 1 +Az

1 +Bz
(z ∈ U) ,

we see that f ∈ Φβ2
p (λ, a, c, A,B). This proves Corollary 3.2.

Taking β = c = 1, a = δ + p+ 1 (δ > −p), λ = δ, A = 1− 2α
p (0 ≤ α < p) and

B = −1 in Theorem 3.1, we obtain the the following corollary.

Corollary 3.3. If f ∈ A(p) satisfies

Re
{
f(z)
zp

}
>
α

p
(0 ≤ α < p; z ∈ U) ,

then the function Fδ,p(f)(z) defined by (1.10) satisfies

Re
{
Fδ,p(f)(z)

zp

}
>
α

p
+

(
1− α

p

) [
2F1(1, 1; p+ δ + 1;

1
2
)− 1

]
(z ∈ U) .

The result is the best possible.

Remark 3.4. We note that Corollary 3.3 improves the corresponding result obtained
by Obradovic [22] for p = 1.

Taking λ = β = c = 1, a = p + 1 − µ, −∞ < µ < p, A = 1 − 2α
p (0 ≤ α < p)

B = −1 in Theorem 3.1, we obtain the following corollary.

Corollary 3.5. Let the function f(z) given by (1.1) satisfy

Re

{
Ω(1+µ,p)

z f(z)
zp

}
>
α

p
(−∞ < µ < p; 0 ≤ α < p; p ∈ N ; z ∈ U) .

Then

Re

{
Ω(µ,p)

z f(z)
zp

}
>
α

p
+

(
1− α

p

) [
2F1(1, 1; p+ 1− µ;

1
2
)− 1

]
(z ∈ U) .

The result is the best possible.

Taking µ = 0 in Corollary 3.5, we obtain the following corollary.
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Corollary 3.6. Let the function f(z) given by (1.1) satisfy

Re

{
f
′
(z)

zp−1

}
> α (0 ≤ α < p; z ∈ U) ,

Then

Re
{
f(z)
zp

}
>
α

p
+

(
1− α

p

) [
2F1(1, 1; p+ 1;

1
2
)− 1

]
(z ∈ U) .

The result is the best possible.

Remark 3.7. We note that Corollary 3.6 improves the corresponding result obtained
by Lee and Owa [17, Theorem 1] with n = 1.

Remark 3.8. If f ∈ A(p) satisfies Re
{
f
′
(z)/zp−1

}
> α (0 ≤ α < p; z ∈ U), then with

the aid of Corollaries 2 and 4, we deduce that

Re
{
Fδ,p(f)(z)

zp

}
>
α

p
+

(
1− α

p

) [(
2F1(1, 1; p+ 1;

1
2
)− 1

)

+
(

2F1(1, 1; p+ δ + 1;
1
2
)− 1

) (
2−

(
2F1(1, 1; p+ 1;

1
2
)
))]

,

which improve the result of Fukui et al. [8] for p = 1.

Corollary 3.9. Let the function f(z) given by (1.1) satisfy

Re
{
In
p (n− 1, n)f(z)

zp

}
>
α

p
(0 ≤ α < p; z ∈ U) ,

Then

Re
{
Dn+p−1f(z)

zp

}
>
α

p
+

(
1− α

p

) [
2F1(1, 1;n;

1
2
)− 1

]
(z ∈ U) .

The result is the best possible.

Theorem 3.10. Let f(z) ∈ Φ0
p(λ, a, c, A,B) and let the function Fδ,p(f)(z) defined by

(1.10). Then
Iλ
p (a, c)Fδ,p(f)(z)

zp
≺ q(z) ≺ 1 +Az

1 +Bz
, (3.5)

where the function q(z) given by

q(z) =


A

B
+ (1− A

B
)(1 +Bz)−1

2F1(1, 1, p+ δ + 1;
Bz

Bz + 1
) , B 6= 0

1 +
p+ δ

p+ δ + 1
Az , B = 0.

is the best dominant of (3.5). Furthermore,

Re

{
Iλ
p (a, c)Fδ,p(f)(z)

zp

}
> ζ∗ (z ∈ U) , (3.6)
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where

ζ∗ =


A

B
+ (1− A

B
)(1−B)−1

2F1(1, 1; p+ δ + 1;
B

B − 1
) , B 6= 0 ,

1− p+ δ

p+ δ + 1
A , B = 0 .

The estimate in (3.6) is the best possible.

Proof. From (1.10) it follows that

z
(
Iλ
p (a, c)Fδ,p(f)(z)

)′
= (δ + p)Iλ

p (a, c)f(z)− δIλ
p (a, c)Fδ,p(f)(z) . (3.7)

By setting

ϕ(z) =
Iλ
p (a, c)Fδ,p(f)(z)

zp
(z ∈ U) , (3.8)

we note that ϕ(z) is of the form (2.1) and is analytic in U . Differentiating (3.8) with
respect to z and using the identity (3.7) in the resulting equation, we get

ϕ(z) +
zϕ

′
(z)

δ + p
=
Iλ
p (a, c)f(z)

zp
≺ 1 +Az

1 +Bz
(z ∈ U) ,

which with the aid of Lemma 2.1 with γ = δ + p, yields

Iλ
p (a, c)Fδ,p(f)(z)

zp
≺ q(z) = (δ + p)z−(δ+p)

z∫
0

tδ+p−1

(
1 +At

1 +Bt

)
dt . (3.9)

Now the remaining part of Theorem 3.10 follows by employing the techniques that
we used in proving Theorem 3.1 above.

Taking A = 1 − 2α
p (0 ≤ α < p) and B = −1 in Theorem 3.10, we obtain the

following corollary.

Corollary 3.11. If f ∈ A(p) satisfies

Re

{
Iλ
p (a, c)f(z)

zp

}
>
α

p
(0 ≤ α < p; z ∈ U) ,

then

Re

{
Iλ
p (a, c)Fδ,p(f)(z)

zp

}
>
α

p
+

(
1− α

p

) {
2F1(1, 1; p+ δ + 1;

1
2
)− 1

}
(z ∈ U) .

The result is the best possible.

Taking λ = c = 1 and a = p in Corollary 3.11, we get the following corollary
which in turn improves the corresponding result of Fukui et al. [8] for p = 1.

Corollary 3.12. If f ∈ A(p) satisfies

Re

{
f
′
(z)

zp−1

}
> α (0 ≤ α < p; z ∈ U) ,
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then

Re

{
F

′

δ,p(f)(z)
zp−1

}
> α+ (p− α)

{
2F1(1, 1; p+ δ + 1;

1
2
)− 1

}
(z ∈ U) .

The result is the best possible.

Taking λ = c = 1 and a = p+ 1−µ (−∞ < µ < p+ 1, p ∈ N) in Corollary 3.11,
we obtain the following corollary.

Corollary 3.13. If f(z) ∈ A(p) satisfies

Re

{
Ω(µ,p)

z f(z)
zp

}
>
α

p
(0 ≤ α < p;−∞ < µ < p+ 1; p ∈ N ; z ∈ U) ,

then

Re

{
Ω(µ,p)

z Fδ,p(f)(z)
zp

}
>
α

p
+

(
1− α

p

) {
2F1(1, 1; p+ δ + 1;

1
2
)− 1

}
(z ∈ U) .

The result is the best possible.

Theorem 3.14. We have

f ∈ Φ0
p(a, c, A,B) ⇔ Fa−p−1(f)(z) ∈ Φ1

p(a, c, A,B)

Proof. Using the identity (3.7) and

z
(
Iλ
p (a, c)Fδ,p(f)(z)

)′
= (a− 1)Iλ

p (a− 1, c)Fδ,p(f)(z) + (p+ 1− a)Iλ
p (a, c)Fδ,p(f)(z) ,

for δ = a− p− 1, we deduce that

Iλ
p (a, c)f(z) = Iλ

p (a− 1, c)Fa−p−1(f)(z)

and the assertion of Theorem 3.14 follows by using the definition of the class
Φβ

p (a, c, A,B).

Theorem 3.15. If f , given by (1.1), belongs to the class Φβ
p (a, c, A,B), then

|ap+k| ≤
(A−B)(a− 1)k+1

(a− 1 + βk)(c)k

(1)k

(λ+ p)k
(k ≥ 1) . (3.10)

The result is sharp.

Proof. Since f ∈ Φβ
p (a, c, A,B), we have

(1− β)
Iλ
p (a, c)f(z)

zp
+ β

Iλ
p (a− 1, c)f(z)

zp
= p(z) , (3.11)

where p(z) = 1 +
∞∑

k=1

pkz
k ∈ P (A,B). Substituting the power series expansion of

Iλ
p (a, c)f(z), Iλ

p (a− 1, c)f(z) and p(z) in (3.11) and equating the coefficients of zk on
both sides of the resulting equation, we obtain

(a− 1 + βk)(λ+ k)k

(a− 1)k+1

(c)k

(1)k
ap+k = pk (k ≥ 1) . (3.12)
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Using the well-known [1] coefficient estimates

|pk| ≤ (A−B) (k ≥ 1)

in (3.12), we get the required estimate (3.10).
In order to establish the sharpness of (3.10), consider the functions fk(z) defined

by

(1− β)
Iλ
p (a, c)f(z)

zp
+ β

Iλ
p (a− 1, c)f(z)

zp
=

1 +Azk

1 +Bzk
(k ≥ 1) .

Clearly, fk(z) ∈ Φβ
p (λ, a, c, A,B) for each k ≥ 1. It is easy to see that the functions

fk(z) have the expansion

fk(z) = zp +
(A−B)(a− 1)k+1

(a− 1 + βk)(λ+ p)k

(1)k

(c)k
zp+k + ...

showing that the estimates in (3.10) are sharp.
Taking β = λ = c = A = 1, a = p+1−µ, −∞ < µ < p and B = 1

M −1 (M > 1
2 )

in Theorem 3.15, we obtain the following corollary.

Corollary 3.16. If f , given by (1.1), belongs to the class Φp[µ,M ], then

|ap+k| ≤
(

2M−1
M

)
(p− µ)k

(p+ 1)k
(k ≥ 1) .

The result is sharp.

Theorem 3.17. Let f , given by (1.1), belongs to the class Φβ
p (λ, a, c, A,B) and ζ is

any complex number. Then∣∣ap+2 − ζa2
p+1

∣∣ ≤ (A−B)(a− 1)3(1)2
(c)2(λ+ p)2(a− 1 + 2β)

max
{

1 ,∣∣∣∣B + ζ
(A−B)(a− 1)2(λ+ p+ 1)(c+ 1)(a− 1 + 2β)

2c(a+ 1)(λ+ p)(a− 1 + β)2

∣∣∣∣} . (3.13)

The result is sharp.

Proof. From (1.12), we have

(1− β)
Iλ
p (a, c)f(z)

zp
+ β

Iλ
p (a− 1, c)f(z)

zp
− 1

=

[
A−B

{
(1− β)

Iλ
p (a, c)f(z)

zp
+ β

Iλ
p (a− 1, c)f(z)

zp

}]
w(z), (3.14)

where

w(z) =
∞∑

k=1

dkz
k ∈ Ω.

Substituting the power series expansion of Iλ
p (a, c)f(z), Iλ

p (a− 1, c)f(z) and w(z) in
(3.14), and equating the coefficients of z and z2 we obtain

ap+1 =
(A−B)(a− 1)2

(a− 1 + β)(c)(λ+ p)
d1 (3.15)



36 Mohamed Kamal Aouf, Rabha Mohamed El-Ashwah and Ekram Elsayed Ali

and

ap+2 =
2(A−B)(a− 1)3

(a− 1 + 2β)(c)2(λ+ p)2
(d2 −Bd2

1) . (3.16)

Using (2.7), (3.15) and (3.16), we get:∣∣ap+2 − ζa2
p+1

∣∣ =
(A−B)(a− 1)3

(c)2(λ+ p)2(a− 1 + 2β)

∣∣d2 − νd2
1

∣∣ ,
where

ν = B + ζ
(A−B)(a− 1 + 2β)(c+ 1)(λ+ p+ 1)(a− 1)2

2c(a+ 1)(a− 1 + β)2(λ+ p)

Since (2.7) is sharp, (3.13) is also sharp.
Taking β = λ = c = A = 1, a = p+1−µ (−∞ < µ < p) and B = 1

M −1 (M > 1
2 )

in Theorem 3.17, we obtain the following corollary.

Corollary 3.18. If f , given by (1.1), belongs to the class Φp[µ,M ], then

∣∣ap+2 − ζa2
p+1

∣∣ ≤ (
2M−1

M

)
(p− µ)3

(1 + p)2(p+ 2− µ)
max

{
1,

∣∣∣∣∣ 1
M

− 1 + ζ

(
2M−1

M

)
(p− µ)(p+ 2)

(p+ 1− µ)(p+ 1)

}∣∣∣∣∣ .
The result is sharp.

Theorem 3.19. Let f ∈ Φβ
p (a, c, A,B) and g ∈ A(p) with Re

(
g(z)
zp

)
> 1

2 (z ∈ U).

Then h = f ∗ g ∈ Φβ
p (a, c, A,B).

Proof. We have

(1− β)
Iλ
p (a, c)h(z)

zp
+ β

Iλ
p (a− 1, c)h(z)

zp

=

{
(1− β)

Iλ
p (a, c)f(z)

zp
+ β

Iλ
p (a− 1, c)f(z)

zp

}
∗ g(z)
zp

(z ∈ U). (3.17)

Since Re
{
g(z)
zp

}
> 1

2 (z ∈ U) and the function
1 +Az

1 +Bz
is convex (univalent) in U ,

it follows from (3.17) and Lemma 2.2 that h(z) = (f ∗ g)(z) ∈ Φβ
p (a, c, A,B). This

completes the proof of Theorem 3.19.

Corollary 3.20. Let f ∈ Φβ
p (a, c, A,B) and g(z) ∈ A(p) satisfy

Re

{
(1− µ)

g(z)
zp

+ µ
g
′
(z)

pzp−1

}
>

3− 2 2F1(1, 1; p
µ + 1; 1

2 )

2
[
2− 2F1(1, 1; p

µ + 1; 1
2 )

] , (µ > 0; z ∈ U). (3.18)

Then f ∗ g ∈ Φβ
p (a, c, A,B).
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Proof. From Theorem 3.1 (for a = p+1, c = 1, β = µ > 0,A =
2F1(1, 1; p

µ + 1; 1
2 )− 1

2− 2F1(1, 1; p
µ + 1; 1

2 )
and B = −1), condition (3.18) implies

Re
{
g(z)
zp

}
>

1
2

(z ∈ U) .

Using this, it follows from Theorem 3.19, that (f ∗ g)(z) ∈ Φβ
p (a, c, A,B).

Theorem 3.21. If each of the functions f(z) given by (1.1) and

g(z) = zp +
∞∑

k=1

bp+kz
p+k

belongs to the class Φβ
p (λ, a, c, A,B), then so does the function

h(z) = (1− β)Iλ
p (a, c)(f ∗ g)(z) + βIλ

p (a− 1, c)(f ∗ g)(z) .

Proof. Since f ∈ Φβ
p (a, c, A,B), it follows from (3.14) that∣∣∣∣∣(1− β)

Iλ
p (a, c)f(z)

zp
+ β

Iλ
p (a− 1, c)f(z)

zp
− 1

∣∣∣∣∣
<

∣∣∣∣∣A−B

{
(1− β)

Iλ
p (a, c)f(z)

zp
+ β

Iλ
p (a− 1, c)f(z)

zp

}∣∣∣∣∣ ,
which is equivalent to∣∣∣∣∣(1− β)

Iλ
p (a, c)f(z)

zp
+ β

Iλ
p (a− 1, c)f(z)

zp
− ξ

∣∣∣∣∣ < η (z ∈ U) , (3.19)

where ξ =
1−AB

1−B2
and η =

A−B

1−B2
. It is known [21] that H(z) =

∞∑
k=0

hkz
k is analytic

in U and |H(z)| ≤M , then
∞∑

k=0

|hk|2 ≤M2 . (3.20)

Applying (3.18) to (3.19), we get

(1− ξ)2 +
∞∑

k=1

{
(a− 1 + βk)(c)k(λ+ p)k

(a− 1)k+1(1)k

}2

|ap+k|2 ≤ η2 ,

that is, that
∞∑

k=1

{
(a− 1 + βk)(c)k(λ+ k)k

(a− 1)k+1(1)k

}2

|ap+k|2 ≤
(A−B)2

1−B2
. (3.21)

Similarly, we have
∞∑

k=1

{
(a− 1 + βk)(c)k(λ+ k)k

(a− 1)k+1(1)k

}2

|bp+k|2 ≤
(A−B)2

1−B2
. (3.22)
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Now, for |z| = r < 1, by applying Cauchy-Schwarz inequality, we find that∣∣∣∣∣(1− β)
Iλ
p (a, c)h(z)

zp
+ β

Iλ
p (a− 1, c)h(z)

zp
− ξ

∣∣∣∣∣
2

=

∣∣∣∣∣(1− ξ) +
∞∑

k=1

{
(a− 1 + βk)(c)k(λ+ p)k

(a− 1)k+1(1)k

}2

ap+kbp+kz
k

∣∣∣∣∣
2

≤ (1− ξ)2 + 2(1− ξ)
∞∑

k=1

{
(a− 1 + βk)(c)k(λ+ p)k

(a− 1)k+1(1)k

}2

|ap+k| |bp+k| rk

+

∣∣∣∣∣
∞∑

k=1

{
(a− 1 + βk)(c)k(λ+ p)k

(a− 1)k+1(1)k

}2

ap+kbp+kz
k

∣∣∣∣∣
2

≤ (1− ξ)2 + 2(1− ξ)

[ ∞∑
k=1

{
(a− 1 + βk)(c)k(λ+ p)k

(a− 1)k+1(1)k

}2

|ap+k|2 rk

] 1
2

.

.

[ ∞∑
k=1

{
(a− 1 + βk)(c)k(λ+ p)k

(a− 1)k+1(1)k

}2

|bp+k|2 rk

] 1
2

+[ ∞∑
k=1

{
(a− 1 + βk)(c)k(λ+ p)k

(a− 1)k+1(1)k

}2

|ap+k|2 rk

]
.

.

[ ∞∑
k=1

{
(a− 1 + βk)(c)k(λ+ p)k

(a− 1)k+1(1)k

}2

|bp+k|2 rk

]

≤ (1− ξ)2 + 2(1− ξ)

[ ∞∑
k=1

{
(a− 1 + βk)(c)k(λ+ p)k

(a− 1)k+1(1)k

}2

|ap+k|2
] 1

2

.

.

[ ∞∑
k=1

{
(a− 1 + βk)(c)k(λ+ p)k

(a− 1)k+1(1)k

}2

|bp+k|2
] 1

2

+[ ∞∑
k=1

{
(a− 1 + βk)(c)k(λ+ p)k

(a− 1)k+1(1)k

}2

|ap+k|2
]
.

.

[ ∞∑
k=1

{
(a− 1 + βk)(c)k(λ+ p)k

(a− 1)k+1(1)k

}2

|bp+k|2
]

≤ (1− ξ)2 + 2(1− ξ)
(A−B)2

1−B2
+

(A−B)4

(1−B2)2

=
{
B(A−B)

1−B2

}2

+ 2
B(A−B)3

(1−B2)2
+

(A−B)4

(1−B2)2
=
A2(A−B)2

(1−B2)2
< η2,

by using (3.21) and (3.22).
Thus, again with the aid of (3.20), we have h ∈ Φβ

p (λ, a, c, A,B).
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Theorem 3.22. Let f ∈ Φβ
p (λ, a, c, A,B) (β > 0) and

Sn(z) = zp +
n−1∑
k=1

ap+kz
p+k (n ≥ 2).

Then for z ∈ U , we have

Re



z∫
0

t−p(Iλ
p (a, c)Sn(t))dt

z


> η(β, a,A,B) ,

where η(β, a,A,B) is defined as in Theorem 3.1.

Proof. Singh and Singh [27] prove that

Re

{
1 +

n−1∑
k=1

zk

k + 1

}
>

1
2

(z ∈ U) . (3.23)

Writing
z∫

0

t−pIλ
p (a, c)Sn(t)dt

z
=
Iλ
p (a, c)f(z)

zp
∗

{
1 +

n−1∑
k=1

zk

k + 1

}
and making use of (3.23), Theorem 3.1 and Lemma 2.2, the assertion of Theorem 3.22
follows at once.

Taking β = λ = c = 1, a = p + 1, A = 1 − 2α
p (0 ≤ α < p) and B = −1 in

Theorem 3.22, we obtain the following corollary.

Corollary 3.23. Let f ∈ A(p) satisfies Re
{

f
′
(z)

zp−1

}
> α (0 ≤ α < p) in U , then

Re



z∫
0

t−pSn(t)dt

z

 >
α

p
+

(
1− α

p

) {
2F1

(
1, 1; p+ 1;

1
2

)
− 1

}
(z ∈ U) .

Acknowledgments. The authors thank the referees for their valuable suggestions to
improve the paper.

References

[1] Anh, V., K-fold symmetric starlike univalent functions, Bull. Austral. Math. Soc.,
32(1985), 419-436.



40 Mohamed Kamal Aouf, Rabha Mohamed El-Ashwah and Ekram Elsayed Ali

[2] Aouf, M.K., On certain subclass of analytic p-valent functions II, Math. Japon.,
34(1989), no. 5, 683-691.

[3] Aouf, M.K., On new criterion for univalent functions of order alpha, Rend. di Mat., Ser.
VII, 11 Roma, 1991, 47-59.

[4] Aouf, M.K., Chen, M.P., On the radius of convexity of a certain class of p-valent analytic
functions, Proc. Meeting Math. Soc., 1994, 189-206.

[5] Bulboaca, T., Differential Subordinations and Superordinations, Recent Results, House
of Scientific Book Publ., Cluj-Napoca, 2005.

[6] Cho, N.E., Kwon, O.S., Srivastava, H.M., Inclusion relationships and argument prop-
erties for certain subclass of multivalent functions associated with a family of linear
operators, J. Math. Anal. Appl., 292(2004), 470-483.

[7] Choi, J.H., Saigo, M., Srivastava, H.M., Some inclusion properties of a certain family
of integral operators, J. Math. Anal. Appl., 276(2002), 432-445.

[8] Fukui, S., Kim, J.A., Srivastava, H.M., On certain subclass of univalent functions by
some integral operators, Math. Japon., 50(1999), 359-370.

[9] Goel, R.M., A class of analytic functions whose derivative have positive real part in the
unit disc, Indian J. Math., 13(1971), no. 3, 141-145.

[10] Goel, R.M., Radius of convexity of convex combination of certain class of analytic func-
tions, Tamkang J. Math., 10(1979), no. 1, 75-79.

[11] Hallenbeck, D.Z., Ruscheweyh, S., Subordination by convex functions, Proc. Amer. Math.
Soc., 52(1975), 191-195.

[12] Juneja, O.P., Mogra, M.L., A class of univalent functions, Bull. Sci. Math. 2 Ser.,
103(1979), 435-447.

[13] Keogh, F.R., Merkes, E.P., A coefficient inequality for certain classes of analytic func-
tions, Proc. Amer. Math. Soc., 20(1969), 8-12.

[14] Kumar, V., On a new criterion for univalent functions, Demonstratio Math., 17(1984),
no. 4, 875-886.

[15] Kumar, V., Shukla, S.L., Multivalent functions defined by Ruscheweyh derivatives, I and
II, Indian J. Pure Appl. Math., 15(1984), no. 11, 1216-1227, 1228-1238.

[16] Liu, J.L., Noor, K.I., Some properties of Noor integral operator, J. Natur. Geometry,
21(2002), 81-90.

[17] Lee, S.K., Owa, S., A subclass of p-valently close-to-convex functions of order α, Appl.
Math. Letters, 5(1992), no. 5, 3-6.

[18] Miller, S.S., Mocanu, P.T., Second order differential inequalities in the complex plane,
J. Math. Anal. Appl., 65(1978), 289-305.

[19] Miller, S.S., Mocanu, P.T., Differential Subodination: Theory and Applications, Series in
Monographs and Texbooks in Pure and Appl. Math. No. 225 Marcel Dekker, Inc., New
York, 2000.

[20] Mogra, M.L., On a class of univalent functions, Riv. Mat. Univ. Parma, 4(1981), no. 7,
163-172.

[21] Nehari, Z., Conformal Mapping, McGraw Hill, New York, 1952.

[22] Obradovic, M., On certain inequalities for some regular functions in |z| < 1, Internat.
J. Math. Math. Sci., 8(1985), 671-681.

[23] Owa, S., On the distortion theorems I, Kyungpook Math. J., 18(1978), 53-59.



Some properties of certain class of multivalent analytic functions 41

[24] Owa, S., On certain subclass of analytic p-valent functions, Math. Japon., 29(1984), no.
2, 191-198.

[25] Owa, S., Srivastava, H.M., Univalent and starlike generalized hypergeometric functions,
Canada. J. Math., 39(1987), 1057-1077.

[26] Patel, J., Mishra, A.K., On certain subclasses of multivalent functions associated with
an extended fractional differintegral operator, J. Math. Anal. Appl., 332(2007), 109-122.

[27] Singh, R., Singh, S., Convolution properties of a class of starlike functions, Proc. Amer.
Math. Soc., 108(1989), 145-152.

[28] Sohi, N.S., A class of p-valent analytic functions, Indian J. Pure Appl. Math., 10(1979),
no. 7, 826-834.

[29] Srivastava, H.M., Aouf, M.K., A certain fractional derivative operator and its application
to new class of analytic and multivalent functions with negative coefficients I and II, J.
Math. Anal. Appl., 171(1992), 1-13, 192(1995), 673-688.

[30] Whittaker, E.T., Watson, G.N., A Course of Modern Analysis: An Introduction to the
General Theory of Infinite Processes and of Analytic Functions; With an Account of
the Principal Transcendental Functions, Fourth Edition, Cambridge University Press,
Cambridge, 1927.

Mohamed Kamal Aouf
Department of Mathematics, Faculty of Science
Mansoura University, Mansoura 35516, Egypt
e-mail: mkaouf127@yahoo.com

Rabha Mohamed El-Ashwah
Department of Mathematics, Faculty of Science
Mansoura University, Mansoura 35516, Egypt
e-mail: r elashwah@yahoo.com

Ekram Elsayed Ali
Department of Mathematics, Faculty of Science
Mansoura University, Mansoura 35516, Egypt
e-mail: ekram 008eg@yahoo.com


