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On skew group algebras and symmetric algebras

Constantin Cosmin Todea

Abstract. We identify and define a class of algebras which we call inv-symm
algebras and prove that are principally symmetric. Two important examples are
given, and we prove that the skew group algebra associated to these algebras
remains inv-symm.
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1. Inv-symm algebras

Following [2] we recall the concept of an inverse semigroup and we use basic
results without comments. A semigroup (S,-) is inverse if for any s € S there is a
unique § (named inverse) such that s-5-s = s and 5-s-§ = 5. By [2 1.1, Theorem 3] 1f
(S, -) is inverse then all idempotents of S commutes and we have § = s and s - st=1-5
for any s € S. We denote usually by k a commutative ring and by A a k-algebra. If
B is a subset of A with 0 ¢ B, we denote by B* the set BU{0} and by Idemp(B) the
set of all idempotents of B. The following definition is suggested by the ideas from
[3] and by methods used to prove that the group algebra is a symmetric algebra.

Definition 1.1. A k-algebra A is inv-symm if there is a finite k-basis B such that:

(1) (B%,-) is an inverse semigroup.
(2) Fort,s € B we havet-s# 0 if and only if s-S=1-t.

Example 1.2. If A = kG is the group algebra over a finite group G then the finite set
B = (@ is a k-basis which satisfies conditions from Definition 1.1. We have in this case
=51 t-s#0ands-§=1-tforany t,s € B.

Example 1.3. If A = End;(M), where M is a kG-lattice (that is a finitely generated,
free k-module with a G-stable finite basis X), then B = {b,, | =,y € X} with
bpy: M — M, byy(2) =z if 2=y, and b, ,(2) = 0 if z # y, satisfies the conditions
from 1.1. It requires some computation to verify that b, , 0 by, 4, = 0if y # x1, and
be,y 0 by, y, = by y, if y =x1. We have that b, , € Idemp(B) if and only if z = y.
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Remark 1.4. Moreover the above two examples are also G-algebras with G-stable
basis. This suggest that we can define a class of symmetric G-algebras and to analyze
the skew group algebra in this case.

Lemma 1.5. Let A be an inv-symm k-algebra with basis B satisfying Definition 1.1
and t,s € B. The following statements are true:
a) For 0 € B! we have 0 =0 and s € B if and only if § € B.
b) For all s € B we have s -5 € Idemp(B) and 5-s € Idemp(B). Particularly
Idemp(B) # 0.
c) Ift-s#0 andt-s € ldemp(B) thent =75.

Proof. a) For 0 is easy to check. Let s € B, then there is a unique 5 € B¥ with the
properties of the inverse element. Suppose that § = 0 then 5= 6, which gives
s = 0, a contradiction.
b) For s € B we have 5 € B such that s-5-s=sand5-s-5=3. Now s-5€ B
(sinceif s-5=0=s=0¢ B) and (s-5)-(s-8) =(s-5-8)-§=
¢) Suppose that t-s # 0 and t-s € Idemp(B). Then s-5=1-t and ¢ -
We multiply the last relation with § on the right and obtain

t-s-t-s-S=t-s-S§=t-s-t-t-t=t-t-t=t-s-t="t

Similarly we obtain s-t-s=1t¢, thust =s.

From [1] we recall the definition of a symmetric algebra. A k-algebra A is called
symmetric if it is finitely generated and projective as k-module and thereis 7: A — k
a central form (that is k-linear map with 7(a - a’) = 7(a’ - @) for all a,a’ € A), which
induces an isomorphism of A — A-bimodules

7 A A% F(a)(b) = 7(a-b),

where a,b € A and A* is the k-dual. 7 is called symmetric form of A and A is
principally symmetric if 7 is onto.

Theorem 1.6. If A is an inv-symm k-algebra then A is principally symmetric. In
particular it is symmetric.

Proof. By Definition 1.1 A is a finitely generated k-module and free, thus projective.
We define the following k-linear form on the basis B

[ 1k,s € Idemp(B)
75(5) = { Ojc s ¢ Idem;)(B)

From Lemma 1.5, b) it follows that 7p is not the zero map and 75 is a k-linear form.
We prove that it is a central form, that is 75(s - t) = 75(t - s) where t,s € B, by
considering the cases:

-Ift-s#0and t-s € Idemp(B), by Lemma 1.5, ¢) it follows that § = ¢ and
then

TB:A—k,

TB(S . /S\) = 1k: = TB(§~ S).
-Ift-s#0and t-s € B\ Idemp(B) then 75(t-s) = 0. Now, if s-t # 0 and
s -t € Idemp(B) by Lemma 1.5, ¢) we get that s = t, which is a contradiction with
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Tp(t-s) = 0. So we have two possibilities: s-t =0, or s+t # 0 and s - ¢ ¢ Idemp(DB).
In both subcases 75(s - t) = 0.

-Ift-s =0 then 75(¢-s) = 0, and the same analyze to the second case gives us
equality.

7p induces the following A — A-bimodule homomorphism 75 : A — A* defined
by

75(t)(s) = TB(t - s)
for any t,s € B.

First we prove that 75 is injective. Let t1,t5 € B such that 75(t1-s) = 75(t2 - 5)
for any s € B. We choose s = #; and obtain that TB(t2 - ﬁ) = 1;. It follows that
to-t1#£0and to -1, € Idemp(B). By Lemma 1.5, ¢) we obtain that t5 = 1=t

For surjectivity let A € A* and define a =}, 5 A() .t e A. Then for s € B

75(a)(s) = ) AMD)7s(t- 5).

teB
Since 75(t - s) = 1, if and only if s = ¢ we obtain that
T5(a)(s) = A(s) - B(5- s) = A(s).
This concludes the proof. O

2. Skew group algebras

In this section we will investigate the skew group algebra associated to a G-
algebra which is an inv-symm algebra, where G is a finite group. The Remark 1.4 is
the starting point of the next definition.

Definition 2.1. A G-algebra A is called G-inv-symm if it is inv-symm, with the basis
B (from Definition 1.1) G-stable.

It is easy to show, using Theorem 1.6, that any G-inv-symm algebra is G-
permutation and principally symmetric. If A is a G-algebra we denote the action
of an g € G on a € A by Ya.

Theorem 2.2. Let G be a finite group and A a G-algebra. If A is G-inv-symm then
the skew group algebra, denoted A x G, is inv-symm. In particular it is principally
symmetric.

Proof. We remind the definition of a skew group algebra. The skew group algebra
A G is the free A-module of basis

{axglae A geGY,
where a x g is a notation and the product is given by
(axg)(bxh)=a-9bxgh.
Since B is the k-basis of A it is easy to check that the set
BxG={s*xg|se€ B,geG}
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is a k-basis of the skew group algebra. Moreover it is a finite semigroup with zero,
with the product defined above, since B is G-stable. Next we verify the conditions
from Definition 1.1:

(1). We prove that the inverse of s x g € Bx G is the element

—

sxg= 9 Sxg e BxG.
We have
(s%g) (7 Sxg N(sxg)=(s-Sxlg)(sxg)=5-5-Csxg=s*g.
Similarly we prove the other statement. Suppose now that there is t x h € B x G such
that (s* g)(t*h)(s*g) = s*g. Then we have that
(s-9txgh)(sxg) =sxg=s5-9t-Isxghg=s5%g.

We have that h = gL and t = 9 '3, thus it is unique.
(2). Let sxg,txh € BxG. We have that (txh)(sxg) # 0 if and only if ¢-"s # 0.
We also have that

(s%g) (7 Fxg )= (" FTxh )txh) s Fxg="" T txlg e
5-5= hil(tA~ tyehshs=tt
But since A is G-inv-symm the last condition is equivalent to ¢ - s # 0, by Definition

1.1, statement(2). O
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