On skew group algebras and symmetric algebras

Constantin Cosmin Todea

Abstract. We identify and define a class of algebras which we call inv-symm algebras and prove that are principally symmetric. Two important examples are given, and we prove that the skew group algebra associated to these algebras remains inv-symm.

Mathematics Subject Classification (2010): 16SXX.

Keywords: inverse semigroup, symmetric algebra, skew group algebra.

1. Inv-symm algebras

Following [2] we recall the concept of an inverse semigroup and we use basic results without comments. A semigroup (S, \cdot) is *inverse* if for any $s \in S$ there is a unique \hat{s} (named inverse) such that $s \cdot \hat{s} \cdot s = s$ and $\hat{s} \cdot s \cdot \hat{s} = \hat{s}$. By [2, 1.1, Theorem 3], if (S, \cdot) is inverse then all idempotents of S commutes and we have $\hat{s} = s$ and $\hat{s} \cdot \hat{t} = \hat{t} \cdot \hat{s}$ for any $s \in S$. We denote usually by k a commutative ring and by A a k-algebra. If B is a subset of A with $0 \notin B$, we denote by B^{\sharp} the set $B \cup \{0\}$ and by Idemp(B) the set of all idempotents of B. The following definition is suggested by the ideas from [3] and by methods used to prove that the group algebra is a symmetric algebra.

Definition 1.1. A k-algebra A is inv-symm if there is a finite k-basis B such that:

- (1) (B^{\sharp}, \cdot) is an inverse semigroup.
- (2) For $t, s \in B$ we have $t \cdot s \neq 0$ if and only if $s \cdot \hat{s} = \hat{t} \cdot t$.

Example 1.2. If A = kG is the group algebra over a finite group G then the finite set B = G is a k-basis which satisfies conditions from Definition 1.1. We have in this case $\hat{s} = s^{-1}, t \cdot s \neq 0$ and $s \cdot \hat{s} = \hat{t} \cdot t$ for any $t, s \in B$.

Example 1.3. If $A = \operatorname{End}_k(M)$, where M is a kG-lattice (that is a finitely generated, free k-module with a G-stable finite basis X), then $B = \{b_{x,y} \mid x, y \in X\}$ with $b_{x,y} : M \to M$, $b_{x,y}(z) = x$ if z = y, and $b_{x,y}(z) = 0$ if $z \neq y$, satisfies the conditions from 1.1. It requires some computation to verify that $b_{x,y} \circ b_{x_1,y_1} = 0$ if $y \neq x_1$, and $b_{x,y} \circ b_{x_1,y_1} = b_{x,y_1}$ if $y = x_1$. We have that $b_{x,y} \in \operatorname{Idemp}(B)$ if and only if x = y.

Remark 1.4. Moreover the above two examples are also G-algebras with G-stable basis. This suggest that we can define a class of symmetric G-algebras and to analyze the skew group algebra in this case.

Lemma 1.5. Let A be an inv-symm k-algebra with basis B satisfying Definition 1.1 and $t, s \in B$. The following statements are true:

- a) For $0 \in B^{\sharp}$ we have $\widehat{0} = 0$ and $s \in B$ if and only if $\widehat{s} \in B$.
- b) For all $s \in B$ we have $s \cdot \hat{s} \in \text{Idemp}(B)$ and $\hat{s} \cdot s \in \text{Idemp}(B)$. Particularly $\text{Idemp}(B) \neq \emptyset$.
- c) If $t \cdot s \neq 0$ and $t \cdot s \in \text{Idemp}(B)$ then $t = \hat{s}$.
- *Proof.* a) For 0 is easy to check. Let $s \in B$, then there is a unique $\hat{s} \in B^{\sharp}$ with the properties of the inverse element. Suppose that $\hat{s} = 0$ then $\hat{s} = \hat{0}$, which gives s = 0, a contradiction.
 - b) For $s \in B$ we have $\hat{s} \in B^{\sharp}$ such that $s \cdot \hat{s} \cdot s = s$ and $\hat{s} \cdot s \cdot \hat{s} = \hat{s}$. Now $s \cdot \hat{s} \in B$ (since if $s \cdot \hat{s} = 0 \Rightarrow s = 0 \notin B$) and $(s \cdot \hat{s}) \cdot (s \cdot \hat{s}) = (s \cdot \hat{s} \cdot s) \cdot \hat{s} = s \cdot \hat{s}$.
 - c) Suppose that $t \cdot s \neq 0$ and $t \cdot s \in \text{Idemp}(B)$. Then $s \cdot \hat{s} = \hat{t} \cdot t$ and $t \cdot s \cdot t \cdot s = t \cdot s$. We multiply the last relation with \hat{s} on the right and obtain

$$t \cdot s \cdot t \cdot s \cdot \hat{s} = t \cdot s \cdot \hat{s} \Rightarrow t \cdot s \cdot t \cdot \hat{t} \cdot t = t \cdot \hat{t} \cdot t \Rightarrow t \cdot s \cdot t = t.$$

Similarly we obtain $s \cdot t \cdot s = t$, thus $t = \hat{s}$.

From [1] we recall the definition of a symmetric algebra. A k-algebra A is called symmetric if it is finitely generated and projective as k-module and there is $\tau : A \to k$ a central form (that is k-linear map with $\tau(a \cdot a') = \tau(a' \cdot a)$ for all $a, a' \in A$), which induces an isomorphism of A - A-bimodules

$$\widehat{\tau}: A \to A^*, \ \widehat{\tau}(a)(b) = \tau(a \cdot b),$$

where $a, b \in A$ and A^* is the k-dual. τ is called symmetric form of A and A is principally symmetric if τ is onto.

Theorem 1.6. If A is an inv-symm k-algebra then A is principally symmetric. In particular it is symmetric.

Proof. By Definition 1.1 A is a finitely generated k-module and free, thus projective. We define the following k-linear form on the basis B

$$\tau_B : A \to k, \quad \tau_B(s) = \begin{cases} 1_k, s \in \text{Idemp}(B) \\ 0, s \notin \text{Idemp}(B) \end{cases}$$

From Lemma 1.5, b) it follows that τ_B is not the zero map and τ_B is a k-linear form. We prove that it is a central form, that is $\tau_B(s \cdot t) = \tau_B(t \cdot s)$ where $t, s \in B$, by considering the cases:

- If $t \cdot s \neq 0$ and $t \cdot s \in \text{Idemp}(B)$, by Lemma 1.5, c) it follows that $\hat{s} = t$ and then

$$\tau_B(s \cdot \hat{s}) = 1_k = \tau_B(\hat{s} \cdot s).$$

- If $t \cdot s \neq 0$ and $t \cdot s \in B \setminus \text{Idemp}(B)$ then $\tau_B(t \cdot s) = 0$. Now, if $s \cdot t \neq 0$ and $s \cdot t \in \text{Idemp}(B)$ by Lemma 1.5, c) we get that $s = \hat{t}$, which is a contradiction with

 $\tau_B(t \cdot s) = 0$. So we have two possibilities: $s \cdot t = 0$, or $s \cdot t \neq 0$ and $s \cdot t \notin \text{Idemp}(B)$. In both subcases $\tau_B(s \cdot t) = 0$.

- If $t \cdot s = 0$ then $\tau_B(t \cdot s) = 0$, and the same analyze to the second case gives us equality.

 τ_B induces the following A - A-bimodule homomorphism $\widehat{\tau_B} : A \to A^*$ defined by

$$\widehat{\tau_B}(t)(s) = \tau_B(t \cdot s)$$

for any $t, s \in B$.

First we prove that $\widehat{\tau}_B$ is injective. Let $t_1, t_2 \in B$ such that $\tau_B(t_1 \cdot s) = \tau_B(t_2 \cdot s)$ for any $s \in B$. We choose $s = \hat{t_1}$ and obtain that $\tau_B(t_2 \cdot \hat{t_1}) = 1_k$. It follows that $t_2 \cdot \hat{t_1} \neq 0$ and $t_2 \cdot \hat{t_1} \in \text{Idemp}(B)$. By Lemma 1.5, c) we obtain that $t_2 = \hat{\hat{t_1}} = t_1$. For surjectivity let $\lambda \in A^*$ and define $a = \sum_{t \in B} \lambda(t) \cdot \hat{t} \in A$. Then for $s \in B$

$$\widehat{\tau_B}(a)(s) = \sum_{t \in B} \lambda(t) \tau_B(\widehat{t} \cdot s).$$

Since $\tau_B(\hat{t} \cdot s) = 1_k$ if and only if s = t we obtain that

$$\widehat{\tau_B}(a)(s) = \lambda(s) \cdot \tau_B(\widehat{s} \cdot s) = \lambda(s).$$

This concludes the proof.

2. Skew group algebras

In this section we will investigate the skew group algebra associated to a Galgebra which is an inv-symm algebra, where G is a finite group. The Remark 1.4 is the starting point of the next definition.

Definition 2.1. A G-algebra A is called G-inv-symm if it is inv-symm, with the basis B (from Definition 1.1) G-stable.

It is easy to show, using Theorem 1.6, that any G-inv-symm algebra is Gpermutation and principally symmetric. If A is a G-algebra we denote the action of an $g \in G$ on $a \in A$ by ${}^{g}a$.

Theorem 2.2. Let G be a finite group and A a G-algebra. If A is G-inv-symm then the skew group algebra, denoted $A \star G$, is inv-symm. In particular it is principally symmetric.

Proof. We remind the definition of a skew group algebra. The skew group algebra $A \star G$ is the free A-module of basis

$$\{a \star g \mid a \in A, g \in G\}$$

where $a \star g$ is a notation and the product is given by

$$(a \star g)(b \star h) = a \cdot {}^{g}b \star gh$$

Since B is the k-basis of A it is easy to check that the set

$$B \star G = \{s \star g \mid s \in B, g \in G\}$$

is a k-basis of the skew group algebra. Moreover it is a finite semigroup with zero, with the product defined above, since B is G-stable. Next we verify the conditions from Definition 1.1:

(1). We prove that the inverse of $s \star g \in B \star G$ is the element

$$\widehat{s \star g} = {}^{g^{-1}}\widehat{s} \star g^{-1} \in B \star G.$$

We have

$$(s \star g)(^{g^{-1}}\widehat{s} \star g^{-1})(s \star g) = (s \cdot \widehat{s} \star 1_G)(s \star g) = s \cdot \widehat{s} \cdot {}^{1_G}s \star g = s \star g.$$

Similarly we prove the other statement. Suppose now that there is $t \star h \in B \star G$ such that $(s \star g)(t \star h)(s \star g) = s \star g$. Then we have that

$$(s \cdot {}^{g}t \star gh)(s \star g) = s \star g \Rightarrow s \cdot {}^{g}t \cdot {}^{gh}s \star ghg = s \star gs$$

We have that $h = g^{-1}$ and $t = g^{-1}\hat{s}$, thus it is unique.

(2). Let $s \star g, t \star h \in B \star G$. We have that $(t \star h)(s \star g) \neq 0$ if and only if $t \cdot h s \neq 0$. We also have that

$$(s \star g)(^{g^{-1}}\widehat{s} \star g^{-1}) = (^{h^{-1}}\widehat{t} \star h^{-1})(t \star h) \Leftrightarrow s \cdot \widehat{s} \star g = ^{h^{-1}}\widehat{t} \cdot ^{h^{-1}} t \star 1_G \Leftrightarrow s \cdot \widehat{s} = ^{h^{-1}}(\widehat{t} \cdot t) \Leftrightarrow ^h s \cdot ^h \widehat{s} = \widehat{t} \cdot t.$$

But since A is G-inv-symm the last condition is equivalent to $t \cdot {}^{h}s \neq 0$, by Definition 1.1, statement(2).

Acknowledgements. This work was possible with the financial support of the Sectoral Operational Program for Human Resources Development 2007-2013, co-financed by the European Social Fund, within the project POSDRU 89/1.5/S/60189 with the title "Postdoctoral Programs for Sustainable Development in a Knowledge Based Society".

References

- Broué, M., Higman's criterion revisited, Michigan Math. J. Volume, 58(2009), no.1, 125-179.
- [2] Lawson, M.V., *Inverse semigroups*, World Scientific Publishing Company, Singapore, 1998.
- [3] Linckelmann, M., On inverse categories and transfer in cohomology, Sky Conference Proceedings, to appear, 2009.

Constantin Cosmin Todea Technical University Department of Mathematics 25, Str. G. Bariţiu 400027, Cluj-Napoca, Romania e-mail: Constantin.Todea@math.utcluj.ro