On skew group algebras and symmetric algebras

Constantin Cosmin Todea

Abstract

We identify and define a class of algebras which we call inv-symm algebras and prove that are principally symmetric. Two important examples are given, and we prove that the skew group algebra associated to these algebras remains inv-symm.

Mathematics Subject Classification (2010): 16SXX.
Keywords: inverse semigroup, symmetric algebra, skew group algebra.

1. Inv-symm algebras

Following [2] we recall the concept of an inverse semigroup and we use basic results without comments. A semigroup (S, \cdot) is inverse if for any $s \in S$ there is a unique \widehat{s} (named inverse) such that $s \cdot \widehat{s} \cdot s=s$ and $\widehat{s} \cdot s \cdot \widehat{s}=\widehat{s}$. By [2, 1.1, Theorem 3], if (S, \cdot) is inverse then all idempotents of S commutes and we have $\widehat{\widehat{s}}=s$ and $\widehat{s \cdot t}=\widehat{t} \cdot \widehat{s}$ for any $s \in S$. We denote usually by k a commutative ring and by A a k-algebra. If B is a subset of A with $0 \notin B$, we denote by B^{\sharp} the set $B \cup\{0\}$ and by $\operatorname{Idemp}(B)$ the set of all idempotents of B. The following definition is suggested by the ideas from [3] and by methods used to prove that the group algebra is a symmetric algebra.

Definition 1.1. $A k$-algebra A is inv-symm if there is a finite k-basis B such that:
(1) $\left(B^{\sharp}, \cdot\right)$ is an inverse semigroup.
(2) For $t, s \in B$ we have $t \cdot s \neq 0$ if and only if $s \cdot \hat{s}=\widehat{t} \cdot t$.

Example 1.2. If $A=k G$ is the group algebra over a finite group G then the finite set $B=G$ is a k-basis which satisfies conditions from Definition 1.1. We have in this case $\widehat{s}=s^{-1}, t \cdot s \neq 0$ and $s \cdot \widehat{s}=\widehat{t} \cdot t$ for any $t, s \in B$.

Example 1.3. If $A=\operatorname{End}_{k}(M)$, where M is a $k G$-lattice (that is a finitely generated, free k-module with a G-stable finite basis X), then $B=\left\{b_{x, y} \mid x, y \in X\right\}$ with $b_{x, y}: M \rightarrow M, b_{x, y}(z)=x$ if $z=y$, and $b_{x, y}(z)=0$ if $z \neq y$, satisfies the conditions from 1.1. It requires some computation to verify that $b_{x, y} \circ b_{x_{1}, y_{1}}=0$ if $y \neq x_{1}$, and $b_{x, y} \circ b_{x_{1}, y_{1}}=b_{x, y_{1}}$ if $y=x_{1}$. We have that $b_{x, y} \in \operatorname{Idemp}(B)$ if and only if $x=y$.

Remark 1.4. Moreover the above two examples are also G-algebras with G-stable basis. This suggest that we can define a class of symmetric G-algebras and to analyze the skew group algebra in this case.

Lemma 1.5. Let A be an inv-symm k-algebra with basis B satisfying Definition 1.1 and $t, s \in B$. The following statements are true:
a) For $0 \in B^{\sharp}$ we have $\widehat{0}=0$ and $s \in B$ if and only if $\widehat{s} \in B$.
b) For all $s \in B$ we have $s \cdot \widehat{s} \in \operatorname{Idemp}(B)$ and $\widehat{s} \cdot s \in \operatorname{Idemp}(B)$. Particularly $\operatorname{Idemp}(B) \neq \emptyset$.
c) If $t \cdot s \neq 0$ and $t \cdot s \in \operatorname{Idemp}(B)$ then $t=\widehat{s}$.

Proof. a) For 0 is easy to check. Let $s \in B$, then there is a unique $\widehat{s} \in B^{\sharp}$ with the properties of the inverse element. Suppose that $\widehat{s}=0$ then $\widehat{\widehat{s}}=\widehat{0}$, which gives $s=0$, a contradiction.
b) For $s \in B$ we have $\widehat{s} \in B^{\sharp}$ such that $s \cdot \widehat{s} \cdot s=s$ and $\widehat{s} \cdot s \cdot \widehat{s}=\widehat{s}$. Now $s \cdot \widehat{s} \in B$ (since if $s \cdot \widehat{s}=0 \Rightarrow s=0 \notin B)$ and $(s \cdot \widehat{s}) \cdot(s \cdot \widehat{s})=(s \cdot \widehat{s} \cdot s) \cdot \widehat{s}=s \cdot \widehat{s}$.
c) Suppose that $t \cdot s \neq 0$ and $t \cdot s \in \operatorname{Idemp}(B)$. Then $s \cdot \widehat{s}=\widehat{t} \cdot t$ and $t \cdot s \cdot t \cdot s=t \cdot s$. We multiply the last relation with \widehat{s} on the right and obtain

$$
t \cdot s \cdot t \cdot s \cdot \widehat{s}=t \cdot s \cdot \widehat{s} \Rightarrow t \cdot s \cdot t \cdot \widehat{t} \cdot t=t \cdot \widehat{t} \cdot t \Rightarrow t \cdot s \cdot t=t
$$

Similarly we obtain $s \cdot t \cdot s=t$, thus $t=\widehat{s}$.

From [1] we recall the definition of a symmetric algebra. A k-algebra A is called symmetric if it is finitely generated and projective as k-module and there is $\tau: A \rightarrow k$ a central form (that is k-linear map with $\tau\left(a \cdot a^{\prime}\right)=\tau\left(a^{\prime} \cdot a\right)$ for all $a, a^{\prime} \in A$), which induces an isomorphism of $A-A$-bimodules

$$
\widehat{\tau}: A \rightarrow A^{*}, \widehat{\tau}(a)(b)=\tau(a \cdot b)
$$

where $a, b \in A$ and A^{*} is the k-dual. τ is called symmetric form of A and A is principally symmetric if τ is onto.
Theorem 1.6. If A is an inv-symm k-algebra then A is principally symmetric. In particular it is symmetric.

Proof. By Definition $1.1 A$ is a finitely generated k-module and free, thus projective. We define the following k-linear form on the basis B

$$
\tau_{B}: A \rightarrow k, \quad \tau_{B}(s)=\left\{\begin{array}{l}
1_{k}, s \in \operatorname{Idemp}(B) \\
0, s \notin \operatorname{Idemp}(B)
\end{array}\right.
$$

From Lemma 1.5, b) it follows that τ_{B} is not the zero map and τ_{B} is a k-linear form. We prove that it is a central form, that is $\tau_{B}(s \cdot t)=\tau_{B}(t \cdot s)$ where $t, s \in B$, by considering the cases:

- If $t \cdot s \neq 0$ and $t \cdot s \in \operatorname{Idemp}(B)$, by Lemma 1.5, c) it follows that $\widehat{s}=t$ and then

$$
\tau_{B}(s \cdot \widehat{s})=1_{k}=\tau_{B}(\widehat{s} \cdot s)
$$

- If $t \cdot s \neq 0$ and $t \cdot s \in B \backslash \operatorname{Idemp}(B)$ then $\tau_{B}(t \cdot s)=0$. Now, if $s \cdot t \neq 0$ and $s \cdot t \in \operatorname{Idemp}(B)$ by Lemma 1.5, c) we get that $s=\widehat{t}$, which is a contradiction with
$\tau_{B}(t \cdot s)=0$. So we have two possibilities: $s \cdot t=0$, or $s \cdot t \neq 0$ and $s \cdot t \notin \operatorname{Idemp}(B)$. In both subcases $\tau_{B}(s \cdot t)=0$.
- If $t \cdot s=0$ then $\tau_{B}(t \cdot s)=0$, and the same analyze to the second case gives us equality.
τ_{B} induces the following $A-A$-bimodule homomorphism $\widehat{\tau_{B}}: A \rightarrow A^{*}$ defined by

$$
\widehat{\tau_{B}}(t)(s)=\tau_{B}(t \cdot s)
$$

for any $t, s \in B$.
First we prove that $\widehat{\tau_{B}}$ is injective. Let $t_{1}, t_{2} \in B$ such that $\tau_{B}\left(t_{1} \cdot s\right)=\tau_{B}\left(t_{2} \cdot s\right)$ for any $s \in B$. We choose $s=\widehat{t_{1}}$ and obtain that $\tau_{B}\left(t_{2} \cdot \widehat{t_{1}}\right)=1_{k}$. It follows that $t_{2} \cdot \widehat{t_{1}} \neq 0$ and $t_{2} \cdot \widehat{t_{1}} \in \operatorname{Idemp}(B)$. By Lemma 1.5, c) we obtain that $t_{2}=\widehat{t_{1}}=t_{1}$.

For surjectivity let $\lambda \in A^{*}$ and define $a=\sum_{t \in B} \lambda(t) \cdot \widehat{t} \in A$. Then for $s \in B$

$$
\widehat{\tau_{B}}(a)(s)=\sum_{t \in B} \lambda(t) \tau_{B}(\widehat{t} \cdot s)
$$

Since $\tau_{B}(\hat{t} \cdot s)=1_{k}$ if and only if $s=t$ we obtain that

$$
\widehat{\tau_{B}}(a)(s)=\lambda(s) \cdot \tau_{B}(\widehat{s} \cdot s)=\lambda(s)
$$

This concludes the proof.

2. Skew group algebras

In this section we will investigate the skew group algebra associated to a G algebra which is an inv-symm algebra, where G is a finite group. The Remark 1.4 is the starting point of the next definition.
Definition 2.1. A G-algebra A is called G-inv-symm if it is inv-symm, with the basis B (from Definition 1.1) G-stable.

It is easy to show, using Theorem 1.6, that any G-inv-symm algebra is G permutation and principally symmetric. If A is a G-algebra we denote the action of an $g \in G$ on $a \in A$ by ${ }^{g} a$.

Theorem 2.2. Let G be a finite group and A a G-algebra. If A is G-inv-symm then the skew group algebra, denoted $A \star G$, is inv-symm. In particular it is principally symmetric.
Proof. We remind the definition of a skew group algebra. The skew group algebra $A \star G$ is the free A-module of basis

$$
\{a \star g \mid a \in A, g \in G\}
$$

where $a \star g$ is a notation and the product is given by

$$
(a \star g)(b \star h)=a \cdot{ }^{g} b \star g h .
$$

Since B is the k-basis of A it is easy to check that the set

$$
B \star G=\{s \star g \mid s \in B, g \in G\}
$$

is a k-basis of the skew group algebra. Moreover it is a finite semigroup with zero, with the product defined above, since B is G-stable. Next we verify the conditions from Definition 1.1:
(1). We prove that the inverse of $s \star g \in B \star G$ is the element

$$
\widehat{s \star g}=g^{-1} \widehat{s} \star g^{-1} \in B \star G .
$$

We have

$$
(s \star g)\left(g^{-1} \widehat{s} \star g^{-1}\right)(s \star g)=\left(s \cdot \widehat{s} \star 1_{G}\right)(s \star g)=s \cdot \widehat{s} \cdot{ }^{1} s \star g=s \star g
$$

Similarly we prove the other statement. Suppose now that there is $t \star h \in B \star G$ such that $(s \star g)(t \star h)(s \star g)=s \star g$. Then we have that

$$
\left(s \cdot{ }^{g} t \star g h\right)(s \star g)=s \star g \Rightarrow s \cdot{ }^{g} t \cdot{ }^{g h} s \star g h g=s \star g .
$$

We have that $h=g^{-1}$ and $t=g^{-1} \widehat{s}$, thus it is unique.
(2). Let $s \star g, t \star h \in B \star G$. We have that $(t \star h)(s \star g) \neq 0$ if and only if $t \cdot{ }^{h} s \neq 0$. We also have that

$$
\begin{gathered}
(s \star g)\left(g^{-1} \widehat{s} \star g^{-1}\right)=\left(h^{h^{-1}} \widehat{t} \star h^{-1}\right)(t \star h) \Leftrightarrow s \cdot \widehat{s} \star g=^{h^{-1}} \widehat{t} \cdot h^{-1} t \star 1_{G} \Leftrightarrow \\
s \cdot \widehat{s}=h^{-1}(\widehat{t} \cdot t) \Leftrightarrow h^{h} s \cdot{ }^{h} \widehat{s}=\widehat{t} \cdot t .
\end{gathered}
$$

But since A is G-inv-symm the last condition is equivalent to $t \cdot{ }^{h} s \neq 0$, by Definition 1.1, statement(2).

Acknowledgements. This work was possible with the financial support of the Sectoral Operational Program for Human Resources Development 2007-2013, co-financed by the European Social Fund, within the project POSDRU 89/1.5/S/60189 with the title "Postdoctoral Programs for Sustainable Development in a Knowledge Based Society".

References

[1] Broué, M., Higman's criterion revisited, Michigan Math. J. Volume, 58(2009), no.1, 125179.
[2] Lawson, M.V., Inverse semigroups, World Scientific Publishing Company, Singapore, 1998.
[3] Linckelmann, M., On inverse categories and transfer in cohomology, Sky Conference Proceedings, to appear, 2009.

Constantin Cosmin Todea
Technical University
Department of Mathematics
25 , Str. G. Bariţiu
400027, Cluj-Napoca, Romania
e-mail: Constantin.Todea@math.utcluj.ro

