\mathcal{N} -structures applied to associative- \mathcal{I} -ideals in IS-algebras

Ali H. Handam

Abstract. In this paper the notion of \mathcal{N} - \mathcal{I} -ideals and \mathcal{N} -associative \mathcal{I} -ideals in IS-algebra is introduced, as well as some of their properties are investigated. The relations between \mathcal{N} - \mathcal{I} -ideals and \mathcal{N} -associative \mathcal{I} -ideals are discussed. A characterization of \mathcal{N} -associative \mathcal{I} -ideals is provided.

Mathematics Subject Classification (2010): 06F35, 03G25.

Keywords: IS-algebras, \mathcal{N} -structure, \mathcal{N} - \mathcal{I} -ideal, \mathcal{N} -associative \mathcal{I} -ideal.

1. Introduction

Imai and Iséki [1] in 1966 introduced the notion of a BCK-algebra. In the same year, Iséki [2] introduced BCI-algebras as a super class of the class of BCK-algebras. In 1993, Jun et al. [3] introduced a new class of algebras related to BCI-algebras and semigroups, called a BCI-semigroup/BCI-monoid/BCI-group. In 1998, for the convenience of study, Jun et al. [8] renamed the BCI-semigroup (respectively, BCImonoid and BCI-group) as the IS-algebra (respectively, IM-algebra and IG-algebra) and studied further properties of these algebras (see [7]).

A (crisp) set A in a universe X can be defined in the form of its characteristic function $\mu_A : X \to \{0, 1\}$ yielding the value 1 for elements belonging to the set A and the value 0 for elements excluded from the set A. So far most of the generalization of the crisp set have been conducted on the unit interval [0, 1] and they are consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point $\{1\}$ into the interval [0, 1]. Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tool. To attain such object, Jun et al. [5] introduced a new function which is called negative-valued function, and constructed \mathcal{N} -structures. They applied \mathcal{N} -structures to BCK/BCI-algebras, and discussed \mathcal{N} -subalgebras and \mathcal{N} -ideals in BCK/BCI-algebras. Jun et al. [6] considered closed ideals in BCH-algebras based on

Ali H. Handam

 \mathcal{N} -structures. Jun et al. [4] introduced the notion of a (created) \mathcal{N} -ideal of subtraction algebras, and investigated several characterizations of \mathcal{N} -ideals.

In this paper, we introduced the notion of \mathcal{N} - \mathcal{I} -ideals and \mathcal{N} -associative \mathcal{I} -ideals in IS-algebras, and studied several related properties.

2. Basic results on IS-algebras

The following necessary elementary aspects of IS-algebras will be used throughout this paper.

By a BCI-algebra we mean an algebra (X, *, 0) of type (2, 0) satisfying the following axioms: for every $x, y, z \in X$ [2],

(I) ((x * y) * (x * z)) * (z * y) = 0, (II) (x * (x * y)) * y = 0, (III) x * x = 0, (IV) x * y = 0 and y * x = 0 imply x = y. A BCI-algebra X satisfying $0 \le x$ for all $x \in X$ is called a BCK-algebra. In any BCI-algebra X one can define a partial order " \preceq " by putting $x \preceq y$ if and only if x * y = 0. A BCI-algebra X has the following properties for any $x, y, z \in X$ [2]: (A1) x * 0 = x, (A2) (x * y) * z = (x * z) * y, (A3) $x \preceq y$ implies that $(x * z) \preceq (y * z)$ and $(z * y) \preceq (z * x)$, (A4) $(x * z) * (y * z) \preceq x * y$, (A5) x * (x * (x * y)) = x * y, (A6) 0 * (x * y) = (0 * x) * (0 * y), (A7) 0 * (0 * ((x * z) * (y * z))) = (0 * y) * (0 * x).

A non-empty subset I of a BCI-algebra X is called an ideal of X if $(S1): 0 \in I$, (S2): $x * y \in I$ and $y \in I$ imply that $x \in I$. A non-empty subset I of X is called a associative ideal of X if it satisfies (S1) and (S3): $((x * y) * z) \in I$, $(y * z) \in I$ imply that $x \in I$.

Definition 2.1. [8]. An IS-algebra is a non-empty set X with two binary operations "*" and " \cdot " and constant 0 satisfying the axioms

(B1) (X, *, 0) is a BCI-algebra,

(B2) (X, \cdot) is a semigroup,

(B3) the operation " \cdot " is distributive (on both sides) over the operation "*", that is,

 $x \cdot (y * z) = (x \cdot y) * (x \cdot z)$ and $(x * y) \cdot z = (x \cdot z) * (y \cdot z)$ for all $x, y, z \in X$.

Note that, the IS-algebra is a generalization of the ring (see [8]).

Proposition 2.2. [3]. Let X be an IS-algebra. Then we have

(1) $0 \cdot x = x \cdot 0 = 0$, (2) $x \preceq y$ implies that $x \cdot z \preceq y \cdot z$ and $z \cdot x \preceq z \cdot y$, for all $x, y, z \in X$. **Definition 2.3.** [8]. A non-empty subset A of an IS-algebra X is called a left (resp. right) \mathcal{I} -ideal of X if

(1) $x \cdot a \in A$ (resp. $a \cdot x \in A$) whenever $x \in X$ and $a \in A$,

(2) for any $x, y \in X$, $x * y \in A$ and $y \in A$ imply that $x \in A$. Both a left and right \mathcal{I} -ideal is called \mathcal{I} -ideal.

Definition 2.4. [9]. A non-empty subset A of an IS-algebra X is called a left (resp. right) associative \mathcal{I} -ideal of X if

(1) $x \cdot a \in A$ (resp. $a \cdot x \in A$) whenever $x \in X$ and $a \in A$,

(2) for any $x, y, z \in X$, $(x * y) * z \in A$ and $y * z \in A$ imply that $x \in A$.

3. N-associative \mathcal{I} -ideals

Denote by $\mathcal{F}(X, [-1, 0])$ the collection of functions from a set X to [-1, 0]. We say that, an element of $\mathcal{F}(X, [-1, 0])$ is a negative-valued function from X to [-1, 0] (briefly, \mathcal{N} -function on X). By an \mathcal{N} -structure we mean an ordered pair (X, ξ) , where ξ is an \mathcal{N} -function on X. In what follows, let X be an IS-algebra and ξ an \mathcal{N} -function on X unless otherwise specified.

Definition 3.1. Let X be an IS-algebra. An \mathcal{N} -structure (X, ξ) is called a left \mathcal{N} - \mathcal{I} -ideal (resp. a right \mathcal{N} - \mathcal{I} -ideal) of X if

(C1) $(\xi(xy) \leq \xi(y))$ (resp. $\xi(xy) \leq \xi(x)$) for all $x, y \in X$;

(C2) $\xi(x) \le \max{\{\xi(x * y), \xi(y)\}}$ for all $x, y \in X$.

An \mathcal{N} -structure (X, ξ) is called an \mathcal{N} - \mathcal{I} -ideal of X if it is both a left \mathcal{N} - \mathcal{I} -ideal and a right \mathcal{N} - \mathcal{I} -ideal of X.

Definition 3.2. Let X be an IS-algebra. An \mathcal{N} -structure (X,ξ) is called a left \mathcal{N} -associative \mathcal{I} -ideal (resp. a right \mathcal{N} -associative \mathcal{I} -ideal) of X if it satisfies (C1) and (C3) $\xi(x) \leq \max \{\xi((x * y) * z), \xi(y * z)\}$ for all $x, y, z \in X$.

An \mathcal{N} -structure (X, ξ) is called an \mathcal{N} -associative \mathcal{I} -ideal of X if it is both a left \mathcal{N} -associative \mathcal{I} -ideal and a right \mathcal{N} -associative \mathcal{I} -ideal of X.

Example 3.3. Consider an IS-algebra $X = \{0, a, b, c\}$ with Cayley tables as follows:

*	0	a	b	С	•	0	a	b	c
0	0	0	b	b	0	0	0	0	0
a	a	0	c	b	a	0	a	0	a
b	b	b	0	0	b	0	0	b	b
c	c	b	a	0	c	0	a	b	c
					-				

(1) Let (X,ξ) be an \mathcal{N} -structure in which ξ is given by

$$\xi = \begin{pmatrix} 0 & a & b & c \\ t_0 & t_1 & t_0 & t_1 \end{pmatrix}, \text{ where } t_0 < t_1 \text{ in } [-1, 0].$$

Then (X,ξ) is an \mathcal{N} - \mathcal{I} -ideal of X.

(2) Let (X, ζ) be an \mathcal{N} -structure in which ζ is given by

$$\zeta = \begin{pmatrix} 0 & a & b & c \\ t_0 & t_0 & t_1 & t_1 \end{pmatrix}, \text{ where } t_0 < t_1 \text{ in } [-1,0].$$

Then (X, ζ) is an \mathcal{N} -associative \mathcal{I} -ideal of X.

Proposition 3.4. Every left (resp. right) \mathcal{N} -associative \mathcal{I} -ideal (X, ξ) satisfies the following inequality:

$$(\forall x \in X) \ (\xi(0) \le \xi(x)) \tag{3.1}$$

Theorem 3.5. Every left (resp. right) \mathcal{N} -associative \mathcal{I} -ideal is a left (resp. right) \mathcal{N} - \mathcal{I} -ideal.

Proof. Let (X, ξ) be a left (resp. right) \mathcal{N} -associative \mathcal{I} -ideal of X. Then, $\xi(xy) \leq \xi(y)$ (resp. $\xi(xy) \leq \xi(x)$) for all $x, y \in X$. Now, let z = 0 in (C3), we have $\xi(x) \leq max \{\xi((x * y) * 0), \xi(y * 0)\}$ for all $x, y \in X$. So, $\xi(x) \leq max \{\xi((x * y)), \xi(y)\}$. Therefore, (X, ξ) is a left (resp. right) \mathcal{N} - \mathcal{I} -ideal of X.

The next example shows that the converse of Theorem 3.5 is not always true.

Example 3.6. Consider the \mathcal{N} - \mathcal{I} -ideal (X, ξ) given in Example 3.3. By routine calculations, it is easy to check that (X, ξ) is not an \mathcal{N} -associative \mathcal{I} -ideal of X.

Proposition 3.7. Every left (resp. right) \mathcal{N} -associative \mathcal{I} -ideal (X, ξ) satisfies the following inequality:

$$(\forall x, y \in X) \ (\xi(x) \le \xi((x * y) * y)) \tag{3.2}$$

Proof. Let (X,ξ) be a left (resp. right) \mathcal{N} -associative \mathcal{I} -ideal of X. If we let z := y in (C3), then we have $\xi(x) \leq max \{\xi((x * y) * y), \xi(y * y)\}$ for all $x, y \in X$. Using 3.1 and (III), it follows that, $\xi(x) \leq \xi((x * y) * y)$ for all $x, y \in X$. \Box

Proposition 3.8. If (X,ξ) is a left (resp. right) \mathcal{N} -associative \mathcal{I} -ideal of X, then

$$(\forall x, y \in X) \ (x \preceq y \Rightarrow \xi(x) \le \xi(y)) \tag{3.3}$$

Proof. Let $x, y \in X$ be such that $x \leq y$. If we let z := 0 in (C3), then we have $\xi(x) \leq \max \{\xi((x * y) * 0), \xi(y * 0)\}$ for all $x, y \in X$. Since, $x \leq y$ implies x * y = 0, $\xi(x) \leq \max \{\xi(0 * 0), \xi(y * 0)\}$. It follows from axiom (III) and (A1) that $\xi(x) \leq \xi(y)$.

Proposition 3.9. Let (X,ξ) be a left (resp. right) \mathcal{N} - \mathcal{I} -ideal of X. Then, $x * y \preceq z$ implies $\xi(x) \leq \max{\{\xi(z), \xi(y)\}}$ for all $x, y, z \in X$.

Theorem 3.10. Let (X, ξ) be a left (resp. right) \mathcal{N} -associative \mathcal{I} -ideal of X. Then, for any $x, y, z \in X$,

 $\begin{array}{l} (i) \ x * y \leq z \ \text{implies} \ \xi(x) \leq \xi(y * z). \\ (ii) \ \xi(x) \leq \xi(0 * x). \\ (iii) \ \xi((x \cdot y) * (x \cdot z)) \leq \xi(y * z) \ (\text{resp. } \xi((x \cdot z) * (y \cdot z)) \leq \xi(x * y)). \end{array}$

Proof. (i) Suppose that (X,ξ) is a left (resp. right) \mathcal{N} -associative \mathcal{I} -ideal of X, by (C3) we have $\xi(x) \leq \max \{\xi((x*y)*w), \xi(y*w)\}$ for all $x, y, w \in X$. Since, $x*y \leq z$ implies $(x*y)*w \leq z*w$, by (3.3), it follows that $\xi((x*y)*w) \leq \xi(z*w)$. Hence, $\xi(x) \leq \max \{(\xi(z*w), \xi(y*w)\}$. If we let w = z, then we have, $\xi(x) \leq \max \{(\xi(0), \xi(y*z)\} = \xi(y*z).$ (ii) Let z = x*y in (C3), then

$$\xi(x) \le \max\{\xi(0), \xi(y * (x * y))\} = \xi(y * (x * y))$$
(3.4)

If we let y = 0 in (3.4), then we obtain also

$$\xi(x) \leq \xi(0 * (x * 0))$$

= $\xi(0 * x)$ by (A1)

(iii) It follows directly from (B3) and (C1).

Definition 3.11. [5]. Let (X, ξ) and (X, ζ) be two \mathcal{N} -structures.

(1) The union, $\xi \cup \zeta$ of ξ and ζ is defined by $(\xi \cup \zeta)(x) = \max{\{\xi(x), \zeta(x)\}}$ for all $x \in X$.

(2) The intersection, $\xi \cap \zeta$ of ξ and ζ is defined by $(\xi \cap \zeta)(x) = \min \{\xi(x), \zeta(x)\}$ for all $x \in X$.

Obviously, $(X, \xi \cup \zeta)$ and $(X, \xi \cap \zeta)$ are \mathcal{N} -structures which are called the union and the intersection of (X, ξ) and (X, ζ) , respectively.

Proposition 3.12. If (X,ξ) and (X,ζ) are left (resp. right) \mathcal{N} -associative \mathcal{I} -ideals of X, then the union $(X,\xi \cup \zeta)$ is a left (resp. right) \mathcal{N} -associative \mathcal{I} -ideal of X.

Now, we give an example to show that the intersection of two \mathcal{N} - \mathcal{I} -ideals may not be an \mathcal{N} - \mathcal{I} -ideal.

Example 3.13. Consider the two \mathcal{N} - \mathcal{I} -ideals (X, ξ) and (X, ζ) given in Example 3.3. The intersection $\xi \cap \zeta$ is given by

$$\xi \cap \zeta = \begin{pmatrix} 0 & a & b & c \\ t_0 & t_0 & t_0 & t_1 \end{pmatrix}$$
, where $t_0 < t_1$ in $[-1, 0]$.

 $\xi \cap \zeta$ is not an \mathcal{N} - \mathcal{I} -ideal of X, since $(\xi \cap \zeta)(c) = t_1 \nleq \max\{(\xi \cap \zeta)(c * b), (\xi \cap \zeta)(b)\} = t_0$.

For any \mathcal{N} -function ξ on X and $t \in [-1, 0)$, define the set $\mathcal{C}(\xi, t)$ as

$$\mathcal{C}(\xi, t) = \left\{ x \in X \mid \xi(x) \le t \right\}.$$

Theorem 3.14. An \mathcal{N} -structure (X, ξ) is a left (resp. right) \mathcal{N} -associative \mathcal{I} -ideal of X if and only if every non-empty set $\mathcal{C}(\xi, t)$ is a left (resp. right) associative \mathcal{I} -ideal of X for all $t \in [-1, 0)$.

Proof. Assume that (X, ξ) is a left (resp. right) \mathcal{N} -associative \mathcal{I} -ideal of X and let $t \in [-1, 0)$ be such that $\mathcal{C}(\xi, t) \neq \emptyset$. Let $x \in X$ and $a \in \mathcal{C}(\xi, t)$. Then, $\xi(a) \leq t$. It follows from (C1) that $\xi(x \cdot a) \leq \xi(a) \leq t$ (resp. $\xi(a \cdot x) \leq \xi(a) \leq t$). Hence, $x \cdot a \in \mathcal{C}(\xi, t)$ (resp. $a \cdot x \in \mathcal{C}(\xi, t)$). Now, let $(x * y) * z \in \mathcal{C}(\xi, t)$ and $(y * z) \in \mathcal{C}(\xi, t)$. Then, $\xi((x * y) * z) \leq t$

Ali H. Handam

and $\xi(y * z) \leq t$. Using (C3) we obtain, $\xi(x) \leq max \{\xi((x * y) * z), \xi(y * z)\} \leq t$. Thus $x \in \mathcal{C}(\xi, t)$. Therefore, $\mathcal{C}(\xi, t)$ is a left (resp. right) associative \mathcal{I} -ideal of X for all $t \in [-1, 0)$.

Conversely, suppose that every non-empty set $\mathcal{C}(\xi, t)$ is a left (resp. right) associative \mathcal{I} -ideal of X for all $t \in [-1,0)$. If there are $a, b \in X$ such that $\xi(a \cdot b) > \xi(b)$ (resp. $\xi(a \cdot b) > \xi(a)$), then, $\xi(a \cdot b) > t_0 \ge \xi(b)$ (resp. $\xi(a \cdot b) > t_0 \ge \xi(a)$) for some $t_0 \in [-1,0)$. Hence, $b \in \mathcal{C}(\xi, t_0)$ (resp. $a \in \mathcal{C}(\xi, t_0)$) and $a \cdot b \notin \mathcal{C}(\xi, t_0)$. This is a contradiction. Thus, $\xi(x \cdot y) \le \xi(y)$ (resp. $\xi(x \cdot y) \le \xi(x)$) for all $x, y \in X$. Now, assume that there exist $a, b, c \in X$ such that $\xi(a) > max \{\xi((a * b) * c), \xi(b * c)\}$. Then, $\xi(a) > t_1 \ge max \{\xi((a * b) * c), \xi(b * c)\}$ for some $t_1 \in [-1, 0)$. Hence, $(a * b) * c, b * c \in \mathcal{C}(\xi, t_1)$ and $a \notin \mathcal{C}(\xi, t_1)$, which is a contradiction. Therefore, (X, ξ) is a left (resp. right) \mathcal{N} -associative \mathcal{I} -ideal of X.

Theorem 3.15. Let A be a left (resp. right) associative \mathcal{I} -ideal of X and let (X, ξ) be an \mathcal{N} -structure in X defined by

$$\xi(x) = \begin{cases} t_0 & \text{if } \mathbf{x} \in A \\ t_1 & \text{otherwise} \end{cases}$$

where $t_0 < t_1$ in [-1, 0]. Then, the \mathcal{N} -structure (X, ξ) is a left (resp. right) \mathcal{N} -associative \mathcal{I} -ideal of X.

Proof. It follows directly from Theorem 3.14.

For any \mathcal{N} -structure (X,ξ) and any element $w \in X$, consider the set

 $\mathcal{D}_w := \left\{ x \in X \mid \xi(x) \le \xi(w) \right\}.$

Then, \mathcal{D}_w is non-empty subset of X.

Theorem 3.16. If an \mathcal{N} -structure (X, ξ) is a left (resp. right) \mathcal{N} -associative \mathcal{I} -ideal of X, then \mathcal{D}_w is a left (resp. right) associative \mathcal{I} -ideal of X for all $w \in X$.

Proof. Let $a \in \mathcal{D}_w$ and $x \in X$. Then, $\xi(a) \leq \xi(w)$. By (C1) it follows that $\xi(x \cdot a) \leq \xi(a) \leq \xi(w)$ (resp. $\xi(a \cdot x) \leq \xi(a) \leq \xi(w)$). Hence $x \cdot a \in \mathcal{D}_w$ (resp. $a \cdot x \in \mathcal{D}_w$). Now, let $x, y, z \in X$ be such that $(x * y) * z \in \mathcal{D}_w$ and $y * z \in \mathcal{D}_w$. Then, $\xi((x * y) * z) \leq \xi(w)$ and $\xi(y * z) \leq \xi(w)$. By (C3) it follows that $\xi(x) \leq max \{\xi((x * y) * z), \xi(y * z)\} \leq \xi(w)$. Hence, $x \in \mathcal{D}_w$. Therefore, \mathcal{D}_w is a left (resp. right) associative \mathcal{I} -ideal of X for all $w \in X$.

References

- Imai, Y., Iséki, K., On axiom systems of propositional calculi, XIV Proceedings of the Japan Academy, 42(1966), 19-22.
- [2] Iséki, K., An algebra related with a propositional calculus, Proceedings of the Japan Academy, 42(1966), 26-29.
- [3] Jun, Y.B., Hong, S.M., Roh, E.H., BCI-semigroups, Honam Mathematical Journal, 15(1993), no. 1, 59-64.
- [4] Jun, Y.B., Kavikumar, J., So, K.S., *N-ideals of subtraction algebras*, Communications of the Korean Mathematical Society, 25(2010), no. 2, 173-184.

- [5] Jun, Y.B., Lee, K.J., Song, S.Z., *N-ideals of BCK/BCI-algebras*, Journal of the Chungcheong mathematical Society, 22(2009), 417-437.
- [6] Jun, Y.B., Öztürk, M.A., Roh, E.H., *N-structures applied to closed ideals in BCH-algebras*, International Journal of Mathematics and Mathematical Sciences, vol. 2010, Article ID 943565, 9 pages, 2010.
- [7] Jun, Y.B., Roh, E.H., Xin, X.L., *I*-ideals generated by a set in IS-algebras, Bulletin of the Korean Mathematical Society, **35**(1998), no. 4, 615-624.
- [8] Jun, Y.B., Xin, X.L., Roh, E.H., A class of algebras related to BCI-algebras and semigroups, Soochow Journal of Mathematics, 24(1998), no. 4, 309-321.
- Roh, E.H., Jun, Y.B., Shim, W.H., Some ideals in IS-algebras, Scientiae Mathematicae, 2(1999), no. 3, 315-320 (electronic).

Ali H. Handam Department of Mathematics Al al-Bayt University P.O. Box: 130095, Al Mafraq, Jordan e-mail: ali.handam@windowslive.com