Generalizations of Krasnoselskii's fixed point theorem in cones

Sorin Budişan

Abstract

We give some generalizations of Krasnoselskii's fixed point theorem in cones.

Mathematics Subject Classification (2010): 47H10.

Keywords: cone, fixed point.

1. Introduction

Firstly we will present the definition of a cone.
Definition 1.1. Let X be a normed linear space. A nonempty closed, convex set $P \subset X$ is called a cone if it satisfies the following two conditions:
(i) $x \in P, \lambda \geq 0$ implies $\lambda x \in P$;
(ii) $x \in P,-x \in P$ implies $x=0$.

After the well known paper of Legget and Williams(see [6]), many authors have given generalizations of the following Krasnoselskii's fixed point theorem:

Theorem 1.2. (Krasnoselskii) Let $(X,||$.$) be a normed linear space, K \subset X$ a cone and" \prec " the order relation induced by K. Let be $r, R \in R_{+}, 0<r<R$, $K_{r, R}:=\{u \in K: r \leq|u| \leq R\}$ and let $N: K_{r, R} \rightarrow K$ be a completely continuous map. Assume that one of the following conditions is satisfied:
(i) $|N u| \geq|u|$ if $|u|=r$ and $|N u| \leq|u|$ if $|u|=R$
(ii) $|N u| \leq|u|$ if $|u|=r$ and $|N u| \geq|u|$ if $|u|=R$.

Then N has a fixed point u^{*} in K with $r \leq\left|u^{*}\right| \leq R$.
For example, in [8], the author gives the following result. Before to state it, we introduce a few notations. We shall consider two wedges K_{1}, K_{2} of X and the corresponding wedge $K:=K_{1} \times K_{2}$ of $X^{2}:=X \times X$. For

[^0]$r, R \in R_{+}^{2}, r=\left(r_{1}, r_{2}\right), R=\left(R_{1}, R_{2}\right)$, we write $0<r<R$ if $0<r_{1}<R_{1}$ and $0<r_{2}<R_{2}$, and we use the notations:
\[

$$
\begin{gathered}
\left(K_{i}\right)_{r_{i} R_{i}}:=\left\{u \in K_{i}: r_{i} \leq|u| \leq R_{i}\right\}(i=1,2) \\
K_{r R}:=\left\{u \in K: r_{i} \leq\left|u_{i}\right| \leq R_{i} \text { for } i=1,2\right\}
\end{gathered}
$$
\]

Clearly, $K_{r R}=\left(K_{1}\right)_{r_{1} R_{1}} \times\left(K_{2}\right)_{r_{2} R_{2}}$.
Theorem 1.3. ([8]) Let $(X,||$.$) be a normed linear space; K_{1}, K_{2} \subset X$ two wedges; $K:=K_{1} \times K_{2} ; \alpha_{i}, \beta_{i}>0$ with $\alpha_{i} \neq \beta_{i}$ for $i=1,2$, and let $r_{i}=$ $\min \left\{\alpha_{i}, \beta_{i}\right\}, R_{i}=\max \left\{\alpha_{i}, \beta_{i}\right\}$ for $i=1,2$. Assume that $N: K_{r R} \rightarrow K$, $N=\left(N_{1}, N_{2}\right)$, is a compact map and there exist $h_{i} \in K_{i} \backslash\{0\}, i=1,2$ such that for each $i \in\{1,2\}$ the following condition is satisfied in $K_{r R}$:

$$
\begin{gathered}
N_{i} u \neq \lambda u_{i} \text { for }\left|u_{i}\right|=\alpha_{i} \text { and } \lambda>1 \\
N_{i} u+\mu h_{i} \neq u_{i} \text { for }\left|u_{i}\right|=\beta_{i} \text { and } \mu>0
\end{gathered}
$$

Then N has a fixed point $u=\left(u_{1}, u_{2}\right)$ in K with $r_{i} \leq\left|u_{i}\right| \leq R_{i}$ for $i=1,2$.
Also, in [9], the author gives the following result (Here $(E,||$.$) is a$ normed linear space and $\|$.$\| is another norm on E, C \subset E$ is a nonempty convex, not necessarily closed set with $0 \notin C$ and $\lambda C \subset C$ for all $\lambda>0$), assuming that there exist constants $c_{1}, c_{2}>0$ such that the norms $|$.$| and$ $\|$.$\| are topologically equivalent, which is$

$$
c_{1}|x| \leq\|x\| \leq c_{2}|x| \text { for all } x \in C
$$

Also assume that $\|$.$\| is increasing with respect to C$, that is $\|x+y\|>\|x\|$ for all $x, y \in C$.

Theorem 1.4. ([9]) Assume $0<c_{2} \rho<R,\|$.$\| is increasing with respect to$ C, and the map $N: D=\{x \in C:\|x\| \leq R\} \rightarrow C$ is compact. In addition assume that the following conditions are satisfied:
(H1) \| $N(x)\|\geq\| x \|$ for all $x \in C$ with $|x|=\rho$,
(H2) $|N(x)|<|x|$ for all $x \in C$ with $\|x\|=R$.
Then N has at least one fixed point $x \in C$ with $\rho \leq|x|$ and $\|x\|<R$.
For other generalizations and applications of Krasnoselskii's fixed point theorem in cone the reader may see the papers [7] and [1]-[4].

In this paper we are interested to give some new abstract results and we use conditions of type

$$
\varphi(u) \geq \varphi(N u) \text { if }|u|=r
$$

instead of condition

$$
|u| \geq|N u| \text { if }|u|=r
$$

which is assumed in Krasnoselskii's fixed point theorem in cone.

2. The main results

Throughout this paper we consider $(X,||$.$) be a normed linear space,$ $K \subset X$ a positive cone, " \preceq " the order relation induced by K and " \prec " the strict order relation induced by K.

Theorem 2.1. Let be $K_{r, R}=\{x \in K: r \leq|x| \leq R\}$, where $r, R \in R_{+}$, $r<R$. We assume that $N: K_{r, R} \rightarrow K$ is a completely continuous operator and $\varphi: K \rightarrow R_{+}, \psi: K \rightarrow R$. Also, assume that the following conditions are satisfied:
(i.1) $\left\{\begin{array}{l}\varphi(0)=0 \text { and there exists } h \in K-\{0\} \text { such that } \\ \varphi(\lambda h)>0, \text { for all } \lambda \in(0,1], \\ \varphi(x+y) \geq \varphi(x)+\varphi(y) \text { for all } x, y \in K,\end{array}\right.$
(i.2) $\psi(\alpha x)>\psi(x)$ for all $\alpha>1$ and for all $x \in K$ with $|x|=R$,
(i.3) $\begin{cases}\varphi(u) \leq \varphi(N u) & \text { if } \quad|u|=r \\ \psi(u) \geq \psi(N u) & \text { if } \quad|u|=R .\end{cases}$

Then N has a fixed point in $K_{r, R}$
Proof. Let $N^{*}: K \rightarrow K$ be given by

$$
N^{*}(u)= \begin{cases}h, & \text { if } u=0 \\ \left(1-\frac{|u|}{r}\right) h+\frac{|u|}{r} N\left(\frac{r}{|u|} u\right), & \text { if } 0<|u|<r \\ N u, & \text { if } r \leq|u| \leq R \\ N\left(\frac{R}{|u|} u\right), & \text { if }|u| \geq R\end{cases}
$$

N is completely continuous, so N^{*} is completely continuous too. From our hypothesis we have that $N^{*}(K) \subset K$ is a convex and relatively compact set, so from Schauder's fixed point theorem it follows that there exists $u^{*} \in K$ with $N^{*}\left(u^{*}\right)=u^{*}$. We have to consider three cases.

Case 1. Suppose that $u^{*}=0$. We have $0=N^{*}(0)=h$, a contradiction with $h \in K \backslash\{0\}$.

Case 2. Suppose that $0<\left|u^{*}\right|<r$. We obtain

$$
\begin{aligned}
& \left(1-\frac{\left|u^{*}\right|}{r}\right) h+\frac{\left|u^{*}\right|}{r} N\left(\frac{r}{\left|u^{*}\right|} u^{*}\right)=u^{*}, \\
& \left(\frac{r}{\left|u^{*}\right|}-1\right) h+N\left(\frac{r}{\left|u^{*}\right|} u^{*}\right)=\frac{r}{\left|u^{*}\right|} u^{*} .
\end{aligned}
$$

Let $\lambda:=\frac{r}{\left|u^{*}\right|}-1$ and $u_{0}:=\frac{r}{\left|u^{*}\right|} u^{*}$. Since $\left|u^{*}\right|<r$ we have that $\frac{r}{\left|u^{*}\right|}>1$, so $\lambda>0$. Also, $\left|u_{0}\right|=\left|\frac{r}{\left|u^{*}\right|} u^{*}\right|=\frac{r}{\left|u^{*}\right|}\left|u^{*}\right|=r$, so $\left|u_{0}\right|=r$. We obtain

$$
\begin{equation*}
\lambda h+N\left(u_{0}\right)=u_{0} \tag{2.1}
\end{equation*}
$$

For $\lambda>0$, from (i1) we obtain that

$$
\varphi\left(N\left(u_{0}\right)+\lambda h\right) \geq \varphi\left(N\left(u_{0}\right)\right)+\varphi(\lambda h)>\varphi\left(N\left(u_{0}\right)\right) .
$$

Then, from (2.1) we obtain $\varphi\left(u_{0}\right)>\varphi\left(N\left(u_{0}\right)\right)$, a contradiction with (i3).
Case 3. Suppose that $\left|u^{*}\right|>R$. We have $N\left(\frac{R}{\left|u^{*}\right|} u^{*}\right)=u^{*}$. Let $u_{1}:=$ $\frac{R}{\left|u^{*}\right|} u^{*}$ and $\beta:=\frac{\left|u^{*}\right|}{R}>1$. We have $\left|u_{1}\right|=R$ and $N\left(u_{1}\right)=u^{*}=u_{1} \frac{\left|u^{*}\right|}{R}$,
so $N\left(u_{1}\right)=\beta u_{1}$. From (i.2) we obtain $\psi\left(N\left(u_{1}\right)\right)=\psi\left(\beta u_{1}\right)>\psi\left(u_{1}\right)$, a contradiction with (i.3). So $r \leq\left|u^{*}\right| \leq R$ and the conclusion follows.
Remark 2.2. (1) If $X:=C[0,1], \eta>0, I \subset[0,1], I \neq[0,1],\|x\|:=\max _{t \in[0,1]} x(t)$ and $K:=\{x \in C[0,1]: x \geq 0$ on $[0,1], x(t) \geq \eta\|x\|$ for all $t \in I\}$ is a cone, a functional that satisfies (i1) is

$$
\varphi(x):=\min _{t \in I} x(t)
$$

Indeed, $\varphi(0)=0$, there exists $h \in K-\{0\}$ such that $\varphi(\lambda h)>0$, for all $\lambda \in(0,1]$ and

$$
\varphi(x+y)=\min _{t \in I}[x(t)+y(t)] \geq \min _{t \in I} x(t)+\min _{t \in I} y(t)=\varphi(x)+\varphi(y)
$$

(2) The norm is an example of functional that satisfies (i2).

Theorem 2.3. Let $K_{r, R}=\{x \in K: r \leq|x| \leq R\}$, where $r, R \in R_{+}, r<R$. We assume that $N: K_{r, R} \rightarrow K$ is a completely continuous operator and $\varphi, \psi: K \rightarrow R$. Also, we assume that the following conditions are satisfied:
(ii.1) φ is strictly decreasing,
(ii.2) $\psi(\alpha x)<\psi(x)$ for all $\alpha>1$ and for all $x \in K$ with $|x|=R$,
(ii.3) $\left\{\begin{array}{lll}\varphi(u) \geq \varphi(N u) & \text { if } \quad|u|=r, \\ \psi(u) \leq \psi(N u) & \text { if } \quad|u|=R .\end{array}\right.$

Then N has a fixed point in $K_{r, R}$.
Proof. Let $h \succ 0$ and $N^{*}: K \rightarrow K$,

$$
N^{*}(u)= \begin{cases}h, & \text { if } u=0 \\ \left(1-\frac{|u|}{r}\right) h+\frac{|u|}{r} N\left(\frac{r}{|u|} u\right), & \text { if } 0<|u|<r \\ N u, & \text { if } r \leq|u| \leq R \\ N\left(\frac{R}{|u|} u\right), & \text { if }|u| \geq R\end{cases}
$$

Since N^{*} is completely continuous, we have, like in Theorem 2.1, that there exists $u^{*} \in K$ so that $N^{*}\left(u^{*}\right)=u^{*}$. We consider three cases.

Case 1. If $u^{*}=0$ we obtain $0=N^{*}(0)=h$, a contradiction with $h \succ 0$.
Case 2. If $0<\left|u^{*}\right|<r$. We obtain (2.1) with $\lambda>0$ and $\left|u_{0}\right|=r$, like in Theorem 2.1. From $\lambda h \succ 0$, we have that

$$
N\left(u_{0}\right)+\lambda h \succ N\left(u_{0}\right),
$$

so, from (ii.1), we have that

$$
\varphi\left(N\left(u_{0}\right)+\lambda h\right)<\varphi\left(N\left(u_{0}\right)\right)
$$

and from (2.1) we obtain

$$
\varphi\left(u_{0}\right)<\varphi\left(N\left(u_{0}\right)\right) \text { for }\left|u_{0}\right|=r
$$

a contradiction with (ii.3).
Case 3. If $\left|u^{*}\right|>R$, we have that

$$
N\left(\frac{R}{\left|u^{*}\right|} u^{*}\right)=u^{*}
$$

so

$$
N\left(\frac{R}{\left|u^{*}\right|} u^{*}\right)=\left(\frac{R}{\left|u^{*}\right|} u^{*}\right) \frac{\left|u^{*}\right|}{R} .
$$

Let be $u_{1}:=\frac{R}{\left|u^{*}\right|} u^{*}$, so $\left|u_{1}\right|=R$ and let be $\beta:=\frac{\left|u^{*}\right|}{R}>1$. We obtain $N\left(u_{1}\right)=\beta u_{1}$, so

$$
\begin{equation*}
\psi\left(N\left(u_{1}\right)\right)=\psi\left(\beta u_{1}\right) \tag{2.2}
\end{equation*}
$$

From (ii.2) we obtain

$$
\psi\left(\beta u_{1}\right)<\psi\left(u_{1}\right)
$$

and from (2.2) we have

$$
\psi\left(N\left(u_{1}\right)\right)<\psi\left(u_{1}\right) \text { for }\left|u_{1}\right|=R,
$$

a contradiction with (ii.3). So $r \leq\left|u^{*}\right| \leq R$ and the conclusion follows.
Remark 2.4. $\psi(x):=\frac{1}{|x|+1}$ is an example of functional that satisfies (ii.2). Indeed, for $\alpha>1$ and $|x|=R$, we have that

$$
\psi(\alpha x)=\frac{1}{\alpha|x|+1}<\frac{1}{|x|+1}=\psi(x)
$$

Also, if $|$.$| is strictly increasing, i.e., x<y$ implies $|x|<|y|$, then $\varphi(x):=$ $\frac{1}{|x|+1}$ is strictly decreasing, so it satisfies (ii.1).
Theorem 2.5. Let $K_{r, R}:=\{x \in K: r \leq|x| \leq R\}$, where $r, R \in R_{+}, r<R$. We assume that $N: K_{r, R} \rightarrow K$ is a completely continuous operator and $\varphi, \psi: K \rightarrow R_{+}$. Also, we assume that the following conditions are satisfied:
(iii.1) $\left\{\begin{array}{l}\varphi(\alpha x)=\alpha \varphi(x), \text { for all } \alpha>0 \text { and for all } x \in K, \\ \varphi(\alpha x)>\varphi(x), \text { for all } \alpha>1 \text { and for all } x \in K \text { with }|x|=R,\end{array}\right.$
(iii.2) $\left\{\begin{array}{l}\psi(0)=0 \text { and there exists } h \in K \backslash\{0\} \text { such that } \\ \psi(\lambda h)>0 \text { for all } \lambda \in(0,1], \\ \psi(\alpha x)=\alpha \psi(x) \text { for all } \alpha>0 \text { and for all } x \in K, \\ \psi(x+y) \geq \psi(x)+\psi(y) \text { for all } x, y \in K,\end{array}\right.$

$$
\begin{cases}\varphi(u) \geq \varphi(N u) & \text { if } \quad|u|=r \tag{iii.3}\\ \psi(u) \leq \psi(N u) & \text { if } \quad|u|=R .\end{cases}
$$

Then N has a fixed point in $K_{r, R}$.
Proof. Define $N^{*}: K_{r, R} \rightarrow K$ by

$$
N^{*}(u):=\left(\frac{R}{|u|}+\frac{r}{|u|}-1\right)^{-1} N\left(\left(\frac{R}{|u|}+\frac{r}{|u|}-1\right) u\right) .
$$

Since N is completely continuous, it follows that N^{*} is completely continuous too. Let

$$
\alpha:=\frac{R}{|u|}+\frac{r}{|u|}-1
$$

and

$$
u_{0}:=\alpha u .
$$

We have now,

$$
\alpha N^{*}(u)=N(\alpha u) .
$$

If $|u|=r$, then

$$
\alpha=\frac{R}{r} \text { and }\left|u_{0}\right|=|\alpha u|=\frac{R}{r} r=R .
$$

So, from (iii.2),

$$
\begin{equation*}
\psi\left(N\left(u_{0}\right)\right)=\psi(N(\alpha u))=\psi\left(\alpha N^{*}(u)\right)=\alpha \psi\left(N^{*}(u)\right) \tag{2.3}
\end{equation*}
$$

and from (iii.3),

$$
\begin{equation*}
\psi\left(N\left(u_{0}\right)\right) \geq \psi\left(u_{0}\right)=\psi(\alpha u)=\alpha \psi(u) . \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) we obtain that

$$
\begin{equation*}
\psi\left(N^{*}(u) \geq \psi(u) \text { if }|u|=r\right. \tag{2.5}
\end{equation*}
$$

If $|u|=R$, then

$$
\alpha=\frac{r}{R} \text { and }\left|u_{0}\right|=|\alpha u|=\frac{r}{R} R=r .
$$

Using (iii.3) we obtain that

$$
\begin{equation*}
\varphi(\alpha u)=\varphi\left(u_{0}\right) \geq \varphi\left(N\left(u_{0}\right)\right)=\varphi(N(\alpha u))=\varphi\left(\alpha N^{*}(u)\right) \tag{2.6}
\end{equation*}
$$

and from (iii.1),

$$
\begin{equation*}
\varphi(\alpha u)=\alpha \varphi(u) \text { and } \varphi\left(\alpha N^{*}(u)\right)=\alpha \varphi\left(N^{*}(u)\right) \tag{2.7}
\end{equation*}
$$

From (2.6) and (2.7) we deduce that

$$
\begin{equation*}
\varphi(u) \geq \varphi\left(N^{*}(u)\right) \text { if }|u|=R \tag{2.8}
\end{equation*}
$$

So, (2.5) and (2.8) imply that φ, ψ and N^{*} satisfy all the conditions of Theorem 2.1 (with φ and ψ changing their places and N^{*} instead of N). So N^{*} has a fixed point u^{*} in $K_{r, R}$. It follows that

$$
N^{*}\left(u^{*}\right)=u^{*}, \text { with } r \leq\left|u^{*}\right| \leq R
$$

so

$$
\frac{1}{\alpha} N\left(\alpha u^{*}\right)=u^{*}
$$

Making the notation $u_{1}:=\alpha u^{*}$, where $\alpha=\frac{R}{\left|u^{*}\right|}+\frac{r}{\left|u^{*}\right|}-1$, we obtain

$$
\begin{equation*}
N\left(u_{1}\right)=u_{1} \tag{2.9}
\end{equation*}
$$

and

$$
\left|u_{1}\right|=\alpha\left|u^{*}\right|=R+r-\left|u^{*}\right| .
$$

Since

$$
\begin{array}{l|l}
R+r- & u^{*} \mid \geq r, \text { for } r \leq\left|u^{*}\right| \leq R \\
R+r- & u^{*} \mid \leq R, \text { for } r \leq\left|u^{*}\right| \leq R,
\end{array}
$$

we have that

$$
\begin{equation*}
r \leq\left|u_{1}\right| \leq R, \quad \text { that is } \quad u_{1} \in K_{r, R} \tag{2.10}
\end{equation*}
$$

From (2.9) and (2.10) the conclusion follows.
Acknowledgement. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-3-0094.

References

[1] Budisan, S., Positive solutions of functional differential equations, Carpathian J. Math., 22 (2006), 13-19.
[2] Budisan, S., Positive weak radial solutions of nonlinear systems with p Laplacian, Differential Equations Appl., 3(2011), 209-224.
[3] Budisan, S., Precup, R., Positive solutions of functional-differential systems via the vector version of Krasnoselskii's fixed point theorem in cones, Carpathian J. Math., 27(2011), 165-172.
[4] Erbe, L.H., Wang, H., On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120(1994), 743-748.
[5] Krasnoselskii, M., Positive Solutions of Operator Equations, Noordhoff, Groningen,1964.
[6] Leggett, R., Williams, L., Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28(1979).
[7] Precup, R., A vector version of Krasnoselskii's fixed point theorem in cones and positive periodic solutions of nonlinear systems, J. Fixed Point Theory Appl., 2(2007), 141-151.
[8] Precup, R., Componentwise compression-expansion conditions for systems of nonlinear operator equations and appliccations, in AIP Conference Proceedings Volume 1124, 2009, Eds: A. Cabada, E. Liz, J.J. Nieto, 284-293.
[9] Precup, R., Compression-expansion fixed point theorems in two norms, Ann. Tiberiu Popoviciu Semin. Funct. Eq. Approx. Convexity, 3(2005), 157-163.

Sorin Budişan
Babeş-Bolyai University
Department of Applied Mathematics
400084 Cluj-Napoca, Romania
e-mail: sorinbudisan@yahoo.com

[^0]: This paper was presented at the International Conference on Nonlinear Operators, Differential Equations and Applications, July 5-8, 2011, Cluj-Napoca, Romania.

