Some results on the solutions of a functional-integral equation

Viorica Mureşan

Abstract

In this paper we give existence, uniqueness, data dependence and comparison theorems for the solutions of a functional-integral equation of the same type as that considered by L. Olszowy [6]. We apply some results from Picard and weakly Picard operators' theory (see I.A. Rus, [7]). Mathematics Subject Classification (2010): Primary 34K05, Secondary $34 \mathrm{~K} 15,47 \mathrm{H} 10$.

Keywords: functional-integral equations, fixed points, Picard operators, weakly Picard operators.

1. Introduction

The fixed point theory has a lot of applications in the field of functionaldifferential equations (see for example [1]-[6], [8]). In the paper [6] has been given theorems on the existence and asymptotic characterization of the solutions of the following problem:

$$
\begin{gather*}
y^{\prime}(t)=f\left(t, y(H(t)), y^{\prime}(h(t))\right), t \in[0, \infty) \tag{1.1}\\
y(0)=0 . \tag{1.2}
\end{gather*}
$$

Technique linking measures of noncompactness with the Tichonov' fixed point principle in suitable Fréchet space was used.

As it was shown in [6], the problem (1.1)+(1.2) is equivalent with the following functional- integral equation:

$$
\begin{equation*}
x(t)=f\left(t, \int_{0}^{H(t)} x(s) d s, x(h(t))\right), t \in[0, \infty) \tag{1.3}
\end{equation*}
$$

The aim of this paper is to give existence, uniqueness, data dependence and comparison theorems for the solutions of a functional-integral equation

[^0]of the same type as that considered in [6]. We apply some results from Picard and weakly Picard operators' theory (see [7] and [8]).

2. Weakly Picard operators

Here, first we present some notions and results from the weakly Picard operators' theory.

Let (X, d) be a metric space and $A: X \longrightarrow X$ an operator.
We denote by $A^{0}:=1_{X}, A^{1}:=A, \ldots, A^{n+1}:=A \circ A^{n}, n \in \mathbb{N}$, the iterate operators of the operator A. Also:

$$
\begin{gathered}
P(X):=\{Y \subset X / Y \neq \emptyset\} \\
I(A):=\{Y \in P(X) / A(Y) \subset Y\}
\end{gathered}
$$

the family of all nonempty invariant subsets of A,

$$
F_{A}=\{x \in X / A(x)=x\}
$$

the fixed point set of the operator A.
Following Rus I.A. [7] and [8], we have:
Definition 2.1. The operator A is a Picard operator if there exists $x^{*} \in X$ such that

1) $F_{A}=\left\{x^{*}\right\}$;
2) the successive approximation sequence $\left(A^{n}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$ converges to x^{*}, for all $x_{0} \in X$.

Definition 2.2. A is a weakly Picard operator if the sequence $\left(A^{n}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$ converges for all $x_{0} \in X$ and the limit (which generally depends on x_{0}) is a fixed point of A.

Definition 2.3. For an weakly Picard operator $A: X \rightarrow X$ we define the operator A^{∞} as follows:

$$
A^{\infty}: X \rightarrow X, \quad A^{\infty}(x):=\lim _{n \rightarrow \infty} A^{n}(x), \text { for all } x \in X
$$

Remark 2.4. $A^{\infty}(X)=F_{A}$.
We have
Theorem 2.5. (Data dependence theorem) Let (X, d) be a complete metric space and $A, B: X \longrightarrow X$ two operators. We suppose that:
(i) A is an α-contraction and let $F_{A}=\left\{x_{A}^{*}\right\}$;
(ii) $F_{B} \neq \emptyset$ and let $x_{B}^{*} \in F_{B}$;
(iii) there exists $\delta>0$, such that $d(A(x), B(x)) \leq \delta$, for all $x \in X$. Then

$$
d\left(x_{A}^{*}, x_{B}^{*}\right) \leq \frac{\delta}{1-\alpha} .
$$

Theorem 2.6. (Characterization theorem) Let (X, d) be a metric space and $A: X \rightarrow X$ an operator. The operator A is a weakly Picard operator if and only if there exists a partition of $X, X=\cup_{\lambda \in \Lambda} X_{\lambda}$, such that:
(i) $X_{\lambda} \in I(A)$;
(ii) $\left.A\right|_{X_{\lambda}}: X_{\lambda} \rightarrow X_{\lambda}$ is a Picard operator, for all $\lambda \in \Lambda$.

Lemma 2.7. Let (X, \leq) be an ordered metric space and $A: X \rightarrow X$ an operator. We suppose that:
(i) A is a weakly Picard operator;
(ii) A is increasing.

Then the operator A^{∞} is increasing.
Lemma 2.8. (Abstract Gronwall lemma) Let (X, \leq) be an ordered metric space and $A: X \rightarrow X$ an operator. We suppose that:
(i) A is a Picard operator;
(ii) A is increasing.

If we denote by x_{A}^{*} the unique fixed point of A, then:
(a) $x \leq A(x)$ implies $x \leq x_{A}^{*}$;
(b) $x \geq A(x)$ implies $x \geq x_{A}^{*}$.

Lemma 2.9. (Abstract comparison lemma) Let (X, \leq) be an ordered metric space and the operators $A, B, C: X \rightarrow X$ be such that:
(i) $A \leq B \leq C$;
(ii) the operators A, B, C are weakly Picard operators;
(iii) the operator B is increasing.

Then $x \leq y \leq z$ implies $A^{\infty}(x) \leq B^{\infty}(y) \leq C^{\infty}(z)$.

3. Existence, uniqueness and data dependence results

Let us consider the following functional-integral equation:

$$
\begin{equation*}
x(t)=\alpha+f\left(t, \int_{0}^{g(t)} x(s) d s, x(h(t))\right), t \in[0, T] \tag{3.1}
\end{equation*}
$$

under the following assumptions:
$\left(A_{1}\right) \quad f \in C\left([0, T] \times \mathbb{R}^{2}\right) ;$
$\left(A_{2}\right) g, h \in C([0, T],[0, T])$ and $g(t) \leq t, h(t) \leq t$, for all $t \in[0, T] ;$
$\left(A_{3}\right) \quad \alpha \in \mathbb{R}$ and $f(0,0, \alpha)=0$;
$\left(A_{4}\right)$ there exists $k_{1}>0$ and $0<k_{2}<1$, such that

$$
\begin{gathered}
\left|f\left(t, u_{1}, v_{1}\right)-f\left(t, u_{2}, v_{2}\right)\right| \leq k_{1}\left|u_{1}-u_{2}\right|+k_{2}\left|v_{1}-v_{2}\right| \\
\text { for all } t \in[0, T] \text { and all } u_{i}, v_{i} \in \mathbb{R}, i=1,2
\end{gathered}
$$

We have
Theorem 3.1. If all the conditions $\left(A_{1}\right)-\left(A_{4}\right)$ are satisfied, then the equation (3.1) has in $C[0, T]$ a unique solution.

Proof. On $C[0, T]$, we consider a Bielecki norm $\|\cdot\|_{\tau}$, defined by

$$
\|x\|_{\tau}=\max _{t \in[0, T]}|x(t)| e^{-\tau t}
$$

where $\tau>0$, and the operator

$$
A:\left(C[0, T],\|\cdot\|_{\tau}\right) \rightarrow\left(C[0, T],\|\cdot\|_{\tau}\right)
$$

defined by

$$
A(x)(t):=\alpha+f\left(t, \int_{0}^{g(t)} x(s) d s, x(h(t))\right), t \in[0, T]
$$

So, we have a fixed point equation:

$$
x=A(x) .
$$

Let $x, z \in C[0, T]$ be. We obtain

$$
\begin{gathered}
|A(x)(t)-A(z)(t)|= \\
=\left|f\left(t, \int_{0}^{g(t)} x(s) d s, x(h(t))\right)-f\left(t, \int_{0}^{g(t)} z(s) d s, z(h(t))\right)\right| \leq \\
\leq k_{1}\left|\int_{0}^{g(t)}(x(s)-z(s)) d s\right|+k_{2}|x(h(t))-z(h(t))| \leq \\
\leq k_{1} \int_{0}^{g(t)}|x(s)-z(s)| e^{-\tau s} e^{\tau s} d s+k_{2}|x(h(t))-z(h(t))| e^{-\tau h(t)} e^{\tau h(t)} \leq \\
\leq\left(k_{1} \int_{0}^{g(t)} e^{\tau s} d s+k_{2} e^{\tau h(t)}\right)| | x-z \|_{\tau} \leq \\
\leq\left(k_{1} \int_{0}^{t} e^{\tau s} d s+k_{2} e^{\tau t}\right)\|x-z\|_{\tau} \leq \\
\leq\left(\frac{k_{1}}{\tau}+k_{2}\right) e^{\tau t}\|x-z\|_{\tau},
\end{gathered}
$$

for all $t \in[0, T]$.
So,

$$
|A(x)(t)-A(z)(t)| e^{-\tau t} \leq\left(\frac{k_{1}}{\tau}+k_{2}\right)\|x-z\|_{\tau}
$$

for all $t \in[0, T]$.
It follows that

$$
\|A(x)-A(z)\|_{\tau} \leq\left(\frac{k_{1}}{\tau}+k_{2}\right)\|x-z\|_{\tau}
$$

for all $x, z \in C[0, T]$.
We choose τ large enough, such that $\frac{k_{1}}{\tau}+k_{2}<1$. By applying Contraction mapping principle, we obtain that A is a Picard operator.

Now, together with (3.1), we consider the following equation:

$$
\begin{equation*}
x(t)=\alpha+F\left(t, \int_{0}^{g(t)} x(s) d s, x(h(t))\right), t \in[0, T] \tag{3.2}
\end{equation*}
$$

where $F \in C\left([0, T] \times \mathbb{R}^{2}\right)$ and α, g, h are the same as in (3.1).
We have

Theorem 3.2. We suppose that:

(i) the conditions $\left(A_{1}\right)-\left(A_{4}\right)$ are satisfied and $x^{*} \in C[0, T]$ is the unique solution of the equation (3.1);
(ii) the equation (3.2) has solutions in $C[0, T]$ and $z^{*} \in C[0, T]$ is a solution of (3.2);
(iii) there exists $\eta>0$ such that

$$
|f(t, u, v)-F(t, u, v)| \leq \eta, \text { for all } t \in[0, T] \text { and all } u, v \in \mathbb{R} .
$$

Then

$$
\left\|x^{*}-z^{*}\right\|_{\tau} \leq \frac{\eta}{1-\left(\frac{k_{1}}{\tau}+k_{2}\right)}
$$

where τ is large enough such that $\frac{k_{1}}{\tau}+k_{2}<1$.
Proof. Consider

$$
\begin{aligned}
A_{F} & :\left(C[0, T],\|\cdot\|_{\tau}\right) \rightarrow\left(C[0, T],\|\cdot\|_{\tau}\right) \\
A_{F}(x)(t) & :=\alpha+F\left(t, \int_{0}^{g(t)} x(s) d s, x(h(t))\right), t \in[0, T]
\end{aligned}
$$

the corresponding operator of (3.2).
We have

$$
\left|A(x)(t)-A_{F}(x)(t)\right| \leq \eta,
$$

for all $t \in[0, T]$, and consequently

$$
\left\|A(x)-A_{F}(x)\right\|_{\tau} \leq \eta
$$

for all $x \in C[0, T]$.
Now, we apply Data dependence theorem (Theorem 2.5).
Theorem 3.3. We suppose that:
(i) the conditions $\left(A_{1}\right)-\left(A_{4}\right)$ are satisfied and $x^{*} \in C[0, T]$ is the unique solution of the equation (3.1);
(ii) $u_{i}, v_{i} \in \mathbb{R}, i=1,2$ and $u_{1} \leq u_{2}, \quad v_{1} \leq v_{2}$ implies $f\left(t, u_{1}, v_{1}\right) \leq$ $f\left(t, u_{2}, v_{2}\right)$, for all $t \in[0, T]$.

Then

$$
x \leq A(x) \quad \text { implies } x \leq x^{*}
$$

and

$$
x \geq A(x) \text { implies } x \geq x^{*} .
$$

Proof. The operator A is a Picard operator and A is increasing. So, we apply Abstract Gronwall lemma (Lemma 2.8).

4. Comparison results

Consider the following functional-integral equation:

$$
\begin{equation*}
x(t)=x(0)+f\left(t, \int_{0}^{g(t)} x(s) d s, x(h(t))\right), t \in[0, T] . \tag{4.1}
\end{equation*}
$$

The corresponding operator,

$$
\begin{gathered}
A_{f}:\left(C[0, T],\|\cdot\|_{\tau}\right) \rightarrow\left(C[0, T],\|\cdot\|_{\tau}\right), \\
A_{f}(x)(t):=x(0)+f\left(t, \int_{0}^{g(t)} x(s) d s, x(h(t))\right), \quad t \in[0, T]
\end{gathered}
$$

is a continuous operator but it isn't a contraction.
We denote

$$
S_{f}=\{\alpha \in \mathbb{R} / f(0,0, \alpha)=0\} \text { and } X_{\alpha}:=\{x \in C[0, T] / x(0)=\alpha\}
$$

Then

$$
\cup_{\alpha \in S_{f}} X_{\alpha} \text { is a partition of } C[0, T]
$$

and X_{α} is an invariant subset of A_{f} if and only if $\alpha \in S_{f}$.
We have
Theorem 4.1. We suppose that:
(i) the conditions $\left(A_{1}\right)-\left(A_{4}\right)$ are satisfied for (4.1);
(ii) $S_{f} \neq \emptyset$.

Then

$$
\left.A_{f}\right|_{\cup_{\alpha \in S_{f}} X_{\alpha}}: \cup_{\alpha \in S_{f}} X_{\alpha} \rightarrow \cup_{\alpha \in S_{f}} X_{\alpha}
$$

is a weakly Picard operator and card $F_{A_{f}}=\operatorname{card} S_{f}$.
Proof. By using the result of Theorem 3.1, we have that

$$
\left.A_{f}\right|_{X_{\alpha}}: X_{\alpha} \rightarrow X_{\alpha} \text { is a Picard operator, for all } \alpha \in S_{f}
$$

So, we apply Characterization theorem of the weakly Picard operators (Theorem 2.6).
Remark 4.2. If the conditions $\left(A_{1}\right)-\left(A_{4}\right)$ are satisfied and $S_{f}=\left\{\alpha^{*}\right\}$, then the equation (4.1) has in $C[0, T]$ a unique solution.

We have
Theorem 4.3. We suppose that:
(i) all the conditions of Theorem 4.1 are satisfied;
(ii) $u_{i}, v_{i} \in \mathbb{R}, i=1,2$ and $u_{1} \leq u_{2}, v_{1} \leq v_{2}$ implies $f\left(t, u_{1}, v_{1}\right) \leq$ $f\left(t, u_{2}, v_{2}\right)$, for all $t \in[0, T]$.

Let x^{*} be a solution of the equation (4.1) and $x^{* *}$ a solution of the following inequality:

$$
x(t) \leq x(0)+f\left(t, \int_{0}^{g(t)} x(s) d s, x(h(t))\right), t \in[0, T]
$$

Then

$$
x^{* *}(0) \leq x^{*}(0) \quad \text { implies } x^{* *} \leq x^{*} .
$$

Proof. We remark that

$$
x^{*}=A_{f}\left(x^{*}\right) \text { and } x^{* *} \leq A_{f}\left(x^{* *}\right)
$$

From Lemma 2.7 and the condition (ii) we have that the operator A_{f}^{∞} is increasing. If $\beta \in \mathbb{R}$ then we consider $\widetilde{\beta} \in C[0, T]$ defined by $\widetilde{\beta}(t)=\beta$, for all $t \in[0, T]$. By using the previous considerations and because the operator A_{f}^{∞} is increasing, we obtain:

$$
x^{* *} \leq A_{f}^{\infty}\left(x^{* *}(0)\right)=A_{f}^{\infty}\left(\widetilde{\left(x^{* *}(0)\right.}\right) \leq A_{f}^{\infty}\left(\widetilde{x^{*}(0)}\right)=x^{*} .
$$

Now, we consider the following functional-integral equations:

$$
\begin{equation*}
x(t)=x(0)+f_{i}\left(t, \int_{0}^{g(t)} x(s) d s, x(h(t))\right), t \in[0, T] \tag{4.2}
\end{equation*}
$$

$i=\overline{1,3}$, where g, h are the same in all three equations.
We have
Theorem 4.4. We suppose that:
(i) the corresponding conditions of Theorem 4.1 are satisfied for all equations (4.2);
(ii) $f_{2}(t, \cdot, \cdot): \mathbb{R}^{2} \rightarrow \mathbb{R}$ is increasing for all $t \in[0, T]$;
(iii) $f_{1} \leq f_{2} \leq f_{3}$.

Let x_{i}^{*} be a solution of the corresponding equation (4.2), $i=\overline{1,3}$. Then

$$
x_{1}^{*}(0) \leq x_{2}^{*}(0) \leq x_{3}^{*}(0) \quad \text { implies } \quad x_{1}^{*} \leq x_{2}^{*} \leq x_{3}^{*} .
$$

Proof. First we remark that the operators $A_{f_{i}}, i=\overline{1,3}$ are weakly Picard operators (Theorem 4.1). From (ii) we have that the operator $A_{f_{2}}$ is increasing. From the condition (iii) we have that $A_{f_{1}} \leq A_{f_{2}} \leq A_{f_{3}}$. On the other hand, $\left.x_{i}^{*}=A_{f_{i}}^{\infty} \widetilde{\left(x_{i}^{*}(0)\right.}\right), i=\overline{1,3}$. Now, the proof follows from Abstract comparison lemma (Lemma 2.9).

References

[1] Azbelev, N.V., Maksimov, V.P., Rahmatulina, L.F., Introduction to the theory of functional-differential equations, MIR, Moscow, 1991 (in Russian).
[2] Hale, J.K., Theory of functional differential equations, Springer Verlag, 1977.
[3] Hale, J.K., Verduyn Lunel, S.M., Introduction to functional-differential equations, Springer Verlag, New York, 1993.
[4] Mureşan, V., Differential equations with affine modification of the argument, Transilvania Press, Cluj-Napoca, 1997 (in Romanian).
[5] Mureşan, V., Functional-integral equations, Ed. Mediamira, Cluj-Napoca, 2003.
[6] Olszowy, L., On existence of solutions of a neutral differential equation with deviating argument, Collect. Math., 61(2010), no. 1, 37-47.
[7] Rus, I.A., Picard operators and applications, Sc. Math. Japonicae, 58(2003), no. 1, 191-229.
[8] Rus, I.A., Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math., 26(2010), no. 2, 230-258.

Viorica Mureşan
Faculty of Computer Sciences and Automation
Technical University of Cluj-Napoca
28 Memorandumului Street
400114 Cluj-Napoca, Romania
e-mail: vmuresan@math.utcluj.ro

[^0]: This paper was presented at the International Conference on Nonlinear Operators, Differential Equations and Applications, July 5-8, 2011, Cluj-Napoca, Romania.

