Some results on the solutions of a functional-integral equation

Viorica Mureşan

Abstract. In this paper we give existence, uniqueness, data dependence and comparison theorems for the solutions of a functional-integral equation of the same type as that considered by L. Olszowy [6]. We apply some results from Picard and weakly Picard operators' theory (see I.A. Rus, [7]).

Mathematics Subject Classification (2010): Primary 34K05, Secondary 34K15, 47H10.

Keywords: functional-integral equations, fixed points, Picard operators, weakly Picard operators.

1. Introduction

The fixed point theory has a lot of applications in the field of functionaldifferential equations (see for example [1]-[6], [8]). In the paper [6] has been given theorems on the existence and asymptotic characterization of the solutions of the following problem:

$$y'(t) = f(t, y(H(t)), y'(h(t))), t \in [0, \infty)$$
(1.1)

$$y(0) = 0.$$
 (1.2)

Technique linking measures of noncompactness with the Tichonov' fixed point principle in suitable Fréchet space was used.

As it was shown in [6], the problem (1.1)+(1.2) is equivalent with the following functional- integral equation:

$$x(t) = f(t, \int_0^{H(t)} x(s) ds, x(h(t))), t \in [0, \infty)$$
(1.3)

The aim of this paper is to give existence, uniqueness, data dependence and comparison theorems for the solutions of a functional-integral equation

This paper was presented at the International Conference on Nonlinear Operators,

Differential Equations and Applications, July 5-8, 2011, Cluj-Napoca, Romania.

of the same type as that considered in [6]. We apply some results from Picard and weakly Picard operators' theory (see [7] and [8]).

2. Weakly Picard operators

Here, first we present some notions and results from the weakly Picard operators' theory.

Let (X, d) be a metric space and $A: X \longrightarrow X$ an operator.

We denote by $A^0 := 1_X$, $A^1 := A, ..., A^{n+1} := A \circ A^n$, $n \in \mathbb{N}$, the iterate operators of the operator A. Also:

$$P(X) := \{ Y \subset X / Y \neq \emptyset \},\$$

 $I(A) := \{ Y \in P(X) / A(Y) \subset Y \},\$

the family of all nonempty invariant subsets of A,

$$F_A = \{ x \in X / A(x) = x \},$$

the fixed point set of the operator A.

Following Rus I.A. [7] and [8], we have:

Definition 2.1. The operator A is a Picard operator if there exists $x^* \in X$ such that

1) $F_A = \{x^*\};$

2) the successive approximation sequence $(A^n(x_0))_{n \in \mathbb{N}}$ converges to x^* , for all $x_0 \in X$.

Definition 2.2. A is a weakly Picard operator if the sequence $(A^n(x_0))_{n \in \mathbb{N}}$ converges for all $x_0 \in X$ and the limit (which generally depends on x_0) is a fixed point of A.

Definition 2.3. For an weakly Picard operator $A : X \to X$ we define the operator A^{∞} as follows:

$$A^{\infty}: X \to X, \quad A^{\infty}(x) := \lim_{n \to \infty} A^n(x), \text{ for all } x \in X.$$

Remark 2.4. $A^{\infty}(X) = F_A$.

We have

Theorem 2.5. (Data dependence theorem) Let (X, d) be a complete metric space and $A, B : X \longrightarrow X$ two operators. We suppose that:

(i) A is an α -contraction and let $F_A = \{x_A^*\}$;

(ii) $F_B \neq \emptyset$ and let $x_B^* \in F_B$;

(iii) there exists $\delta > 0$, such that $d(A(x), B(x)) \leq \delta$, for all $x \in X$. Then

$$d(x_A^*, x_B^*) \le \frac{\delta}{1 - \alpha}.$$

Theorem 2.6. (Characterization theorem) Let (X, d) be a metric space and $A: X \to X$ an operator. The operator A is a weakly Picard operator if and only if there exists a partition of $X, X = \bigcup_{\lambda \in \Lambda} X_{\lambda}$, such that:

(i) $X_{\lambda} \in I(A)$; (ii) $A|_{X_{\lambda}} : X_{\lambda} \to X_{\lambda}$ is a Picard operator, for all $\lambda \in \Lambda$.

Lemma 2.7. Let (X, \leq) be an ordered metric space and $A : X \to X$ an operator. We suppose that:

(i) A is a weakly Picard operator;

(*ii*) A is increasing.

Then the operator A^{∞} is increasing.

Lemma 2.8. (Abstract Gronwall lemma) Let (X, \leq) be an ordered metric space and $A: X \to X$ an operator. We suppose that:

(i) A is a Picard operator;
(ii) A is increasing.
If we denote by x^{*}_A the unique fixed point of A, then:
(a) x ≤ A(x) implies x ≤ x^{*}_A;
(b) x ≥ A(x) implies x ≥ x^{*}_A.

Lemma 2.9. (Abstract comparison lemma) Let (X, \leq) be an ordered metric space and the operators $A, B, C : X \to X$ be such that:

(i) $A \leq B \leq C;$

(ii) the operators A, B, C are weakly Picard operators;

(*iii*) the operator B is increasing.

Then $x \leq y \leq z$ implies $A^{\infty}(x) \leq B^{\infty}(y) \leq C^{\infty}(z)$.

3. Existence, uniqueness and data dependence results

Let us consider the following functional-integral equation:

$$x(t) = \alpha + f(t, \int_0^{g(t)} x(s) ds, x(h(t))), t \in [0, T]$$
(3.1)

under the following assumptions:

- $(A_1) \quad f \in C([0,T] \times \mathbb{R}^2);$
- (A₂) $g, h \in C([0, T], [0, T])$ and $g(t) \le t, h(t) \le t$, for all $t \in [0, T]$;

 $(A_3) \ \alpha \in \mathbb{R} \text{ and } f(0, 0, \alpha) = 0;$

 (A_4) there exists $k_1 > 0$ and $0 < k_2 < 1$, such that

$$|f(t, u_1, v_1) - f(t, u_2, v_2)| \le k_1 |u_1 - u_2| + k_2 |v_1 - v_2|,$$

for all
$$t \in [0,T]$$
 and all $u_i, v_i \in \mathbb{R}, i = 1, 2$.

We have

Theorem 3.1. If all the conditions $(A_1) - (A_4)$ are satisfied, then the equation (3.1) has in C[0,T] a unique solution.

Proof. On C[0,T], we consider a Bielecki norm $||\cdot||_{\tau}$, defined by

$$||x||_{\tau} = \max_{t \in [0,T]} |x(t)| \ e^{-\tau t},$$

where $\tau > 0$, and the operator

$$A: (C[0,T], ||\cdot||_{\tau}) \to (C[0,T], ||\cdot||_{\tau}).$$

defined by

$$A(x)(t) := \alpha + f(t, \int_0^{g(t)} x(s) ds, x(h(t))), t \in [0, T].$$

So, we have a fixed point equation:

$$x = A(x).$$

Let $x, z \in C[0, T]$ be. We obtain

$$\begin{split} |A(x)(t) - A(z)(t)| &= \\ &= |f(t, \int_0^{g(t)} x(s)ds, x(h(t))) - f(t, \int_0^{g(t)} z(s)ds, z(h(t))))| \leq \\ &\leq k_1 |\int_0^{g(t)} (x(s) - z(s))ds| + k_2 |x(h(t)) - z(h(t))| \leq \\ &\leq k_1 \int_0^{g(t)} |x(s) - z(s)| e^{-\tau s} e^{\tau s} ds + k_2 |x(h(t)) - z(h(t))| e^{-\tau h(t)} e^{\tau h(t)} \leq \\ &\leq (k_1 \int_0^{g(t)} e^{\tau s} ds + k_2 e^{\tau h(t)}) ||x - z||_{\tau} \leq \\ &\leq (k_1 \int_0^t e^{\tau s} ds + k_2 e^{\tau t}) ||x - z||_{\tau} \leq \\ &\leq (\frac{k_1}{\tau} + k_2) e^{\tau t} ||x - z||_{\tau}, \end{split}$$

for all $t \in [0, T]$. So,

$$|A(x)(t) - A(z)(t)|e^{-\tau t} \le (\frac{k_1}{\tau} + k_2)||x - z||_{\tau},$$

for all $t \in [0, T]$.

It follows that

$$||A(x) - A(z)||_{\tau} \le (\frac{k_1}{\tau} + k_2)||x - z||_{\tau}$$

for all $x, z \in C[0, T]$. We choose τ large enough, such that $\frac{k_1}{\tau} + k_2 < 1$. By applying Contraction mapping principle, we obtain that A is a Picard operator. \Box

Now, together with (3.1), we consider the following equation:

$$x(t) = \alpha + F(t, \int_0^{g(t)} x(s)ds, x(h(t))), t \in [0, T],$$
(3.2)

where $F \in C([0,T] \times \mathbb{R}^2)$ and α, g, h are the same as in (3.1). We have

Theorem 3.2. We suppose that:

(i) the conditions $(A_1)-(A_4)$ are satisfied and $x^* \in C[0,T]$ is the unique solution of the equation (3.1);

(ii) the equation (3.2) has solutions in C[0,T] and $z^* \in C[0,T]$ is a solution of (3.2);

(iii) there exists $\eta > 0$ such that

$$|f(t, u, v) - F(t, u, v)| \le \eta$$
, for all $t \in [0, T]$ and all $u, v \in \mathbb{R}$.

Then

$$||x^* - z^*||_{\tau} \le \frac{\eta}{1 - (\frac{k_1}{\tau} + k_2)},$$

where τ is large enough such that $\frac{k_1}{\tau} + k_2 < 1$.

Proof. Consider

$$A_F : (C[0,T], ||\cdot||_{\tau}) \to (C[0,T], ||\cdot||_{\tau}),$$
$$A_F(x)(t) := \alpha + F(t, \int_0^{g(t)} x(s) ds, x(h(t))), t \in [0,T],$$

the corresponding operator of (3.2).

We have

$$|A(x)(t) - A_F(x)(t)| \le \eta$$

for all $t \in [0, T]$, and consequently

$$||A(x) - A_F(x)||_{\tau} \le \eta,$$

for all $x \in C[0,T]$.

Now, we apply Data dependence theorem (Theorem 2.5).

Theorem 3.3. We suppose that:

(i) the conditions $(A_1) - (A_4)$ are satisfied and $x^* \in C[0,T]$ is the unique solution of the equation (3.1);

(*ii*) $u_i, v_i \in \mathbb{R}, i = 1, 2 \text{ and } u_1 \le u_2, v_1 \le v_2 \text{ implies } f(t, u_1, v_1) \le f(t, u_2, v_2), \text{ for all } t \in [0, T].$

Then

$$x \le A(x)$$
 implies $x \le x^*$

and

$$x \ge A(x)$$
 implies $x \ge x^*$.

Proof. The operator A is a Picard operator and A is increasing. So, we apply Abstract Gronwall lemma (Lemma 2.8). \Box

4. Comparison results

Consider the following functional-integral equation:

$$x(t) = x(0) + f(t, \int_0^{g(t)} x(s)ds, x(h(t))), t \in [0, T].$$
(4.1)

The corresponding operator,

$$\begin{split} A_f : (C[0,T], ||\cdot||_{\tau}) &\to (C[0,T], ||\cdot||_{\tau}), \\ A_f \ (x)(t) := x(0) + f(t, \int_0^{g(t)} x(s) \ ds, \ x(h(t))), \quad t \in [0,T], \end{split}$$

is a continuous operator but it isn't a contraction.

We denote

$$S_f = \{ \alpha \in \mathbb{R} / f(0, 0, \alpha) = 0 \}$$
 and $X_\alpha := \{ x \in C[0, T] / x(0) = \alpha \}.$
Then

$$\cup_{\alpha \in S_f} X_{\alpha}$$
 is a partition of $C[0,T]$

and X_{α} is an invariant subset of A_f if and only if $\alpha \in S_f$. We have

Theorem 4.1. We suppose that:

(i) the conditions $(A_1) - (A_4)$ are satisfied for (4.1); (ii) $S_f \neq \emptyset$. Then

$$A_f|_{\bigcup_{\alpha\in S_f}X_\alpha}:\bigcup_{\alpha\in S_f}X_\alpha\to\bigcup_{\alpha\in S_f}X_\alpha$$

is a weakly Picard operator and card $F_{A_f} = cardS_f$.

Proof. By using the result of Theorem 3.1, we have that

 $A_f|_{X_{\alpha}}: X_{\alpha} \to X_{\alpha}$ is a Picard operator, for all $\alpha \in S_f$.

So, we apply Characterization theorem of the weakly Picard operators (Theorem 2.6). $\hfill \Box$

Remark 4.2. If the conditions $(A_1) - (A_4)$ are satisfied and $S_f = \{\alpha^*\}$, then the equation (4.1) has in C[0,T] a unique solution.

We have

Theorem 4.3. We suppose that:

(i) all the conditions of Theorem 4.1 are satisfied;

(ii) $u_i, v_i \in \mathbb{R}, i = 1, 2$ and $u_1 \leq u_2, v_1 \leq v_2$ implies $f(t, u_1, v_1) \leq f(t, u_2, v_2)$, for all $t \in [0, T]$.

Let x^* be a solution of the equation (4.1) and x^{**} a solution of the following inequality:

$$x(t) \le x(0) + f(t, \int_0^{g(t)} x(s) ds, x(h(t))), t \in [0, T].$$

Then

$$x^{**}(0) \le x^{*}(0) \quad implies \; x^{**} \le x^{*}$$

Proof. We remark that

$$x^* = A_f(x^*)$$
 and $x^{**} \le A_f(x^{**})$.

From Lemma 2.7 and the condition (ii) we have that the operator A_f^{∞} is increasing. If $\beta \in \mathbb{R}$ then we consider $\tilde{\beta} \in C[0,T]$ defined by $\tilde{\beta}(t) = \beta$, for all $t \in [0,T]$. By using the previous considerations and because the operator A_f^{∞} is increasing, we obtain:

$$x^{**} \le A_f^{\infty}(x^{**}(0)) = A_f^{\infty}(\widetilde{x^{**}(0)}) \le A_f^{\infty}(\widetilde{x^{*}(0)}) = x^*.$$

Now, we consider the following functional-integral equations:

$$x(t) = x(0) + f_i(t, \int_0^{g(t)} x(s)ds, \ x(h(t))), t \in [0, T],$$
(4.2)

 $i=\overline{1,3}$, where g,h are the same in all three equations. We have

Theorem 4.4. We suppose that:

(i) the corresponding conditions of Theorem 4.1 are satisfied for all equations (4.2);

(*ii*) $f_2(t, \cdot, \cdot) : \mathbb{R}^2 \to \mathbb{R}$ is increasing for all $t \in [0, T]$; (*iii*) $f_1 \le f_2 \le f_3$.

Let x_i^* be a solution of the corresponding equation (4.2), $i = \overline{1,3}$. Then

 $x_1^*(0) \leq x_2^*(0) \leq x_3^*(0) \quad implies \ \ x_1^* \leq x_2^* \leq x_3^*.$

Proof. First we remark that the operators A_{f_i} , $i = \overline{1,3}$ are weakly Picard operators (Theorem 4.1). From (*ii*) we have that the operator A_{f_2} is increasing. From the condition (*iii*) we have that $A_{f_1} \leq A_{f_2} \leq A_{f_3}$. On the other hand, $x_i^* = A_{f_i}^{\infty}(\widehat{x_i^*(0)}), i = \overline{1,3}$. Now, the proof follows from Abstract comparison lemma (Lemma 2.9).

References

- Azbelev, N.V., Maksimov, V.P., Rahmatulina, L.F., Introduction to the theory of functional-differential equations, MIR, Moscow, 1991 (in Russian).
- [2] Hale, J.K., Theory of functional differential equations, Springer Verlag, 1977.
- [3] Hale, J.K., Verduyn Lunel, S.M., Introduction to functional-differential equations, Springer Verlag, New York, 1993.
- [4] Mureşan, V., Differential equations with affine modification of the argument, Transilvania Press, Cluj-Napoca, 1997 (in Romanian).
- [5] Mureşan, V., Functional-integral equations, Ed. Mediamira, Cluj-Napoca, 2003.
- [6] Olszowy, L., On existence of solutions of a neutral differential equation with deviating argument, Collect. Math., 61(2010), no. 1, 37-47.

Viorica Mureșan

- [7] Rus, I.A., *Picard operators and applications*, Sc. Math. Japonicae, 58(2003), no. 1, 191-229.
- [8] Rus, I.A., Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math., 26(2010), no. 2, 230-258.

Viorica Mureşan Faculty of Computer Sciences and Automation Technical University of Cluj-Napoca 28 Memorandumului Street 400114 Cluj-Napoca, Romania e-mail: vmuresan@math.utcluj.ro