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On (h, k)–trichotomy for skew-evolution
semiflows in Banach spaces

Codruţa Stoica and Mihail Megan

Abstract. In this paper we define the notion of (h, k)–trichotomy for
skew-evolution semiflows and we emphasize connections between various
other concepts of trichotomy on infinite dimensional spaces, as uniform
exponential trichotomy, exponential trichotomy and Barreira-Valls ex-
ponential trichotomy. The approach is motivated by various examples.
Some characterizations for the newly introduced concept are also pro-
vided.
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1. Preliminaries

As the dynamical systems that are modelling processes issued from engineer-
ing, economics or physics are extremely complex, of great interest is to study
the solutions of differential equations by means of associated skew-evolution
semiflows, introduced in [10]. They are appropriate to study the asymptotic
properties of the solutions for evolution equations of the form{

u̇(t) = A(t)u(t), t > t0 ≥ 0
u(t0) = u0,

where A : R → B(V ) is an operator, DomA(t) ⊂ V , u0 ∈ DomA(t0). The
case of stability for skew-evolution semiflows is emphasized in [16] and the
study of dichotomy for evolution equations is given in [9], where we generalize
some concepts given in [1], as well as in [15].
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The exponential dichotomy for evolution equations is one of the domains
of the stability theory with an impressive development due to its role in ap-
proaching several types of differential equations (see [2], [3], [4], [5], [7] and
[8]). Hence, the techniques that describe the stability and instability in Ba-
nach spaces have been improved to characterize the dichotomy and its natural
generalization, the trichotomy, studied for the case of linear differential equa-
tions in the finite dimensional setting in [12]. In fact, the trichotomy supposes
the continuous splitting of the state space, at any moment, into three sub-
spaces: the stable one, the instable one and the central manifold. The study of
the trichotomy for evolution operators is given in [11]. Some concepts for the
stability, instability, dichotomy and trichotomy of skew-evolution semiflows
are studied in [14].

In this paper, beside other types of trichotomy, as uniform exponential
trichotomy, Barreira-Valls exponential trichotomy, exponential trichotomy,
we define, exemplify and characterize the concept of (h, k)–trichotomy for
skew-evolution semiflows, as a generalization of the (h, k)–dichotomy given
in [6] for evolution operators and in [13] for skew-evolution semiflows. Con-
nections between the trichotomy classes are also emphasized.

2. Notations. Definitions. Examples

Let us denote by X a metric space, by V a Banach space and by B(V ) the
space of all bounded linear operators from V into itself. We consider the sets
∆ =

{
(t, t0) ∈ R2

+, t ≥ t0
}

and T =
{
(t, s, t0) ∈ R3

+, (t, s), (s, t0) ∈ ∆
}
. Let

I be the identity operator on V . We denote Y = X × V and Yx = {x} × V ,
where x ∈ X. Let us define the set E of all mappings f : R+ → [1,∞) for
which there exists a constant α ∈ R+ such that f(t) = eαt, ∀t ≥ 0.

Definition 2.1. A mapping ϕ : ∆ × X → X is called evolution semiflow on
X if following relations hold:

(s1) ϕ(t, t, x) = x, ∀(t, x) ∈ R+ ×X;
(s2) ϕ(t, s, ϕ(s, t0, x)) = ϕ(t, t0, x),∀(t, s, t0) ∈ T, x ∈ X.

Definition 2.2. A mapping Φ : ∆×X → B(V ) is called evolution cocycle over
an evolution semiflow ϕ if:

(c1) Φ(t, t, x) = I, ∀(t, x) ∈ R+ ×X;
(c2) Φ(t, s, ϕ(s, t0, x))Φ(s, t0, x) = Φ(t, t0, x),∀(t, s, t0) ∈ T, x ∈ X.

Definition 2.3. The mapping C : ∆× Y → Y defined by the relation

C(t, s, x, v) = (ϕ(t, s, x),Φ(t, s, x)v),

where Φ is an evolution cocycle over an evolution semiflow ϕ, is called skew-
evolution semiflow on Y .

Example 2.4. Let C = C(R, R) be the metric space of all continuous functions
x : R → R, with the topology of uniform convergence on compact subsets of
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R. C is metrizable relative to the metric

d(x, y) =
∞∑

n=1

1
2n

dn(x, y)
1 + dn(x, y)

, where dn(x, y) = sup
t∈[−n,n]

|x(t)− y(t)|.

Let f : R+ → (0,∞) be a decreasing function. We denote by X the closure
in C of the set {ft, t ∈ R+}, where ft(τ) = f(t + τ), ∀τ ∈ R+. We obtain
that (X, d) is a metric space and that the mapping

ϕ : ∆×X → X, ϕ(t, s, x)(τ) = xt−s(τ) = x(t− s + τ)

is an evolution semiflow on X. Let V = R. The mapping Φ : ∆×X → B(R)
given by

Φ(t, s, x)v = e
∫ t

s
x(τ−s)dτv

is an evolution cocycle. Hence, C = (ϕ, Φ) is a skew-evolution semiflow on Y .

Two classic asymptotic properties for evolution cocycles are given, as in
[14], by the next

Definition 2.5. A evolution cocycle Φ is said to have:
(i) uniform exponential growth if there exist some constants M ≥ 1 and

ω > 0 such that:

‖Φ(t, t0, x)v‖ ≤ Meω(t−s) ‖Φ(s, t0, x)v‖ , (2.1)

for all (t, s, t0) ∈ T and all (x, v) ∈ Y .
(ii) uniform exponential decay if there exist some constants M ≥ 1 and

ω > 0 such that:

‖Φ(s, t0, x)v‖ ≤ Meω(t−s) ‖Φ(t, t0, x)v‖ , (2.2)

for all (t, s, t0) ∈ T and all (x, v) ∈ Y .

3. Concepts of trichotomy

Definition 3.1. A continuous mapping P : Y → Y defined by

P (x, v) = (x, P (x)v), ∀(x, v) ∈ Y, (3.1)

where P (x) is a linear projection on Yx, is called projector on Y .

Remark 3.2. The mapping P (x) : Yx → Yx is linear and bounded and satisfies
the relation P (x)P (x) = P 2(x) = P (x) for all x ∈ X.

Definition 3.3. A projector P on Y is called invariant relative to a skew-
evolution semiflow C = (ϕ, Φ) if following relation holds:

P (ϕ(t, s, x))Φ(t, s, x) = Φ(t, s, x)P (x), (3.2)

for all (t, s) ∈ ∆ and all x ∈ X.
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Definition 3.4. Three projectors {Pk}k∈{1,2,3} are said to be compatible with
a skew-evolution semiflow C = (ϕ, Φ) if:

(t1) each of the projectors Pk, k ∈ {1, 2, 3} is invariant on Y ;
(t2) ∀x ∈ X, the projections P1(x), P2(x) and P3(x) verify the relations

P1(x) + P2(x) + P3(x) = I and Pi(x)Pj(x) = 0, ∀i, j ∈ {1, 2, 3}, i 6= j.

In what follows we will denote Ck(t, s, x, v) = (ϕ(t, s, x),Φk(t, s, x)v),
(t, t0, x, v) ∈ ∆ × Y , ∀k ∈ {1, 2, 3}, where Φk(t, t0, x) = Φ(t, t0, x)Pk(x). Let
us remind the definitions for various classes of trichotomy, as in [14] and [17].

Definition 3.5. A skew-evolution semiflow C = (ϕ, Φ) is called uniformly
exponentially trichotomic if there exist some constants N ≥ 1, ν > 0 and
three projectors {Pk}k∈{1,2,3} compatible with C such that:

(uet1)
eν(t−s) ‖Φ1(t, t0, x)v‖ ≤ N ‖Φ1(s, t0, x)v‖ ; (3.3)

(uet2)
eν(t−s) ‖Φ2(s, t0, x)v‖ ≤ N ‖Φ2(t, t0, x)v‖ ; (3.4)

(uet3)
‖Φ3(s, t0, x)v‖ ≤ Neν(t−s) ‖Φ3(t, t0, x)v‖ ≤

≤ N2e2ν(t−s) ‖Φ3(s, t0, x)v‖ , (3.5)
for all (t, s, t0) ∈ T and all (x, v) ∈ Y.

Remark 3.6. The constants N and ν are called trichotomic characteristics
and P1, P2, P3 associated trichotomic projectors.

Definition 3.7. A skew-evolution semiflow C = (ϕ, Φ) is called exponentially
trichotomic if there exist a mapping N : R+ → [1,∞), a constant ν > 0 and
three projectors {Pk}k∈{1,2,3} compatible with C such that:

(et1)
eν(t−s) ‖Φ1(t, t0, x)v‖ ≤ N(s) ‖Φ1(s, t0, x)v‖ ; (3.6)

(et2)
eν(t−s) ‖Φ2(s, t0, x)v‖ ≤ N(t) ‖Φ2(t, t0, x)v‖ ; (3.7)

(et3)
‖Φ3(s, t0, x)v‖ ≤ N(t)eν(t−s) ‖Φ3(t, t0, x)v‖ ≤

≤ N(t)N(s)e2ν(t−s) ‖Φ3(s, t0, x)v‖ , (3.8)
for all (t, s, t0) ∈ T and all (x, v) ∈ Y.

Definition 3.8. A skew-evolution semiflow C = (ϕ, Φ) is called Barreira-Valls
exponentially trichotomic if there exist some constants N ≥ 1, α, β, µ, ρ > 0
and three projectors {Pk}k∈{1,2,3} compatible with C such that:

(BV et1)

eα(t−s) ‖Φ1(t, t0, x)v‖ ≤ Neβs ‖Φ1(s, t0, x)v‖ ; (3.9)

(BV et2)

‖Φ2(s, t0, x)v‖ ≤ Ne−αteβs ‖Φ2(t, t0, x)v‖ ; (3.10)
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(BV et3)

‖Φ3(t, t0, x)v‖ ≤ Neµte−ρs ‖Φ3(s, t0, x)v‖ ≤
≤ N2e2µte−2ρs ‖Φ3(t, t0, x)v‖ , (3.11)

for all (t, s, t0) ∈ T and all (x, v) ∈ Y .

Further, let us introduce a more general concept of trichotomy for skew-
evolution semiflows, given by the next

Definition 3.9. A skew-evolution semiflow C = (ϕ, Φ) is (h, k)–trichotomic if
there exist a constant N ≥ 1, two continuous mappings h, k : R+ → R∗+ and
three projectors families {Pk}k∈{1,2,3} compatible with C such that:

(t1)
h(t− s) ‖Φ1(t, t0, x)v‖ ≤ Nk(s) ‖Φ1(s, t0, x)v‖ ; (3.12)

(t2)
h(t− s) ‖Φ2(s, t0, x)v‖ ≤ Nk(t) ‖Φ2(t, t0, x)v‖ ; (3.13)

(t3)
‖Φ3(t, t0, x)v‖ ≤ Nk(s)h(t− s) ‖Φ3(s, t0, x)v‖ ; (3.14)

‖Φ3(s, t0, x)v‖ ≤ Nk(t)h(t− s) ‖Φ3(t, t0, x)v‖ ; (3.15)
for all (t, s, t0) ∈ T and all (x, v) ∈ Y.

The concept of (h, k)–trichotomy generalizes the notions of uniform ex-
ponential trichotomy, exponential trichotomy and Barreira-Valls exponential
trichotomy, as shown in

Remark 3.10. 1) If h ∈ E and k is constant in Definition 3.9, then C is
uniformly exponentially trichotomic;

2) If h ∈ E then C is exponentially trichotomic;
3) If h, k ∈ E then C is Barreira-Valls exponentially trichotomic.

In the next particular cases, other (h, k)–asymptotic properties for skew-
evolution semiflows are emphasized.

Remark 3.11. (i) For P2 = P3 = 0 we obtain in Definition 3.9 the property
of (h, k)–exponential stability;

(ii) For P1 = P3 = 0 in Definition 3.9 the property of (h, k)–exponential
instability is obtained;

(iii) For P3 = 0 we obtain in Definition 3.9 the property of (h, k)–
exponential dichotomy. On the other hand, for P3 = 0, in Definition 3.5,
Definition 3.7 and Definition 3.8 the properties of uniform exponential di-
chotomy, exponential dichotomy, respectively Barreira-Valls exponential di-
chotomy are obtained (see [13]).

We have following connections between the previously defined classes of
trichotomy, given by

Remark 3.12. A uniformly exponentially trichotomic skew-evolution semi-
flow is Barreira-Valls exponentially trichotomic, which also implies that it is
exponentially trichotomic.
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The converse statements are not always true, as shown in the next
examples.

Example 3.13. Let f : R+ → (0,∞) be a decreasing function with the prop-
erty that there exists lim

t→∞
f(t) = l > 0. We will consider λ > f(0). We define

the metric space (X, d) and the evolution semiflow as in Example 2.4.
Let us consider V = R3 with the norm ‖v‖ = |v1| + |v2| + |v3|, where

v = (v1, v2, v3) ∈ V . The mapping Φ : ∆×X → B(V ), defined by

Φ(t, s, x)v =

=
(

et sin t−2t

es sin s−2s
e−

∫ t
s

x(τ−s)dτv1,
e3t−2t cos t

e3s−2s cos s
e
∫ t

s
x(τ−s)dτv2,e

(t−s)x(0)−
∫ t

s
x(τ−s)dτv3

)
is an evolution cocycle over the evolution semiflow ϕ. We consider the pro-
jectors P1, P2, P3 : Y → Y , P1(x, v) = (v1, 0, 0), P2(x, v) = (0, v2, 0) and
P3(x, v) = (0, 0, v3), where x ∈ X and v = (v1, v2, v3) ∈ V , compatible with
the skew-evolution semiflow C = (ϕ, Φ).

We obtain

|Φ1(t, s, x)v| = et sin t−s sin s+2s−2te−
∫ t

s
x(τ−s)dτ |v1| ≤

≤ e−t+3se−l(t−s)|v1| = e−(1+l)te(3+l)s|v1|,
for all (t, s, x, v) ∈ ∆× Y and

|Φ2(t, s, x)v| = e3t−3s−2t cos t+2s cos s+
∫ t

s
x(τ−s)dτ |v2| ≥

≥ et−sel(t−s)|v2| = e(1+l)te−(1+l)s|v2|,
for all (t, s, x, v) ∈ ∆× Y .

We also have, for all (t, s, x, v) ∈ ∆× Y ,

|Φ3(t, s, x)v| ≤ e[λ−x(0)]te−[λ−x(0)]s|v3|
and

|Φ3(t, s, x)v| ≥ e[l−x(0)]te−[l−x(0)]s|v3|.
Hence, the skew-evolution semiflow C = (ϕ, Φ) is Barreira-Valls exponentially
trichotomic with the characteristics

N = 1, α = β = 3 + l, µ = ρ = min{λ− x(0), x(0)− l}.
Let us suppose now that C = (ϕ, Φ) is uniformly exponentially tri-

chotomic. According to Definition 3.5, there exist N ≥ 1 and ν > 0 such
that

et sin t−s sin s+2s−2te−
∫ t

s
x(τ−s)dτ |v1| ≤ Ne−ν(t−s)|v1|, ∀t ≥ s ≥ 0

and If we consider t = 2nπ + π
2 and s = 2nπ, n ∈ N, we have

e2nπ−π
2 ≤ Ne−ν π

2 e

2nπ+ π
2∫

2nπ

x(τ−2nπ)dτ
≤ Ne(−ν+λ) π

2 ,

which, for n →∞, leads to a contradiction.
Hence, we obtain that C = (ϕ, Φ) is not uniformly exponentially tri-

chotomic.
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Example 3.14. We consider the metric space (X, d), the Banach space V , the
projectors P1, P2, P3 and the evolution semiflow ϕ defined as in Example
2.4. Let g : R+ → [1,∞) be a continuous function with

g(n) = en·22n

and g

(
n +

1
22n

)
= e4, for all n ∈ N.

The mapping Φ : ∆×X → B(V ), defined by

Φ(t, s, x)v =

=
(

g(s)
g(t)

e−(t−s)−
∫ t

s
x(τ−s)dτv1,

g(s)
g(t)

et−s+
∫ t

s
x(τ−s)dτv2, e

−(t−s)x(0)+
∫ t

s
x(τ)dτv3

)
is an evolution cocycle over the evolution semiflow ϕ.

We have that,

e(1+l)(t−s) ‖Φ1(t, s, x)v‖ ≤ g(s) ‖v1‖

and
e(1+l)(t−s) ‖v2‖ ≤ g(s)e(1+l)(t−s) ‖v2‖ ≤ g(t) ‖Φ2(t, s, x)v‖ ,

for all (t, s, x, v) ∈ ∆× Y . We also have

|Φ3(t, s, x)v| ≤ ex(0)(t−s)|v3|

and
|Φ3(t, s, x)v| ≥ e−x(0)(t−s)|v3|,

for all (t, s, x, v) ∈ ∆×Y . Thus, C = (ϕ, Φ) is exponentially trichotomic with

ν = max{1 + l, λ} and N(t) = sup
s∈[0,t]

g(s).

If we suppose that C is Barreira-Valls exponentially trichotomic, then
there exist N ≥ 1, α > 0 and β ≥ 0 such that

g(s)eαt ≤ Ng(t)eβs+t−s+
∫ t

s
x(τ−s)dτ ,

for all (t, s, x) ∈ ∆×X.

From here, for t = n +
1

22n
and s = n, it follows that

en(22n+α−β) ≤ 81Ne
1−α+x(0)

22n ,

which, for n →∞, leads to a contradiction.

4. Main results

Let C : ∆×Y → Y , C(t, s, x, v) = (Φ(t, s, x)v, ϕ(t, s, x)) be a skew-evolution
semiflow on Y . Some characterizations for the concept of (h, k)–trichotomy
are obtained. Therefore, let us suppose that h : R+ → R∗+ is a nondecreasing
function such that

h(u + v) ≤ h(u)h(v), u, v ∈ R+. (χ)
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Theorem 4.1. Let C = (ϕ, Φ) be skew-evolution semiflow such that there ex-
ist three projectors {Pk}k∈{1,2,3} compatible with C such that Φ1 has uniform
exponential growth and Φ2 has uniform exponential decay. If there exist a con-
stant K ≥ 1 and two mappings h, k : R+ → R∗+, where h satisfies condition
(χ), such that:

(i) ∫ t

s

h(τ − s) ‖Φ1(τ, t0, x)v‖ dτ ≤ Kk(s) ‖Φ1(s, t0, x)v‖ ; (4.1)

(ii) ∫ t

s

h(t− τ) ‖Φ2(τ, t0, x)v‖ dτ ≤ Kk(t) ‖Φ2(t, t0, x)v‖ ; (4.2)

(iii) ∫ t

s

1
h(τ − s)

‖Φ3(τ, t0, x)v‖ dτ ≤ Kk(s) ‖Φ3(s, t0, x)v‖ ; (4.3)

∫ t

s

1
h(t− τ)

‖Φ3(τ, t0, x)v‖ dτ ≤ Kk(t) ‖Φ3(s, t0, x)v‖ , (4.4)

for all (t, s, t0) ∈ T and all (x, v) ∈ Y , then C is (h, k)–trichotomic.

Proof. Let us suppose that (i) holds. As a first step, we consider s ∈ [t−1, t].
We obtain

h(t− s) ‖Φ1(t, t0, x)v‖ =
∫ t

t−1

h(t− s) ‖Φ1(t, t0, x)v‖ dτ ≤

≤
∫ t

t−1

h(t− τ)h(τ − s) ‖Φ1(t, τ, ϕ(τ, t0, x))Φ1(s, t0, x)v‖ dτ ≤

≤ Meωh(1)
∫ t

s

h(τ − s) ‖Φ1(τ, t0, x)v‖ dτ ≤ KMeωh(1)k(s) ‖Φ1(s, t0, x)v‖ ,

for all (x, v) ∈ Y , where M and ω are given by Definition 2.5, as Φ1 has
uniform exponential growth.

As a second step, if t ∈ [s, s + 1), we have

h(t− s) ‖Φ1(t, t0, x)v‖ ≤ Meωh(1) ‖Φ1(s, t0, x)v‖ ,

for all (x, v) ∈ Y . Hence, relation (3.12) is obtained, for N = Meωh(1)(K+1).
Now, as Φ2 has uniform exponential decay, an equivalent definition (see

[14]) assures the existence of a nondecreasing function g : [0,∞) → [1,∞)
with the property lim

t→∞
g(t) = ∞ such that

‖Φ(s, t0, x)v‖ ≤ g(t− s) ‖Φ(t, t0, x)v‖ ,

for all (t, s, t0) ∈ T and all (x, v) ∈ Y . Let us denote D =
∫ 1

0
g(τ)dτ .

If (ii) holds, we obtain

Dh(t− s) ‖Φ(s, t0, x)v‖ =
∫ 1

0

h(t− s)g(τ) ‖Φ(s, t0, x)v‖ dτ ≤
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≤
∫ 1

0

h(t− τ)h(τ − s)g(τ) ‖Φ(s, t0, x)v‖ dτ ≤

≤ h(t)
∫ 1

0

h(τ)g(τ) ‖Φ(s, t0, x)v‖ dτ =

=
∫ s+1

s

h(u− t0)g(u− s) ‖Φ(s, t0, x)v‖ du ≤

≤
∫ t

0

h(u− s) ‖Φ2(u, t0, x)v‖ du ≤ Kk(t) ‖Φ2(t, t0, x)v‖ ,

for all t ≥ s + 1 > s ≥ 0 and all (x, v) ∈ Y .
On the other hand, for t ∈ [s, s + 1) we obtain for all (x, v) ∈ Y

‖Φ2(t, t0, x)v‖ ≥ g(t− s) ‖Φ(s, t0, x)v‖ ≥ g(1) ‖Φ(s, t0, x)(x)v‖ .

We obtain thus relation (3.13).
A similar proof, based on the property (χ) of function h, shows that the

inequalities from (iii) imply relations (3.14).
Hence, according to Definition 3.9, C is (h, k)–trichotomic. �

Remark 4.2. Relation (4.1) defines the (h, k)–integral stability, while relation
(4.1) defines the (h, k)–integral instability for skew-evolution semiflow, similar
to the notions defined in [17].

In the below mentioned particular cases, we obtain, as in [14], charac-
terizations for other classes of trichotomy.

Corollary 4.3. In the hypothesis of Theorem 4.1,
(i) if h, k ∈ E and are given by t 7→ eαt respectively t 7→ Meαt, M ≥ 1,

the skew-evolution semiflow C is uniformly exponentially trichotomic;
(ii) if h ∈ E, the skew-evolution semiflow C is exponentially trichotomic;
(iii) if h, k ∈ E and are given by t 7→ eαt respectively t 7→ Meβt, M ≥ 1

and β > α, the skew-evolution semiflow C is Barreira-Valls exponentially
trichotomic.
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