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1. Introduction

The concept of fuzzy set theory was first introduce by Zadeh[13] in
1965 and thereafter, the concept of fuzzy set theory applied on different
branches of pure and applied mathematics in different ways by several au-
thors. The concept of fuzzy norm was introduced by Katsaras [9] in 1984. In
1992, Felbin[7] introduced the idea of fuzzy norm on a linear space. Cheng-
Moderson [4] introduced another idea of fuzzy norm on a linear space whose
associated metric is same as the associated metric of Kramosil-Michalek [10].
In 2003, Bag and Samanta [1] modified the definition of fuzzy norm of Cheng-
Moderson [4] and established the concept of continuity and boundednes of a
linear operator with respect to their fuzzy norm in [2].

Later on Jebril and Samanta [8] introduced the concept of fuzzy anti-
norm on a linear space depending on the idea of Bag and Samanta [3]. The
motivation of introducing fuzzy anti-norm is to study fuzzy set theory with
respect to the non-membership function. It is useful in the process of decision
making.

In this paper various types of fuzzy anti-continuities and fuzzy anti-
boundedness; namely, fuzzy anti-continuity, sequential fuzzy anti-continuity,
strong fuzzy anti-continuity, weak fuzzy anti-continuity, strong fuzzy anti-
boundedness and weak fuzzy anti-boundedness are defined. The intra-
relations among fuzzy anti-continuities and intra-relation among strongly
fuzzy anti-bounded and weakly fuzzy anti-bounded are studied. Also, the
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inter relation between fuzzy anti-continuities and fuzzy anti-boundedness
are studied. Also it is established an important property for fuzzy anti-
continuity; namely, any linear operator between fuzzy anti-normed linear
spaces is strongly and weakly fuzzy anti-continuous if and only if it is strongly
and weakly fuzzy anti-bounded respectively.

2. Preliminaries

This section contain some basic definition and preliminary results which
will be needed in the sequel.

Definition 2.1. [12] A binary operation � : [0, 1]× [0, 1] → [0, 1] is continuous
t-conorm if � satisfies the following conditions :
(i) � is commutative and associative ,
(ii) � is continuous ,
(iii) a � 0 = a, ∀ a ∈ [0, 1] ,
(iv) a � b ≤ c � d whenever a ≤ c , b ≤ d and a, b, c, d ∈ [0, 1].

A few examples of continuous t-conorm are a � b = a + b − ab, a � b =
max{a, b}, a � b = min{a + b, 1}.
Definition 2.2. [5] Let V be linear space over the field F (= RorC). A fuzzy
subset ν of V ×R is called a fuzzy antinorm on V with respect to a t-conorm
� if and only if for all x, y ∈ V
(i) ∀ t ∈ R with t ≤ 0, ν(x, t) = 1;
(ii) ∀ t ∈ R with t > 0, ν(x, t) = 0 if and only if x = θ;
(iii) ∀ t ∈ R with t > 0, ν(cx, t) = ν(x, t

|c| ) if c 6= 0, c ∈ F ;
(iv) ∀ s, t ∈ R with ν(x + y, s + t) ≤ ν(x, s) � ν(y, t);
(v) lim

t→∞
ν(x, t) = 0.

We further assume that for any fuzzy anti-normed linear space (V,A∗)
with respect to a t-conorm �,
(vi) ν(x, t) < 1, ∀ t > 0 ⇒ x = θ.
(vii) ν(x, ·) is a continuous function of R and strictly decreasing on the subset
{t : 0 < ν(x, t) < 1} of R.
(viii) a � a = a, ∀ a ∈ [0, 1].

Theorem 2.3. [5] Let (V,A∗) be a fuzzy antinormed linear space satisfying
(vi) and (vii) and (viii). Let ‖x‖∗α = ∧{t : ν(x, t) ≤ 1− α}, α ∈ (0, 1). Also,
let ν′ : V × R → [0, 1] be defined by

ν′(x, t) =
{
∧{1− α : ‖x‖∗α ≤ t}, if (x, t) 6= (θ, 0)
1, if (x, t) = (θ, 0)

Then ν′ = ν.

Definition 2.4. [8]. Let (V,A∗) be a fuzzy antinormed linear space. A sequence
{xn}n in V is said to be convergent to x ∈ V if given t > 0, r ∈ (0, 1) there
exist an integer n0 ∈ N such that

ν(xn − x, t) < r ∀ n ≥ n0.
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Definition 2.5. [8]. Let (V,A∗) be a fuzzy antinormed linear space. A sequence
{xn}n in V is said to be Cauchy sequence to x ∈ V if given t > 0, r ∈ (0, 1)
there exist an integer n0 ∈ N such that

ν(xn+p − xn, t) < r ∀ n ≥ n0, p = 1, 2, 3, · · · .

Definition 2.6. [8]. A subset A of a fuzzy antinormed linear space (V,A∗) is
said to be bounded if and only if there exist t > 0, r ∈ (0, 1) such that

ν(x, t) < r ∀ x ∈ A

3. Fuzzy anti-continuity

Throughout this section unless otherwise stated (U,A∗) and (V,B∗) are
any two fuzzy anti-normed linear spaces over the same field F .

Definition 3.1. A mapping T : (U,A∗) → (V,B∗) is said to be fuzzy anti-
continuous at x0 ∈ U , if for any given ε > 0,α ∈ (0, 1) there exist δ =
δ(α, ε) > 0 , β = β(α, ε) ∈ (0, 1) such that for all x ∈ U

νU (x− x0, δ) < β ⇒ νV (T (x)− T (x0), ε) < α.

Definition 3.2. A mapping T : (U,A∗) → (V,B∗) is said to be sequentially
fuzzy anti-continuous at x0 ∈ U , if for any sequence {xn}n, xn ∈ U, ∀ n with
xn → x0 implies T (xn) → T (x0) in V , that is for all t > 0,

lim
n→∞

νU (xn − x0, t) = 0 ⇒ lim
n→∞

νV (T (xn)− T (x0), t) = 0.

Definition 3.3. A mapping T : (U,A∗) → (V,B∗) is said to be strongly fuzzy
anti-continuous at x0 ∈ U , if for any given ε > 0 there exist δ = δ(α, ε) > 0
such that for all x ∈ U ,

νV (T (x)− T (x0), ε) ≤ νU (x− x0, δ)

Definition 3.4. A mapping T : (U,A∗) → (V,B∗) is said to be weakly fuzzy
anti-continuous at x0 ∈ U , if for any given ε > 0, α ∈ (0, 1) there exist
δ = δ(α, ε) > 0 such that for all x ∈ U ,

νU (x− x0, δ) ≤ 1− α ⇒ νV (T (x)− T (x0), ε) ≤ 1− α.

Theorem 3.5. If a mapping T from a fuzzy anti-normed linear space (U,A∗)
to a fuzzy anti-normed linear space (V,B∗) is strongly fuzzy anti-continuous
then it is weakly fuzzy anti-continuous. But not conversely.

Proof. From the definition it follows obviously. To show the converse result
may not be true we consider the following example.

Example 3.6. As in the example of Note 3.3 of [6], we consider the fuzzy
anti-normed linear spaces (X, ν1) and (X, ν2). Let f(x) = x4

1+x4 ∀ x ∈ R.

Now from Example 3 of [11] it directly follows that f is not strongly fuzzy
anti-continuous. Here we now show that f is weakly fuzzy anti-continuous on
X.
Let x0 ∈ X, ε > 0 and δ ∈ (0, 1). Now
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ν2(f(x)− f(x0), ε) < 1− α if k|f(x)−f(x0|
ε+k|f(x)−f(x0| < 1− α

i.e., if
ε

ε + k | x4

1+x2 − x4
0

1+x2
0
|
≥ α

i.e., if
ε(1+x2)(1+x2

0)

k|x+x0||x2x2
0+x2+x2

0|
ε(1+x2)(1+x2

0)

k|x+x0||x2x2
0+x2+x2

0|
+ | x− x0 |

≥ α

i.e., if

α | x− x0 |≤ (1− α)
ε

k

(1 + x2)(1 + x2
0)

| x + x0 || x2x2
0 + x2 + x2

0 |

≤ (1− α)
ε

k
So, depending upon (1− α) ε

k we may choose δ > 0 such that
α(δ+ | x− x0 |) ≤ δi.e., ν1(x− x0, δ) < 1− α.
Thus we see that for every ε > 0, α ∈ (0, 1)∃δ > 0 such that

ν1(x− x0, δ) < 1− α ⇒ ν2(f(x)− f(x0), ε) < 1− α.

i.e., f is weakly fuzzy anti-continuous at x0.

Theorem 3.7. A mapping T from a fuzzy anti-normed linear space (U,A∗) to
a fuzzy anti-normed linear space (V,B∗) is fuzzy anti-continuous if and only
if it is sequentially fuzzy anti-continuous.

Proof. The proof of the above theorem is directly follows from Theorem 13
of [11].

Theorem 3.8. If a mapping T from a fuzzy anti-normed linear space (U,A∗)
to a fuzzy anti-normed linear space (V,B∗) is strongly fuzzy anti-continuous
then it is sequentially fuzzy anti-continuous.

Proof. The proof of the above theorem is directly follows from Theorem 12
of [11].

Theorem 3.9. Let T : (U,A∗) → (V,B∗) be a linear operator. If T is sequen-
tially fuzzy anti-continuous at a point x0 ∈ U , then it is sequentially fuzzy
anti-continuous on U.

Proof. Let, x ∈ U be an arbitrary point and let {xn}n be a sequence in U
such that xn → x. Then ∀ t > 0

lim
n→∞

νU (xn − x, t) = 0

i.e., lim
n→∞

νU ((xn − x + x0)− x0, t) = 0

Since T is sequentially fuzzy anti-continuous at x0 ∀ t > 0 we have

lim
n→∞

νV ((xn − x + x0)− x0, t) = 0

i.e., lim
n→∞

νV (T (xn)− T (x) + T (x0)− T (x0), t) = 0
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i.e., lim
n→∞

νV (T (xn)− T (x), t) = 0

Thus,

lim
n→∞

νU (xn − x, t) = 0, ∀ t > 0 ⇒ lim
n→∞

νV (T (xn)− T (x), t) = 0, ∀ t > 0.

Hence the proof.

4. Fuzzy anti-boundedness

Definition 4.1. A mapping T : (U,A∗) → (V,B∗) is said to be strongly fuzzy
anti-bounded on U if and only if there exist a positive real number M such
that for all x ∈ U and for all t ∈ R+,

νV (T (x), t) ≤ νU (x,
t

M
)

Example 4.2. The zero and identity operators are strongly fuzzy anti-
bounded.

Example 4.3. It is an example of a strongly fuzzy anti-bounded linear oper-
ator other than the zero and the identity operator.

Let (V, ‖.‖) be a normed linear space over the field K(= RorC). Let,
α1, α2 ∈ R such that α1 > α2 > 0. Again, let ν1, ν2 : V × R+ → [0, 1] be
defined by

ν1(x, t) =
α1‖x‖

t + α1‖x‖
andν2(x, t) =

α2‖x‖
t + α2‖x‖

Also, define a � b, = max{a, b} for all a, b ∈ [0, 1].
Now we shall first show that (V, ν1) and (V, ν2) are fuzzy anti-normed linear
space.
(i) The condition (i) is obvious.
(ii) ν1(x, t) = 0 ⇔ α1‖x‖

t+α1‖x‖ = 0 ⇔ ‖x‖ = 0 ⇔ x = θ.

(iii) Let c ∈ K and c 6= 0

ν1(cx, t) =
α1 ‖ cx ‖

t + α1 ‖ cx ‖

=
α1 ‖ x ‖

t
|c| + α1 ‖ x ‖

= ν1(x,
t

| c |
)

(iv)

ν1(x + y, s + t) =
α1 ‖ x + y ‖

s + t + α1 ‖ x + y ‖

=
1

s+t
α1‖x+y‖ + 1

≤ 1
s+t

α1‖x‖+α1‖y‖ + 1

=
α1 ‖ x ‖ +α1 ‖ y ‖

s + t + α1 ‖ x ‖ +α1 ‖ y ‖
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Now if

ν1(x, s) ≥ ν1(y, t) ⇒ α1 ‖ x ‖
s + α1 ‖ x ‖

≥ α1 ‖ y ‖
t + α1 ‖ y ‖

;

⇒ t ‖ x ‖ −s ‖ y ‖
Therefore,

α1 ‖ x ‖ +α1 ‖ y ‖
s + t + α1 ‖ x ‖ +α1 ‖ y ‖

− α1 ‖ x ‖
s + α1 ‖ x ‖

≤ 0.

Thus

ν1(x + y, s + t) ≤ α1 ‖ x ‖ +α1 ‖ y ‖
s + t + α1 ‖ x ‖ +α1 ‖ y ‖

≤ α1 ‖ x ‖
s + α1 ‖ x ‖

= ν1(x, s) � ν1(y, t)

Again if ν1(y, t) ≥ ν1(x, s) Similarly it can be shown that

ν1(x + y, s + t) ≤ α1 ‖ y ‖
t + α1 ‖ y ‖

= ν1(x, s) � ν1(y, t)

Hence
ν1(x + y, s + t) ≤ ν1(x, s) � ν1(y, t)

(v)

lim
t→∞

ν1(x, t) = lim
t→∞

α1 ‖ x ‖
t + α1 ‖ x ‖

= 0

Hence (V, ν1) is a fuzzy anti-normed linear space. Similarly (V, ν2) is also
fuzzy anti-normed linear space.
We now define a mapping T : (V, ν1) → (V, ν2) by T (x) = rx where r(6= 0) ∈
R is fixed. Clearly T is a linear operator.
Let us choose an arbitrary but fixed M > 0 such that M ≥| r | and x ∈ V.
Now,

M ≥| r |⇒ α1M ‖ x ‖≥ α2 | r |‖ x ‖
⇒ t + α1M ‖ x ‖≥ t + α2 | r |‖ x ‖ ∀ t > 0.

⇒ t

t + α2 | r |‖ x ‖
≥ t

t + α1M ‖ x ‖
∀ t > 0.

⇒ t

t + α2 ‖ rx ‖
≥

t
M

t
M + α1 ‖ x ‖

∀ t > 0.

⇒ 1− t

t + α2 ‖ rx ‖
≤ 1−

t
M

t
M + α1 ‖ x ‖

∀ t > 0.

⇒ α2 ‖ rx ‖
t + α2 ‖ rx ‖

≤ α1 ‖ x ‖
t

M + α1 ‖ x ‖
∀ t > 0.

i.e.,

ν2(T (x), t) ≤ ν1(x,
t

M
) ∀ t > 0and ∀ x ∈ V.

Hence T is strongly fuzzy anti-bounded on V .
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Definition 4.4. A mapping T : (U,A∗) → (V,B∗) is said to be weakly fuzzy
anti-bounded on U if and only if for any α ∈ (0, 1) there exist Mα(> 0) such
that for all x ∈ U and for all t ∈ R+,

νU (x,
t

Mα
) ≤ 1− α ⇒ νV (T (x), t) ≤ 1− α

Theorem 4.5. Let T : (U,A∗) → (V,B∗) be a linear operator. If T is strongly
fuzzy anti-bounded then it is weakly fuzzy anti-bounded. But not conversely.

Proof. First we suppose that T is strongly fuzzy anti-bounded. Then there
exist M > 0 such that ∀ x ∈ U and ∀ t ∈ R,

νV (T (x), t) ≤ νU (x,
t

M
)

Thus for any α ∈ (0, 1), there exists Mα(= M) such that

νU (x,
t

Mα
) ≤ 1− α ⇒ νV (T (x), t) ≤ 1− α

Hence T is weakly fuzzy anti-bounded.
The converse of the above theorem is not necessarily true. For example

Example 4.6. Let (V, ‖ · ‖) be a linear space over the field K(= RorC) and
ν1, ν2 : V × R+ → [0, 1] be defined by

ν1(x, t) =
2‖x‖2

t2 + ‖x‖2
, ift > ‖x‖

= 1, if0 < t ≤ ‖x‖

andν2(x, t) =
‖x‖

t + ‖x‖
Also define a � b = max{a, b}
Already we have seen that (V, ν2) is a fuzzy anti-normed linear space. Now
we shall prove that (V, ν1) is a fuzzy anti-normed linear space.
(i) Clearly follows from the definition of ν1.
(ii) ν1(x, t) = 0 ⇔ 2‖x‖2

t2+‖x‖2 = 0 ⇔ ‖x‖ = 0 ⇔ x = θ.

(iii) Let, c ∈ K and c 6= 0. If t > ‖cx‖,

ν1(cx, t) =
2‖cx‖2

t2 + ‖cx‖2
=

2|c|2‖x‖2

t2 + |c|2‖x‖2
=

2‖x‖2

( t
|c| )

2 + ‖x‖2
= ν1(x,

t

|c|
)

Again if 0 < t ≤ ‖cx‖ then ν1(cx, t) = 1
and 0 < t ≤ ‖cx‖ ⇒ 0 < t

|c| ≤ ‖x‖ ⇒ ν1(x, t
|c| ) = 1

(iv) Let s, t ∈ R+, x, y ∈ V
If 0 < s + t ≤ ‖x + y‖, we have the following possibilities
(a) 0 < s ≤ ‖x‖ and 0 < t ≤ ‖y‖
(b) 0 < s ≤ ‖x‖ and t > ‖y‖
(c) 0 < t ≤ ‖y‖ and s > ‖x‖.

In each case ν1(x + y, s + t) = 1 = ν1(x, s) � ν1(y, t) Again, if s + t >
‖x + y‖, we have the following four possibilities
(a) s > ‖x‖, t ≤ ‖y‖
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(b) s ≤ ‖x‖, t > ‖y‖
(c) s ≤ ‖x‖, t ≤ ‖y‖
(d) s > ‖x‖, t > ‖y‖
In the cases (a), (b), (c)

ν1(x + y, s + t) =
2‖x + y‖2

(s + t)2 + ‖x + y‖2

< 1 = ν1(x, s) � ν1(y, t)
So, we now suppose that s > ‖x‖andt > ‖y‖ Now, s+t > ‖x‖+‖y‖ ≥ ‖x+y‖.
Therefore,

ν1(x + y, s + t) =
2‖x + y‖2

(s + t)2 + ‖x + y‖2

≤ 2(‖x‖+ ‖y‖)2

(s + t)2 + (‖x‖+ ‖y‖)2
Hence we have

ν1(x + y, s + t) ≤ 2(‖x‖+ ‖y‖)2

(s + t)2 + (‖x‖+ ‖y‖)2

≤ 2‖y‖2

t2 + ‖y‖2
= ν1(y, t)

when ν1(x, s) ≤ ν1(y, t)
Similarly,

ν1(x + y, s + t) ≤ 2(‖x‖+ ‖y‖)2

(s + t)2 + (‖x‖+ ‖y‖)2

≤ 2‖x‖2

t2 + ‖x‖2
= ν1(x, s)

when ν1(y, t) ≤ ν1(x, s)
Thus

ν1(x + y, s + t) ≤ ν1(x, s) � ν1(y, t)

(v) lim
t→∞

ν1(x, t) = lim
t→∞

2‖x‖2

t2 + ‖x‖2
= 0

Thus we see that (V, ν1) is a fuzzy anti-normad linear space.
Now we define a linear operator T : (U, ν1) → (V, ν2) by T (x) = x, ∀ x ∈ V.
Let, α ∈ (0, 1), x ∈ V andt ∈ R+ and choose Mα = 1

1−α . We now prove that

ν1(x,
t

Mα
) ≤ 1− α ⇒ ν2(T (x), t) ≤ 1− α.

ν1(x,
t

Mα
) ≤ 1− α

⇒ 2‖ x ‖2

t2(1− α)2 + ‖ x ‖2
≤ 1− α

⇒ 1− 2‖ x ‖2

t2(1− α)2 + ‖ x ‖2
≥ 1− (1− α) = α
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⇒ t2(1− α)2 − ‖ x ‖2

t2(1− α)2 + ‖ x ‖2
≥ α

⇒ t2(1− α)3 ≥ (1 + α)‖ x ‖2

⇒‖ x ‖≤ t(1− α)
√

1− α√
1 + α

⇒ t+ ‖ x ‖≤ t
(1− α)

√
1− α +

√
1 + α√

1 + α

⇒ t

t+ ‖ x ‖
≥

√
1 + α

(1− α)
√

1− α +
√

1 + α

⇒ 1− t

t+ ‖ x ‖
≤ 1−

√
1 + α

(1− α)
√

1− α +
√

1 + α

⇒ ‖ x ‖
t+ ‖ x ‖

≤ (1− α)
√

1− α

(1− α)
√

1− α +
√

1 + α

Now
(1− α)

√
1− α

(1− α)
√

1− α +
√

1 + α
≤ 1− α ⇔

√
1− α ≤ (1− α)

√
1− α +

√
1 + α

⇔ α
√

1− α ≤
√

1 + α

⇔ 1 + α + α3 ≥ α2

which is true for all α ∈ (0, 1).
Hence

ν1(x,
t

Mα
) ≤ 1− α ⇒ ν2(T (x), t) ≤ 1− α.

Thus T is weakly fuzzy anti-bounded on V .
Now for t > ‖x‖, x 6= θ we have

ν2(T (x), t) ≤ ν1(x,
t

M
) ⇔ ‖x‖

t + ‖x‖
≤ 2M‖x‖2

t2 + M‖x‖2

⇔ t2‖x‖+ M‖x‖3 ≤ 2tM‖x‖2 + 2M‖x‖3

⇔
(
2t‖x‖2 + ‖x‖3

)
M ≥ t2‖x‖

M →∞ as t →∞
Hence T is not strongly fuzzy anti-bounded on V .

Definition 4.7. A linear operator T : (U,A∗) → (V,B∗) is said to be uniformly
fuzzy anti-bounded if and only if there exist M > 0 such that

‖T (x)‖∗α ≥ M ‖x‖∗α , α ∈ (0, 1)

where {‖·‖∗α : α ∈ (0, 1)} is ascending family of fuzzy α-norms.

Theorem 4.8. Let T : (U,A∗) → (V,B∗) be a linear operator and (U,A∗) and
(V,B∗) satisfies (vi), (vii) and (viii). Then T is strongly fuzzy anti-bounded if
and only if it is uniformly fuzzy anti-bounded with respect to fuzzy α-norms,
α ∈ (0, 1).
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Proof. Let {‖·‖∗α : α ∈ (0, 1)} be ascending family of α-norms. First suppose
that T is strongly fuzzy anti-bounded. Then there exist M > 0 such that
∀ x ∈ U and ∀ s ∈ R,

νV (T (x), t) ≤ νU (x,
s

M
)i.e., νV (T (x), t) ≤ νU (Mx, s)

‖Mx‖∗α > t ⇒ ∧{s : ν(Mx, s) ≤ 1− α} > t.

⇒ ∃s0 > t such that ν(Mx, s0) ≤ 1− α

⇒ ∃s0 > t such that ν(T (x), s0) ≤ 1− α

⇒ ‖T (x)‖∗α ≥ s0 > t

Hence ‖T (x)‖∗α ≥ ‖Mx‖∗α = M ‖x‖∗α .
Thus T is uniformly fuzzy anti-bounded.
Conversely, suppose that there exist M > 0 such that ∀ x ∈ U and ∀ α ∈
(0, 1)

‖T (x)‖∗α ≥ M ‖x‖∗α
Let p > νU (Mx, s) ⇒ p > ∧{α ∈ (0, 1) : ‖Mx‖∗α ≤ s}
⇒ there exist α0 ∈ (0, 1) such that p > α0 and ‖Mx‖∗α ≤ s
⇒ ‖T (x)‖∗α ≤ s
⇒ νV (T (x), s) ≤ 1− α0 < p.

Hence, νV (T (x), s) ≤ νU (Mx, s) = νU (x, s
M ).

Thus T is strongly fuzzy anti-bounded.

Theorem 4.9. Let T : (U,A∗) → (V,B∗) be a linear operator. Then,
(i) T is strongly fuzzy anti-continuous on U if T is strongly fuzzy anti-
continuous at a point x0 ∈ U.
(ii) T is strongly fuzzy anti-continuous if and only if T is strongly fuzzy anti-
bounded.

Proof. (i) since, T is strongly fuzzy anti-continuous at x0 ∈ U , for each ε > 0
there exists δ > 0 such that

νV (T (x)− T (x0), ε) ≤ νU (x− x0, δ)

Taking y ∈ U and replacing xbyx + x0 − y, we get,
νV (T (x)− T (x0), ε) ≤ νU (x− x0, δ)
⇒ νV (T (x + x0 − y)− T (x0), ε) ≤ νU (x + x0 − y − x0, δ)
⇒ νV (T (x) + T (x0)− T (y)− T (x0), ε) ≤ νU (x− y, δ)
⇒ νV (T (x)− T (y), ε) ≤ νU (x− y, δ)
Since, y ∈ U is arbitrary, T is strongly fuzzy anti-continuous on U .
(ii)First we suppose that T is strongly fuzzy anti-bounded. Thus there exist
a positive real number M such that for all x ∈ U and for all ε ∈ R+,

νV (T (x), ε) ≤ νU (x,
ε

M
)

i.e., νV (T (x)− T (θ), ε) ≤ νU (x− θ,
ε

M
)

i.e, νV (T (x)− T (θ), ε) ≤ νU (x− θ, δ)
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where δ = ε
M .

Thus T is strongly fuzzy anti-continuous at θ and hence T is strongly fuzzy
anti-continuous on U .
Conversely, suppose that T is strongly fuzzy anti-continuous on U . Using
fuzzy anti-continuity of T at x = θ for ε = 1 there exist δ > 0 such that for
all x ∈ U ,

νV (T (x)− T (θ), 1) ≤ νU (x− θ, δ).
If x 6= θand t > 0. Putting x = ut
νV (T (x), t) = νV (uT (u), t) = νV (T (u), 1) ≤ νU (u, δ) = νU (x

t , δ) = νU (x, t
M ),

where M = 1
δ . So, νV (T (x), t) ≤ νU (x, t

M ).
If x 6= θ and t ≤ 0 then νV (T (x), t) = 1 = νU (x, t

M ).
If x = θ and t ∈ R, then T (θU ) = θV and

νV (θV , t) = νU (θU ,
t

M
) = 0, if t > 0.

νV (θV , t) = νU (θU ,
t

M
) = 1, if t ≤ 1.

Hence T is strongly fuzzy anti-bounded.

Theorem 4.10. Let T : (U,A∗) → (V,B∗) be a linear operator. Then,
(i) T is weakly fuzzy anti-continuous on U if T is weakly fuzzy anti-continuous
at a point x0 ∈ U.
(ii) T is weakly fuzzy anti-continuous if and only if T is weakly fuzzy anti-
bounded.

Proof. (i) Since, T is weakly fuzzy anti-continuous at x0 in U , for ε > 0 and
α ∈ (0, 1) there exist δ = δ(α, ε) > 0 such that ∀ x ∈ U

νU (x− x0, δ) ≤ 1− α ⇒ νV (T (x)− T (x0), ε) ≤ 1− α.

Taking y ∈ U and replacing x by x + x0 − y we get,

νU (x + x0 − y − x0, δ) ≤ 1− α ⇒ νV (T (x + x0 − y)− T (x0), ε) ≤ 1− α

i.e., νU (x− y, δ) ≤ 1− α ⇒ νV (T (x) + T (x0)− T (y)− T (x0), ε) ≤ 1− α

i.e., νU (x− y, δ) ≤ 1− α ⇒ νV (T (x)− T (y), ε) ≤ 1− α

Since, y(∈ U) is arbitrary it follows that T is weakly fuzzy anti-continuous
on U.

(ii) First we suppose that T is fuzzy anti-bounded. Thus for any α ∈
(0, 1) there exist Mα > 0 such that ∀ t ∈ R and ∀ x ∈ U we have

νU (x,
t

M
) ≤ 1− α ⇒ νV (T (x), t) ≤ 1− α

Therefore,

νU (x− θ,
t

M
) ≤ 1− α ⇒ νV (T (x)− T (θ), t) ≤ 1− α

i.e., νU (x− θ,
ε

Mα
) ≤ 1− α ⇒ νV (T (x)− T (θ), ε) ≤ 1− α

i.e., νU (x− θ, δ) ≤ 1− α ⇒ νV (T (x)− T (θ), ε) ≤ 1− α
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where δ = ε
Mα

Thus, T is weakly fuzzy anti-continuous at x0 and hence weakly fuzzy anti-
continuous on U .
Conversely, suppose that T is weakly fuzzy anti-continuous on U . Using con-
tinuity of T at θ and taking ε = 1 we have for all α ∈ (0, 1) there exists
δ(α, 1) > 0 such that for all x ∈ U,

νU (x− θ, δ) ≤ 1− α ⇒ νV (T (x)− T (θ), 1) ≤ 1− α

i.e., νU (x, δ) ≤ 1− α ⇒ νV (T (x), 1) ≤ 1− α.

If x 6= θ and t > 0. Putting x = u
t we have,

νU (
u

t
, δ) ≤ 1− α ⇒ νV (T (

u

t
), 1) ≤ 1− α

i.e., νU (u, tδ) ≤ 1− α ⇒ νV (T (u), t) ≤ 1− α

i.e., νU (u,
t

Mα
) ≤ 1− α ⇒ νV (T (

u

t
), 1) ≤ 1− α

where Mα = 1
δ(α,1) If x 6= θ and t ≤ 0, νU (x, t

Mα
) = νV (T (x), t) = 1 for any

Mα > 0.
If x = θ then for Mα > 0,

νU (x,
t

Mα
) = νV (T (x), t) = 0, ift > 0

νU (x,
t

Mα
) = νV (T (x), t) = 1, ift ≤ 0

Hence, T is weakly fuzzy anti-bounded.

Theorem 4.11. Let T : (U,A∗) → (V,B∗) be a linear operator and (U,A∗) and
(V,B∗) satisfies (vi), (vii) and (viii). Then T is weakly fuzzy anti-bounded if
and only if T is fuzzy anti-bounded with respect to α-norms.

Proof. First we suppose that T is weakly fuzzy anti-bounded. Then for all
α ∈ (0, 1) there exist Mα > 0 such that ∀ x ∈ U, t ∈ R we have

νU (x,
t

Mα
) ≤ 1− α ⇒ νV (T (x), t) ≤ 1− α

Hence we get, νU (Mαx, t) ≤ 1− α ⇒ νV (T (x), t) ≤ 1− α
i.e.,∧{β ∈ (0, 1) : ‖Mαx‖∗β ≤ t} ≤ 1 − α ⇒ ∧{β ∈ (0, 1) : ‖T (x)‖∗β ≤ t} ≤
1− α
Now we show that

∧{β ∈ (0, 1) : ‖Mαx‖∗β ≤ t} ≤ 1− α ⇔ ‖Mαx‖∗α ≤ t

If x = θ then the relation is obvious.
Suppose x 6= θ.
Now, if

∧{β ∈ (0, 1) : ‖Mαx‖∗β ≤ t} < 1− αthen ‖Mαx‖∗α ≤ t (4.1)
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If ∧{β ∈ (0, 1) : ‖Mαx‖∗β ≤ t} = 1−α then there exists a decreasing sequence
{αn}n in (0, 1) such that αn → α and ‖Mαx‖∗α ≤ t Then by Theorem 3.7 we
have

‖Mαx‖∗α ≤ t (4.2)
From (4.1) and (4.2) we get

∧{β ∈ (0, 1) : ‖Mαx‖∗β ≤ t} ≤ 1− α ⇒ ‖Mαx‖∗α ≤ t (4.3)

Next we suppose that ‖Mαx‖∗α ≤ t.
If ‖Mαx‖∗α < t then νU (Mαx, t) ≤ 1− α. i.e.,

∧{β ∈ (0, 1) : ‖Mαx‖∗β ≤ t} ≤ 1− α (4.4)

If ‖Mαx‖∗α = t i.e.,∧{s : νU (Mαx, s) ≤ 1 − α} = t then there exist an
increasing sequence {sn}n in R+ such that sn → t and

νU (Mαx, sn) ≤ 1− α ⇒ lim
n→∞

νU (Mαx, sn) ≤ 1− α

⇒ νU (Mαx, lim
n→∞

sn) ≤ 1− α

⇒ νU (Mαx, t) ≤ 1− α

⇒ ∧{β ∈ (0, 1) : ‖Mαx‖∗β ≤ t} ≤ 1− α

Hence from (4.4) it follows that

‖Mαx‖∗α ≤ t ⇒ ∧{β ∈ (0, 1) : ‖Mαx‖∗β ≤ t} ≤ 1− α (4.5)

From (4.3) and (4.5) we have

∧{β ∈ (0, 1) : ‖Mαx‖∗β ≤ t} ≤ 1− α ⇔ ‖Mαx‖∗α ≤ t (4.6)

In the similar way we can show that

∧{β ∈ (0, 1) : ‖T (x)‖∗β ≤ t} ≤ 1− α ⇔ ‖T (x)‖∗α ≤ t (4.7)

From (4.6) and (4.7) we have νU (Mαx, t) ≤ 1− α ⇒ νV (T (x), t) ≤ 1− α
Then

‖Mαx‖∗α ≤ t ⇒ ‖T (x)‖∗α ≤ t

This implies that
‖T (x)‖∗α ≥ ‖Mαx‖∗α

Conversely, suppose that ∀ α ∈ (0, 1),∃Mα > 0 such that ∀ xInU,

‖T (x)‖∗α ≥ ‖Mαx‖∗α
Then for x 6= θand ∀ t > 0,

‖Mαx‖∗α ≤ t ⇒ ‖T (x)‖∗α ≤ t

i.e.,

∧{s : νU (Mαx, s) ≤ 1− α} ≤ t ⇒ ∧{s : νV (T (x), s) ≤ 1− α} ≤ t

In the similar way as above we can show that

∧{s : νU (Mαx, s) ≤ 1− α} ≤ t ⇔ νU (Mαx, t) ≤ 1− α

and
∧{s : νU (T (x), s) ≤ 1− α} ≤ t ⇔ νU (T (x)x, t) ≤ 1− α
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Thus we have

νU (x,
t

Mα
) ≤ 1− α ⇒ νV (T (x), t) ≤ 1− α, ∀ x ∈ U

If x 6= θ, t ≤ 0 and if x = θ, t > 0 then the above relation is obvious. Hence
the proof.

Theorem 4.12. Let T : (U,A∗) → (V,B∗) be a linear operator and (U,A∗)
and (V,B∗) satisfies (vi), (vii) and (viii). If U is finite dimensional then T
is weakly fuzzy anti-bounded.

Proof. Since, (U,A∗) and (V,B∗) satisfies (vi) and (viii) we may suppose that
{‖·‖∗α : α ∈ (0, 1)} is ascending family of fuzzy α-anti-norms.
Since T is of finite dimension, T : (U,A∗) → (V,B∗) is bounded linear oper-
ator for each α ∈ (0, 1). Thus by Theorem 4.11 it follows that T is weakly
fuzzy anti-bounded.
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