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On best simultaneous approximation
in operator and function spaces

Sharifa Al-Sharif

Abstract. Let X be a Banach space, (I,
∑

, µ) a finite measure space
and L1(µ, X) the Banach space of all X-valued µ-integrable functions
on the unit interval I equipped with the usual 1-norm. In this paper
we prove that for a closed subspace G of X, L1(µ, G) is simultaneously
Chebyshev in L1(µ, X) if and only if G is simultaneously Chebyshev in
X. Further results are obtained in the space of bounded linear operators
L(l1, X) and in the space of continuous functions C1(I, lp) with respect
to the L1 norm.

Mathematics Subject Classification (2010): 41A65, 41A50.

Keywords: Best approximation, simultaneous approximation, spaces of
vector functions.

1. Introduction

Let X be a Banach space and (I,
∑

, µ) be a finite measure space. Let us
denote by L1(µ,X), the Banach space of all X-valued µ-integrable functions
on the unit interval I equipped with the usual 1-norm.

For a closed subspace G of X, let us recall that G is simultaneously
proximinal in X if for all m-tuples (x1, x2, ..., xm) ∈ Xm, there exists g ∈ G
such that

m∑
i=1

‖xi − g‖ = dist(x1, x2, ..., xm, G) = inf

{
m∑

i=1

‖xi − z‖ : z ∈ G

}
.

In this case, g is called a best simultaneous approximation of (x1, x2, ..., xm)
in G. If this best approximation is unique for all (x1, x2, ..., xm) ∈ Xm, then
G is called simultaneously Chebyshev.

Of course for m = 1 the preceding concepts are just best approximation
and proximinality.

The problem of best simultaneous approximation can be viewed as a
special case of vector valued approximation. Recent results in this area are
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due to Pinkus [10], where he considered the problem when a finite dimensional
subspace is a uniqueness space. Results on best simultaneous approximation
in general Banach spaces may be found in [9] and [11] . Related results on
Lp(µ,X), 1 ≤ p < ∞, are given in [12] . In [12] , it is shown that if G is
a reflexive subspace of a Banach space X, then Lp(µ,G) is simultaneously
proximinal in Lp(µ,X). If p = 1, Abu Sarhan and Khalil [1] , proved that if G
is a reflexive subspace of the Banach space X or G is a 1-summand subspace
of X, then L1(µ, G) is simultaneously proximinal in L1(µ,X).

It is the aim of this paper to give some sufficient conditions for L1(µ, G)
to be a Chebyshev subspace of L1(µ, X). Further results are obtained in the
space of bounded linear operators L(l1, X) and in the space of continuous
functions C1(I, lp) with respect to the L1 norm.

Throughout this paper, X is a Banach space and G is a closed subspace
of X.

2. Main results

In [1] it is shown that if m = 1 and G is a finite dimensional subspace of a Ba-
nach space X, then G is Chebyshev in X if and only if L1(µ, G) is Chebyshev
in L1(µ, X). The main result in this section is: If G is a reflexive subspace
of X, then G is simultaneously Chebyshev in X if and only if L1(µ,G) is
simultaneously Chebyshev in L1(µ,X).

Theorem 2.1. Let G be a reflexive subspace of X. Then G is simultane-
ously Chebyshev in X if and only if L1(µ,G) is simultaneously Chebyshev in
L1(µ,X).

Proof. Let f1, f2, ..., fm ∈ L1(µ,X). Since G is reflexive, it follows that
[Th.4, 12] , there exists g ∈ L1(µ,G) such that

m∑
i=1

‖fi − g‖1 = dist(f1, f2, ..., fm, L
1
(µ,G)).

Thus by [Th.2.2, 2] , we have:
m∑

i=1

‖fi(t)− g(t)‖ = dist(f1(t), f2(t), ..., fm(t), G),

for almost all t ∈ I. But G is simultaneously Chebyshev. So g (t) is unique.
Thus g is determined uniquely, and L

1
(µ,G) is simultaneously Chebyshev in

L
1
(µ,X).

Conversely. Let x1, x2, ..., xm ∈ X. For i = 1, 2, ...,m, consider the func-
tions: fi : I → X, fi(t) = xi, for all t ∈ I. Since L1(µ,G) is simultaneously
Chebyshev in L1(µ, X), there exists g ∈ L1(µ, G) such that

dist(f1, f2, ..., fm, L
1
(µ,G)) =

m∑
i=1

‖fi − g‖1 ≤
m∑

i=1

‖fi − h‖1
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for all h ∈ L1(µ,G). Thus by [Th.2.2, 2] , we have:
m∑

i=1

‖fi(t)− g(t)‖ ≤
m∑

i=1

‖fi(t)− h(t)‖ (2.1)

for almost all t ∈ I. But since G is reflexive, there exists w ∈ G such that
m∑

i=1

‖xi − w‖ ≤
m∑

i=1

‖xi − z‖

for all z ∈ G, [Lemma 1.12] . Hence the function b(t) = w for all t ∈ I is a
best simultaneous approximation of f1, f2, ..., fm in L1(µ,G). Equation (2.1)
and since L1(µ,G) is simultaneously Chebyshev in L1(µ, X) it follows that
g(t) = b(t) = w and w is unique. Hence G is simultaneously Chebyshev in
X. �

For 0 < p < ∞, let us denote by lp(X), the space of all sequences (xn)

in X such that
∞∑

n=1
‖xn‖p

< ∞. For x = (xn) ∈ lp(X), let

‖x‖p =


( ∞∑

k=1

‖xn‖p

) 1
p

1 ≤ p < ∞

∞∑
k=1

‖xn‖p 0 < p < 1

In the space l1(X), we have the following result:

Theorem 2.2. G is simultaneously Chebyshev in X if and only if l1(G) is
simultaneously Chebyshev in l1(X).

Proof. For 1 ≤ i ≤ m, let xi = (xin) ∈ l1(X). If gn ∈ G is such that
m∑

i=1

‖xin − gn‖ ≤
m∑

i=1

‖xin − z‖ (2.2)

for all z ∈ G. Using triangle inequality and taking z = 0 in (2.2) we get
m∑

i=1

‖gn‖ − ‖xin‖ ≤
m∑

i=1

‖xin − gn‖ ≤
m∑

i=1

‖xin‖

and this implies

m ‖gn‖ =
m∑

i=1

‖gn‖ ≤ 2
m∑

i=1

‖xin‖ . (2.3)

Thus
∞∑

n=1

‖gn‖ ≤
2
m

m∑
i=1

∞∑
n=1

‖xin‖ < ∞.

Hence the element g = (gn) ∈ l1(G) and g is a best simultaneous approxi-
mation of the m-tuple ((xin))m

i=1 in l1(G). The uniqueness of gn implies that
g = (gn) is unique and l1(G) is simultaneously Chebyshev in l1(X).
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Conversely. Let x1, x2, ...., xm ∈ X. For each i = 1, 2, ...,m, consider
the sequence (xi, 0, ....) ∈ l1(X). Since l1(G) is simultaneously Chebyshev in
l1(X), it follows that there exists a sequence of the form (g, 0, ....) in l1(G)
such that

m∑
i=1

‖(xi, 0, ...)− (g, 0, ...)‖ <
m∑

i=1

‖(xi, 0, ....)− (z1, z2, ...)‖

for all (zn) ∈ l1(G)\ {(g, 0, ...)} . This implies that

m∑
i=1

‖xi − g‖ <

m∑
i=1

‖xi − z‖

for all z ∈ G\ {g} . �

For the space of bounded linear operators, L(l1, X), from l1 into X,
where l1 is the space of all summable real sequences it has been proved in [1]
that G is proximinal in X if and only if L(l1, G) is proximinal in L(l1, X).
For the case of simultaneous approximation we have the following result:

Theorem 2.3. G is simultaneously proximinal in X if and only if L(l1, G) is
simultaneously proximinal in L(l1, X).

Proof. Let T1, T2, ..., Tm ∈ L(l1, X). If (δn) is the natural basis of l1, then
Tiδn ∈ X, i = 1, 2, ...,m.

Since G is simultaneously proximinal, so for each n there exists xn ∈ G
such that

m∑
i=1

‖Ti(δn)− xn‖ = dist (T1(δn), T2(δn), ..., Tm(δn), G).

Define S : l1 → G, S (δn) = xn. Then S is a bounded linear operator from l1

into G. It is clear that S is linear. To prove that S is bounded, let y = (αn) ∈
l1, ‖y‖1 =

∑∞
n=1 |αn| ≤ 1. Then

‖S(y)‖ =

∥∥∥∥∥
∞∑

n=1

αnS (δn)

∥∥∥∥∥ ≤
∞∑

n=1

|αn| ‖S (δn)‖ =
∞∑

n=1

|αn| ‖xn‖ .

Using (2.3) in Theorem 2.2 we get

‖S(y)‖≤
∞∑

n=1

|αn|
2
m

m∑
i=1

‖Ti(δn)‖≤
∞∑

n=1

|αn|
2
m

m∑
i=1

‖Ti‖=
2
m

m∑
i=1

‖Ti‖
∞∑

n=1

|αn|
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Hence S is a bounded linear operator with ‖S‖ ≤ 2
m

∑m
i=1 ‖Ti‖ . Now for any

x = (βn) ∈ l1 we have

m∑
i=1

‖Ti(x)− S (x)‖ =
m∑

i=1

∥∥∥∥∥Ti

( ∞∑
n=1

βnδn

)
− S

( ∞∑
n=1

βnδn

)∥∥∥∥∥
=

m∑
i=1

∥∥∥∥∥
∞∑

n=1

βnTi (δn)−
∞∑

n=1

βnS (δn)

∥∥∥∥∥
=

m∑
i=1

∥∥∥∥∥
∞∑

n=1

βn (Ti (δn)− S (δn))

∥∥∥∥∥
≤

m∑
i=1

∞∑
n=1

|βn| ‖Ti (δn)− S (δn)‖

=
∞∑

n=1

|βn|dist (T1(δn), T2(δn), ..., Tm(δn), G).

≤
∞∑

n=1

|βn|
m∑

i=1

‖Ti (δn)− g‖

for every g ∈ G. In particular for every A ∈ L(l1, G)

m∑
i=1

‖Ti(x)− S (x)‖ ≤
∞∑

n=1

|βn|
m∑

i=1

‖Ti (δn)−A (δn)‖

≤
∞∑

n=1

|βn|
m∑

i=1

‖Ti −A‖

=
m∑

i=1

‖Ti −A‖
∞∑

n=1

|βn| =
m∑

i=1

‖Ti −A‖ ‖x‖ .

Taking supremum over all x ∈ l1, ‖x‖ = 1 we get

m∑
i=1

‖Ti − S‖ ≤
m∑

i=1

‖Ti −A‖ .

Hence L(l1, G) is simultaneously proximinal in L(l1, X).
Conversely. Let x1, x2, ..., xm ∈ X. For each i = 1, 2, ...,m, define Ti :

l1 → X,

Tiδn =
{

xi n = 1
0 n 6= 1 .

Then Ti ∈ L(l1, X) and ‖Ti‖ = ‖xi‖ . By assumption there exists A ∈ L(l1, G)
such that

m∑
i=1

‖Ti −A‖ ≤
m∑

i=1

‖Ti −B‖
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for all B ∈ L(l1, G). Hence
m∑

i=1

‖xi −Aδ1‖ =
m∑

i=1

‖(Ti −A) δ1‖ ≤
m∑

i=1

‖Ti −A‖ ≤
m∑

i=1

‖Ti −B‖ .

If B runs over all functions of the form

Bδn =
{

w n = 1
0 n 6= 1

for all w ∈ G, we obtain
∑m

i=1 ‖xi −Aδ1‖ ≤
∑m

i=1 ‖xi − w‖ for all w ∈ G.
Hence G is simultaneously proximinal in X. �

Theorem 2.4. If L(l1, G) is simultaneously Chebyshev in L(l1, X), then G is
simultaneously Chebyshev in X.

Proof. Suppose G is not Chebyshev in X. Then there exist g1, g2 ∈ G and
x1, x2, ..., xm ∈ X such that

m∑
i=1

‖xi − g1‖ =
m∑

i=1

‖xi − g2‖ = dist(x1, x2, ..., xm, G).

For i = 1, 2, ...,m, let

Tiδn =
{

xi n = 1
0 n 6= 1 ,

and

A1δn =
{

g1 n = 1
0 n 6= 1 , A2δn =

{
g2 n = 1
0 n 6= 1 .

Then
m∑

i=1

‖Ti −A1‖ =
m∑

i=1

‖Ti −A2‖ = dist(T1, T2, ..., Tm, L(l1, G)).

This contradict the fact that L(l1, G) is simultaneously Chebyshev. �

We remark that the converse of Theorem 2.4 is not true. To see this,
let G be a Chebyshev subspace of X and x1, x2, ..., xm ∈ X. For each i =
1, 2, ...,m, define Ti : l1 → X

Tiδn =
{

xi n = 1
0 n 6= 1 ,

then if z ∈ G is such that
∑m

i=1 ‖xi − z‖ =dist(x1, x2, ..., xm, G), the operator
A : l1 → X,

Aδn =
{

z n = 1
0 n 6= 1 ,

is a best simultaneous approximation of T1, T2, ..., Tm in L(l1, G) that is
m∑

i=1

‖Ti −A‖ ≤
m∑

i=1

‖Ti −B‖
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for all B ∈ L(l1, G). Let r = min
1≤i≤m

‖xi − z‖ . Consider the map

S : l1 → G, Sδn =
{

z n = 1
zn n 6= 1

where |zn| < r. Then
∑m

i=1 ‖Ti − S‖ =
∑m

i=1 ‖Ti −A‖ . Hence L(l1, G) is not
a Chebyshev subspace of L(l1, X).

As a corollary from Theorem 2.2 for the Banach space c0 we have:

Corollary 2.5. G is simultaneously Chebyshev in X if and only if L(c0, G) is
simultaneously Chebyshev in L(c0, X).

Proof. By the result of Grothendieck [6] , page 86, we have L(c0, G) = l1(G).
the result follows from Theorem 2.2. �

3. Further results

An n-dimensional subspace Vn of C(I), the space of continuous functions on
a compact set I, is called a Haar subspace if any f ∈ Vn\ {0} , f has at most
n − 1 zero’s on I. Haar subspaces on intervals of real numbers are called
T -Systems. For each natural number n, let Mn be an n-dimensional Haar
subspace. Set

U =
{
g ∈ L1(µ, lp) : g = (gi) , gi ∈ Mi

}
.

We remark that U is a closed subspace of L1(µ, lp), [1] .
On the space of continuous functions C1(I, lp), we have the following

result

Theorem 3.1. For 1 ≤ p < ∞, U is proximinal in C1(I, lp) with respect to
the L1 norm.

Proof. Let p = 1 and let S1, S2, ...Sm ∈ C1(I, l1). Then for each i =

1, 2, ...,m, Si = (fi,k)∞k=1 and ‖Si‖ =
∫
I

∞∑
k=1

|fi,k(t)| dt. Hence
∑m

i=1 ‖Si‖ =∑m
i=1

∫
I

∞∑
k=1

|fi,k(t)| dt. Using the Monotone Convergence Theorem, we get:

m∑
i=1

‖Si‖ =
∞∑

k=1

m∑
i=1

∫
I

|fi,k(t)| dt =
∞∑

k=1

m∑
i=1

‖fi,k‖1 .

Since for each k, Mk is finite dimensional, there exists gk ∈ Mk such that
m∑

i=1

‖fi,k − gk‖1 ≤
m∑

i=1

‖fi,k − hk‖1

for all hk ∈ Mk. Note that
m∑

i=1

‖fi,k − hk‖1 ≥
m∑

i=1

‖fi,k − gk‖1 ≥
m∑

i=1

∣∣‖fi,k‖1 − ‖gk‖1

∣∣ .
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for all hk ∈ Mk. Since 0 ∈ Mk, we get:

m ‖gk‖1 ≤ 2
m∑

i=1

‖fi,k‖1

and so
∞∑

k=1

‖gk‖1 ≤
2
m

m∑
i=1

∞∑
k=1

‖fi,k‖1 =
2
m

m∑
i=1

‖fi‖

Hence g = (gk) ∈ U and
m∑

i=1

‖Si − g‖ =
∞∑

k=1

m∑
i=1

∫
I

|fi,k(t)− gk(t)| dt ≤
∞∑

k=1

m∑
i=1

∫
I

|fi,k(t)− hk(t)| dt

for all hk ∈ Mk. In particular we get
∑m

i=1 ‖Si − g‖ ≤
∑m

i=1 ‖Si − h‖ for all
h ∈ U. Hence U is proximinal in C1(I, l1) with respect to the L1 norm.

For 1 < p < ∞, let S1, S2, ...Sm ∈ C1(I, lp). Consider the operator

Pk : L1(µ, lp) → L1(µ, lpk)
Pkf = (f1, f2, ..., fk)

where f = (fi)
∞
i=1 . Then Pk is continuous. For 1 ≤ k < ∞, set Uk ={

g = (gi) ∈
k∏

i=1

Mi

}
. Since Uk is finite dimensional, there exists some ĝ ∈ Uk

such that
m∑

i=1

‖PkSi − ĝ‖1 ≤
m∑

i=1

‖PkSi − h‖1 (3.1)

for all h ∈ Uk, . Let us write gk for ĝ. We shall prove that the sequence
(
gk
)

must have a subsequence that converges to some g ∈ U.
Since PkSi → Si, then the sets Ei = {P1Si, P2Si, P3Si, ..., Si} , i =

1, 2, ...,m are weakly compact in L1(µ, lp). Set Ê =
{
g1, g2, g3, ..., gn, ...

}
.

We want to prove that Ê is weakly relatively compact. Since lp is reflexive,
then by the Dunford Theorem [4, p.101] , it is enough to prove that Ê is
bounded and uniformly integrable. Note that

m∑
i=1

‖PkSi − h‖1 ≥
m∑

i=1

∥∥PkSi − gk
∥∥

1
≥

m∑
i=1

∣∣‖PkSi‖1 −
∥∥gk
∥∥

1

∣∣ .
for all h ∈ Uk. Since 0 ∈ Uk, we get

m
∥∥gk
∥∥

1
≤ 2

m∑
i=1

‖PkSi‖1

Hence Ê is bounded.
To see that Ê is uniformly integrable, first note that for each k

‖PkSi‖1 ≤ ‖Si‖1

i = 1, 2, ...m. Thus lim
µ(Ω)→0

∫
Ω

‖h(t)‖ dµ(t) = 0 uniformly for h in Ei, i =

1, 2, ...,m.
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Now let ε > 0 be given. By the uniform integrability of Ei there exists
δi > 0 such that

∫
Ω

‖h(t)‖ dµ(t) < ε
2 whenever µ(Ω) < δi for all h ∈ Ei. Hence

for µ(Ω) < δ = min
1≤i≤m

(δi)∫
Ω

∥∥gk(t)
∥∥ dµ(t) <

2
m

m∑
i=1

∫
Ω

‖PkSi‖ dµ(t) < ε.

Since δ depends only on E1, E2, ..., Em and ε it follows that Ê is uniformly in-
tegrable and hence weakly relatively compact. Thus there exists g ∈ L1(µ, lp)
such that gk → g weakly.

Since the sequence
(
gk
)

in U converges weakly to some g ∈ L1(µ, lp)
and U is a closed subspace of L1(µ, lp), hence weakly closed, it follows that
g ∈ U.

For h ∈ U, we have ‖Pkh− h‖1 → 0. Hence for each i = 1, 2, ...,m,

‖PkSi − Pkh‖1 →
k
‖Si − h‖1 . Now let ϕ ∈ L∞(µ, lp

∗
) =

(
L1(µ, lp)

)∗
, the

dual of L1(µ, lp). Then
m∑

i=1

|〈Si − g, ϕ〉| = lim
k→∞

m∑
i=1

|〈PkSi − g, ϕ〉|

≤ lim
m∑

i=1

∥∥PkSi − gk
∥∥

≤ lim
m∑

i=1

‖PkSi − Pkh‖

for all h ∈ Uk, since Uk is proximinal. Hence
m∑

i=1

|〈Si − g, ϕ〉| ≤
m∑

i=1

‖Si − h‖ .

Consequently
∑m

i=1 ‖Si − g‖ ≤
∑m

i=1 ‖Si − h‖ for all h ∈ U.
Thus U is proximinal in C1(I, lp), with the L1-norm, 1 < p < ∞. �
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