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α−tauberian results

Bruno de Malafosse

Abstract. In this paper we consider problems that are analoguous to
those on summability (C, 1) introduced and studied by Hardy. A se-
ries

∑
n xn is said to be summable (C, 1) (to sum S ∈ C) if the se-

quence n−1∑n
k=1 sk where sk =

∑k
i=1 xi tends to S. Here we extend the

Hardy’s tauberian theorem for Cesàro means where it is shown that if
the sequence (xn)n satisfies supn {n |xn − xn−1|} < ∞, then n−1sn → χ
implies xn → χ for some χ ∈ C. In this work, for given sequences λ and
µ, we give α−tauberian theorems which consists in determining the set
of all sequences α such that

1

λn

n∑
k=1

µk

(
∞∑

i=k

xi

)
→ l implies

xn

αn
→ l′ (n →∞)

for all X ∈ cs ? Then we give simplifications of these theorems in the

cases when α ∈ Ĉ1, and α ∈ Γ̂. Finally we deal with the converse of the
last condition.
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Keywords: Matrix transformations, series summable (C, 1), sequence
spaces, α−tauberian theorem.

1. Introduction

In this paper we study problems that are similar to those stated by
Hardy [6], Móricz and Rhoades, (cf. [10]), de Malafosse and Rakočević (cf.
[5]). In [6] it is said that a series

∑∞
k=1 xk is summable (C, 1) (to sum l ∈ C)

if

χn =
1
n

n∑
k=1

sk → l

where sk =
∑k

i=1 xi. It was shown (cf. [6, p. 132, Theorem 77]) that if a series∑∞
k=1 xk is summable (C, 1) to sum S if and only if

S =
∞∑

k=1

( ∞∑
i=k

xi

i

)
. (1.1)
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Móricz and Rhoades gave a generalization of the Hardy theorem using the
weighted mean matrix N , (cf. [10, 11]). In de Malafosse and Rakočević (cf.
[5]) the series

∑∞
k=1 xk is said to be summable (C, λ, µ) (to sum L ∈ C) for

given sequences λ and µ if

χ′n =
1
λn

n∑
k=1

1
µk

sk → L.

When λn = n and µn = 1 for all n, summability (C, λ, µ) reduces to
summability (C, 1). In the following we extend Hardy’s tauberian theorem
for Cesàro means where it is shown that if the sequence X = (xn)n satis-
fies supn {n |xn − xn−1|} < ∞, then n−1sn → χ implies xn → χ for some
χ ∈ C. In this way for given sequences λ and µ we determine the set of all
the sequences α such that

1
λn

n∑
k=1

µk

( ∞∑
i=k

xi

)
→ l implies

xn

αn
→ l′ (n →∞) for all X ∈ cs

for some l, l′ ∈ C. This statement is called an α−tauberian problem. The
main result is given by Theorem 4.3.

This paper is organized as follows. In Section 2 we recall some results on
the sets of sequences and matrix transformations. In Section 3 we give some
properties of the operator Σ+ defined by [Σ+X]n =

∑∞
k=n xk for all n, on

special sets of sequences. In Section 4 we state some α-tauberian theorems
in the general case and in the case when λn = n and µn = nξ where ξ is a
real. Then we give simplifications of α-tauberian theorems when α belongs to
special sets of sequences such as Ĉ1, or Γ̂. Finally we deal with the converse
of the previous tauberian results.

2. Preliminary results

In the following we write A = (ank)n,k≥1 for an infinite matrix of com-
plex numbers. For a given sequence X = (xn)n≥1 of complex numbers we
define An (X) =

∑∞
k=1 ankxk, (provided the series An (X) converge) and

AX = (
∑∞

k=1 ankxk)n≥1. We write s, `∞, c0 and c for the sets of all complex,
bounded, naught and convergent sequences, respectively, furthermore cs is
the set of all convergent series. For E, F ⊂ s, we write (E,F ) for the set
of all matrix transformations that map E to F . For given τ ∈ s we define
Dτ = (τnδnk)n,k≥1, (where δnn = 1 for all n and δnk = 0 otherwise). We
define by U+ the set of all sequences (un)n≥1 ∈ s with un > 0 for all n and

consider the spaces sα = Dα`∞, s0
α = Dαc0 and s

(c)
α = Dαc for α ∈ U+,

see [2, 3]. It can easily be seen that for α, β ∈ U+ and E, F ⊂ s we have
A ∈ (DαE,DβF ) if and only if D1/βADα ∈ (E,F ). If e = (1, 1, ...) we put
s1 = se. Let E and F be any subsets of s. It is well known, see [1] that
(s1, s1) = (c0, s1) = (c, s1) = S1, where S1 is the set of all infinite matrices
A = (ank)n,k≥1 such that supn (

∑∞
k=1 |ank|) < ∞. For any subset E of s, AE
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is the set of all sequences Y such that Y = AX for some X ∈ E. For any
subset F of s, the matrix domain F (A) = FA of A is the set of all sequences
X such that AX ∈ F .

In this paper we consider the operators represented by the infinite ma-
trices C (λ) and ∆ (λ) for λ ∈ U+, see [3]. Recall that [C (λ)]n,k = 1/λn for
k ≤ n and 0 otherwise. In the following we will use the convention that any
term with nonpositive subscript is equal to zero. It can be proved that the ma-
trix ∆ (λ) defined by [∆ (λ)]nn = λn, [∆ (λ)]n,n−1 = −λn−1 and [∆ (λ)]nk = 0
for k 6= n−1, n, n ≥ 1, is the inverse of C (λ). If λ = e we get the well-known
operator of the first difference represented by ∆ (e) = ∆ and it is usually
written Σ = C (e). We have [∆X]n = xn − xn−1 for all n ≥ 1. Then ∆ =
Σ−1 and ∆, Σ ∈ SR =

(
s(Rn)n

, s(Rn)n

)
for R > 1. We also use the transpose

of C (λ) denoted by C+ (λ). We easily see that C+ (λ) = Σ+D1/λ where Σ+

is the transpose of Σ.

3. Some properties of the infinite matrix Σ+ considered as

operator in sα, s0
α, or s

(c)
α

In this section we are interested in the study of the set of all sequences
X such that

1
λn

n∑
k=1

µkrk → l for some l ∈ C,

where rk =
∞∑

i=k

xi.

In the following we will use the characterizations of the sets (E,F ),
where E, F are either of the sets c or c0.

We will consider the next conditions

A ∈ S1, (3.1)

lim
n→∞

ank = lk for some lk ∈ C and for all k. (3.2)

From [9, Theorem 1.36, p. 160] we immediately deduce the next lemma.

Lemma 3.1. i) A ∈ (c0, c0) if and only if (3.1) and (3.2) hold with lk = 0;
ii) A ∈ (c, c0) if and only if (3.1), (3.2) hold with lk = 0 and

lim
n→∞

∞∑
k=1

ank = 0.

iii) A ∈ (c0, c) if and only if (3.1) and (3.2) hold;
iv) a) A ∈ (c, c) if and only if (3.1), (3.2) hold and

lim
n→∞

∞∑
k=1

ank = l for some l ∈ C. (3.3)
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b) Let A ∈ (c, c) and x ∈ c. If (3.3) and (3.2) hold with lk = 0, then

lim
n→∞

∞∑
k=1

ankxk = l lim
n→∞

xn.

Note that the statements given in iv) are direct consequences of Silver-
man Toeplitz theorem.

We will use the next lemma where T = (tnk)n,k≥1 is called a lower
triangular matrix if tnk = 0 for k > n.

Lemma 3.2. Let A = (ank)n,k≥1 be an infinite matrix and T a lower triangular
matrix. Then

T (AX) = (TA) X for all X ∈ s (A) .

Proof. Since X ∈ s (A) the series
∑∞

k=1 ankxk is convergent for all n. Then

[T (AX)]n =
n∑

m=1

tnm

( ∞∑
k=1

amkxk

)
=

∞∑
k=1

(
n∑

m=1

tnmamk

)
xk = [(TA) X]n

for all n and for all X ∈ s (A). �

In all that follows we use the operator represented by the infinite matrix
Σ+. For the convenience to the reader we note that

Σ+ =


1 1 . .

1 1 .
0 . .

.

 .

We use the following results where ∆+ is the transpose of ∆.

Lemma 3.3. i) Σ+ (∆+X) = X for all X ∈ c0 and ∆+ (Σ+X) = X for all
X ∈ cs,

ii) the operator Σ+ is bijective from cs to c0 and ∆+ is bijective from
c0 to cs.

Proof. i) comes from [1, Lemma 3, p. 19]. ii) is a direct consequence of i). �

Lemma 3.2 and Lemma 3.3 lead to define the product TΣ+ by
(TΣ+)X = T (Σ+X) for all X ∈ cs where T is a triangle, that is a lower
triangle with [T ]nn 6= 0 for all n. We note that T is bijective from s to itself
and that T−1 is again a triangle matrix. In this way we have

Lemma 3.4. Let T be a triangle, then TΣ+ ∈ (cs, T c0) is bijective and(
TΣ+

)−1 = ∆+T−1.

Proof. Let B ∈ Tc0 and consider the equation(
TΣ+

)
X = B for X ∈ cs. (3.4)

Since (
TΣ+

)
X = T

(
Σ+X

)
for all X ∈ cs,
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and T : c0 → Tc0 is bijective, equation (3.4) is equivalent to Σ+X =
T−1B. Then since T−1B ∈ c0 and Σ+ is bijective from cs to c0, we
deduce TΣ+ is bijective and (3.4) has a unique solution given by X =
(TΣ+)−1

B = ∆+
(
T−1B

)
. Finally by Lemma 2 it can easily be seen that

X = ∆+
(
T−1B

)
=
(
∆+T−1

)
B for all B and (TΣ+)−1 = ∆+T−1. �

Let λ, µ ∈ U+. In the following we will use the notation σn =
∑n

k=1 µk

and define the map

φn (X) =
1
λn

(
n∑

k=1

σkxk + σnrn+1

)
for all X ∈ cs and n ≥ 1.

Let us state the next result where R+∗ is the set of all reals > 0.

Theorem 3.5. Let E be a set of sequences.
i) c0 ⊂ E implies E (Σ+) = cs;
ii) a) E (Σ+) ⊂ ∆+E;

b) E ⊂ c0 implies that E (Σ+) = ∆+E;
iii) c0 (Σ+) ⊂ s

(c)
α if and only if 1/α ∈ `∞.

iv) a) Let E be either of the sets sα, s0
α, or s

(c)
α . Then

E
(
Σ+
)

= cs if and only if 1/α ∈ `∞.

b) c0 (Σ+) = c (Σ) = ∆+c0 = cs.
v) a) Assume that

σ/λ ∈ l∞ and λn →∞ (n →∞) . (3.5)

Then
c0

(
C (λ) DµΣ+

)
= cs,

and
1
λn

n∑
k=1

µkrk → 0 for all X ∈ cs. (3.6)

b) The condition supn (n/λn) < ∞ implies c0 (C (λ) Σ+) = cs.
vi) Assume that

σ/λ ∈ `∞ and λn → l (n →∞) for some l ∈ R+∗
⋃
{+∞} . (3.7)

Then
c
(
C (λ) DµΣ+

)
= cs,

and
1
λn

n∑
k=1

µkrk → LX for some LX ∈ C and for all X ∈ cs.

Proof. i) Necessity. Let X ∈ E (Σ+). Then Σ+X exists and X ∈ cs, so
E (Σ+) ⊂ cs. Sufficiency. Let X ∈ cs. Then the series

∑∞
k=n xk are convergent

for all n and Σ+X ∈ c0, but the inclusion c0 ⊂ E implies Σ+X ∈ E and
X ∈ E (Σ+). So we have shown cs ⊂ E (Σ+). We conclude E (Σ+) = cs.
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ii) a) If E (Σ+) = ∅ trivially we have E (Σ+) ⊂ ∆+E. Now assume
E (Σ+) 6= ∅ and let X ∈ E (Σ+). Then Y = Σ+X exists, Σ+X ∈ E and
X ∈ cs. Since cs ⊂ c0, we have by Lemma 3.3

∆+
(
Σ+X

)
= ∆+Y = X.

We conclude that X ∈ ∆+E and E (Σ+) ⊂ ∆+E. b) We show that E ⊂ c0

implies E (Σ+) ⊃ ∆+E. For every X ∈ E we have Y = ∆+X ∈ ∆+E and
from Lemma 3.3 we have Σ+Y = Σ+ (∆+X) = X since X ∈ E ⊂ c0. Then
Σ+Y = X ∈ E and Y ∈ E (Σ+). So we have shown ∆+E ⊂ E (Σ+). This
result and a) imply b).

iii) Assume c0 (Σ+) ⊂ s
(c)
α . Then I ∈

(
c0 (Σ+) , s

(c)
α

)
and since c0 (Σ+) =

c (Σ) we deduce ∆ ∈
(
c, s

(c)
α

)
, D1/α∆ ∈ (c, c) and 1/α ∈ `∞.

iv) a) Using i) we see that it is enough to show that c0 ⊂ E if and
only if 1/α ∈ `∞ for E = sα, s0

α, or s
(c)
α . We have c0 ⊂ sα if and only if

I ∈ (c0, sα), that is D1/α ∈ (c0, s1) = S1 and 1/α ∈ `∞. In the same way
using the characterizations of (c0, c0) and (c0, c) we deduce c0 ⊂ E if and
only if 1/α ∈ `∞ for E = s0

α, or s
(c)
α .

b) Let X ∈ c0 (Σ+). Then Σ+X ∈ c0, X ∈ cs and so c0 (Σ+) ⊂ cs. Now
X ∈ cs implies Σ+X = (

∑∞
k=n xk)n≥1 ∈ c0 since

∑∞
k=n xk → 0 (n →∞) and

X ∈ c0 (Σ+). This shows cs ⊂ c0 (Σ+) and as we have just shown c0 (Σ+) ⊂
cs, so c0 (Σ+) = cs. Finally by ii) b) we have c0 (Σ+) = ∆+c0.

v) a) We show cs ⊂ c0 (C (λ) DµΣ+). By Lemma 3.2 we have

C (λ) Dµ

(
Σ+X

)
=
(
C (λ) DµΣ+

)
X for all X ∈ cs (3.8)

since C (λ) Dµ is a triangle and X ∈ s (Σ+) = cs. Now for every X ∈ cs we
have Σ+X ∈ c0 and since (3.5) holds we have C (λ) Dµ ∈ (c0, c0) and then
C (λ) Dµ (Σ+X) ∈ c0 for all X ∈ cs. Finally since (3.8) holds we conclude
(C (λ) DµΣ+) X ∈ c0 for all X ∈ cs and cs ⊂ c0 (C (λ) DµΣ+) .

Conversely let X ∈ c0 (C (λ) DµΣ+). By elementary calculations we
easily get

C (λ)DµΣ+ =


σ1/λ1 . . . . σ1/λ1 .

. . . . . . .

. . . . . . .
σ1/λn σ2/λn . σn/λn . σn/λn .

. . . . . . .

 (3.9)

that is [
C (λ) DµΣ+

]
nk

=
{

σk/λn for k < n,
σn/λn for k ≥ n.

We deduce (
C (λ) DµΣ+

)
X = (φn (X))n≥1 ∈ c0.
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Then the series rn =
∑∞

k=n xk is convergent for all n and X ∈ cs. This shows
c0 (C (λ) DµΣ+) ⊂ cs. We conclude c0 (C (λ) DµΣ+) = cs. Since[

C (λ) Dµ

(
Σ+X

)]
n

=
1
λn

n∑
k=1

µkrk for all n,

statement (3.6) comes from identity (3.8).
v) b) is a direct consequence of v) a) where we put µ = e, furthermore

condition supn (n/λn) < ∞ trivially implies λn →∞ (n →∞) .
vi) can be obtained reasoning as in v) a) by using the characterization

of (c0, c) . �

4. α−tauberian results

4.1. General case

For given λ, µ ∈ U+ the aim of this paper is to determine the set of all
sequences α ∈ U+ such that

1
λn

n∑
k=1

µk

 ∞∑
j=k

xj

→ l implies
xn

αn
→ l′ (n →∞) for all X ∈ cs, (4.1)

for some l, l′ ∈ C.
Now state a lemma which is a characterization of condition (4.1).

Lemma 4.1. For λ, µ, α ∈ U+ condition (4.1) holds if and only if

∆+D1/µ∆ (λ) ∈
(
c
⋂

C (λ) Dµc0, s
(c)
α

)
. (4.2)

Proof. First condition (4.1) means that

C (λ) Dµ

(
Σ+X

)
∈ c implies X ∈ s(c)

α for all X ∈ cs. (4.3)

Since Σ+X ∈ c0 for all X ∈ cs, condition (4.3) is equivalent to the statement

Y = C (λ) Dµ

(
Σ+X

)
∈ c
⋂

C (λ) Dµc0 implies X ∈ s(c)
α . (4.4)

Since C (λ) Dµ is a triangle and Σ+ ∈ (cs, c0) by Lemma 3.2 we have

C (λ) Dµ

(
Σ+X

)
=
(
C (λ) DµΣ+

)
X for all X ∈ cs.

Then by Lemma 3.4 the operator C (λ) DµΣ+ ∈
(
cs, C (λ) s0

µ

)
is invertible

and (
C (λ) DµΣ+

)−1 = ∆+D1/µ∆ (λ) ,

we deduce Y = C (λ) Dµ (Σ+X) if and only if X = ∆+D1/µ∆ (λ) Y for all
X ∈ cs and condition (4.4) is equivalent to

Y ∈ c
⋂

C (λ)Dµc0 implies X = ∆+D1/µ∆ (λ) Y ∈ s(c)
α

and to (4.2). �

To state the next results we need the next lemma.
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Lemma 4.2. Let κ and κ′ ∈ U+. Then conditions κ+ κ′ ∈ `∞ and κ− κ′ ∈ c
together are equivalent to κ ∈ `∞ and κ− κ′ ∈ c.

Proof. First we have κ+ κ′ ∈ `∞ if and only if κ, κ′ ∈ `∞. Then κ − κ′ ∈ c
is equivalent to κn = κ′n + L + 0 (1) (n →∞), for some L ∈ C, which shows
that κ is bounded if and only if κ′ is bounded. This gives the conclusion. �

In this way it can be easily seen that conditions κ+ κ′ ∈ `∞ and κ−κ′ ∈
c together are equivalent to κ′ ∈ `∞ and κ− κ′ ∈ c.

Now consider the next conditions

1
αn

(
λn−1

µn
+

λn+1

µn+1

)
= O (1) (n →∞) (4.5)

lim
n→∞

{
1

αn

[
−λn−1

µn
+ λn

(
1
µn

+
1

µn+1

)
− λn+1

µn+1

]}
= L for some L ∈ C

(4.6)
We obtain the following α−tauberian theorem.

Theorem 4.3. Let λ, µ ∈ U+. Then
i) condition (4.1) holds if α satisfies one of the conditions a) or b),

where
a) 1/α ∈ `∞,
b) conditions (4.5) and (4.6) hold.
ii) If there is L ∈ R+∗⋃ {+∞} such that

σ/λ ∈ `∞ and λn → L (n →∞) (4.7)

then condition (4.1) holds if and only if 1/α ∈ `∞.

iii) If (−λn−1 + λn) /µn → 0 (n →∞) and there is K ′ > 0 such that

λn−1 + λn

µn
≤ K ′ for all n ≥ 1 (4.8)

then condition (4.1) holds if and only if (4.5) and (4.6) hold.

Proof. i) First we show that a) implies (4.1). Assume 1/α ∈ `∞. Then the
condition

1
λn

n∑
k=1

µkrk → l

necessary implies X ∈ cs. Then trivially X ∈ c0 and (1/αn) xn → 0 (n →∞).
So we have shown a) implies (4.1).

Next we show that b) implies (4.1). Since trivially c
⋂

C (λ) Dµc0 ⊂ c

we have
(
c, s

(c)
α

)
⊂
(
c
⋂

C (λ) Dµc0, s
(c)
α

)
. We show that we have

∆̃ = ∆+D1/µ∆ (λ) ∈
(
c, s(c)

α

)
(4.9)
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which implies (4.2) and (4.1) by Lemma 4.1. Now the calculations of
D1/µ∆ (λ) and ∆̃ successively give

D1/µ∆ (λ) =


λ1
µ1

−λ1
µ2

λ2
µ2

0
. .

0 −λn−1
µn

λn

µn

. .

 (4.10)

and

∆̃=



λ1

(
1

µ1
+ 1

µ2

)
−λ2

µ2

−λ1
µ2

λ2

(
1

µ2
+ 1

µ3

)
−λ3

µ3
0

. .

0 −λn−1
µn

λn

(
1

µn
+ 1

µn+1

)
−λn+1

µn+1

. .


.

(4.11)
Then condition (4.9) means D1/α∆̃ ∈ (c, c) and from the characterization of
(c, c) this condition is equivalent to κ+ κ′ ∈ `∞ and κ−κ′ ∈ c together where
κ = (κn)n≥1, κ′ = (κ′n)n≥1 with

κn =
1

αn

[
λn

(
1
µn

+
1

µn+1

)]
and κ′n =

1
αn

(
λn−1

µn
+

λn+1

µn+1

)
.

Then from Lemma 4.2 condition (4.9) is equivalent to (4.5) and (4.6) and as
we have just seen (4.9) implies (4.1). This completes the proof of i).

ii). From Theorem 3.5 vi) we see that (4.1) means that cs ⊂ s
(c)
α . Since

cs = c (Σ) = Σ−1c we then have I ∈
(
Σ−1c, s

(c)
α

)
and D1/αΣ−1 = D1/α∆ ∈

(c, c). We have

D1/α∆ =


1/α1

. . 0
−1/αn 1/αn

0 . .


and from the characterization of (c, c) given in Lemma 3.1 iv) we conclude
D1/α∆ ∈ (c, c) if and only if 1/α ∈ `∞.

iii) We have c ⊂ C (λ)Dµc0. Indeed from the expression of D1/µ∆ (λ)
given by (4.10) it follows that (C (λ)Dµ)−1 = D1/µ∆ (λ) ∈ (c, c0) if and
only if the hypotheses of iii) hold. Then (4.1) means that ∆̃Y ∈ s

(c)
α for

all Y ∈ c by Lemma 4.1 and ∆̃ ∈
(
c, s

(c)
α

)
that is D1/α∆̃ ∈ (c, c). Using

the characterization of (c, c) given in Lemma 3.1 and Lemma 4.2 we easily
conclude that D1/α∆̃ ∈ (c, c) if and only if (4.5) and (4.6) hold. �

These results lead to the next corollary
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Corollary 4.4. Assume (4.5) and (4.6) hold. Then condition (4.1) holds with
l′ = Ll.

Proof. This result is a direct consequence of Lemma 3.1 iv) c) and of the
proof of i) b) implies (4.1) in Theorem 4.3. �

Example 4.5. If we put λ = e in Theorem 4.3 iii), then for given µ ∈ U+ with
supn 1/µn < ∞ we have

n∑
k=1

µkrk → l implies
xn

αn
→ l′ (n →∞) for all X ∈ cs (4.12)

if and only if α satisfies

sup
n

{
1

αn

(
1
µn

+
1

µn+1

)}
< ∞.

By Corollary 4.4, since L = 0 we have l′ = 0. Particularly if µn = n for all n,
(4.12) holds if and only if 1/αn = O (n) (n →∞).

In this way we obtain the next result.

Proposition 4.6. Let λ ∈ U+ and assume supn (n/λn) < ∞. Then
i) c0 (C (λ)Σ+) = cs.
ii) The condition

1
λn

n∑
k=1

rk → l implies
xn

αn
→ l′ (n →∞) for all X ∈ cs (4.13)

is equivalent to 1/α ∈ `∞.

Proof. i) is a direct consequence of Theorem 3.5 v) b) since supn (n/λn) < ∞.
ii) is a direct consequence of Theorem 4.3 ii). �

4.2. Case when λn = n and µn = nξ where ξ is a real

Now we consider the case when λn = n and µn = nξ with ξ real in
condition (4.1), that is

1
n

n∑
k=1

kξrk → l implies
xn

αn
→ l′ (n →∞) for all X ∈ cs (4.14)

for some l, l′ ∈ C. As another consequence of Theorem 4.3 we obtain the
next corollary.

Corollary 4.7. i) Let ξ ≥ 1. Then condition (4.14) holds if and only if

sup
n

(
1

nξ−1αn

)
< ∞. (4.15)

ii) If ξ ≤ 0, condition (4.14) holds if and only if 1/α ∈ `∞.
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Proof. i) is a direct consequence of Theorem 4.3 iii). Indeed for λn = n and
µn = nξ we have

λn + λn−1

µn
=

2n− 1
nξ

= O (1) (n →∞) .

We need to verify (4.5). We have

κn =
n− 1
nξ

+
n + 1

(n + 1)ξ
=

1
nξ−1

− 1
nξ

+
1

(n + 1)ξ−1
∼

2
nξ−1

(n →∞) .

Then
κn

αn
∼

2
nξ−1αn

(n →∞)

and so the condition (4.5) is equivalent to (4.15). To show (4.6), put

bn = −n− 1
nξ

+ n

(
1
nξ

+
1

(n + 1)ξ

)
− 1

(n + 1)ξ−1
.

We immediately get

bn =
1
nξ

[
1−

(
n

n + 1

)ξ
]

∼
ξ

nξ+1
(n →∞)

and so there is C > 0 such that bn/αn ≤ C/nξ+1αn (n →∞). Then by (4.15)
we have 1/αn ≤ C ′nξ−1,

bn

αn
≤ CC ′

nξ−1

nξ+1
= O

(
1
n2

)
(n →∞)

and bn/αn → 0 (n →∞). We conclude (4.6) holds and the conditions (4.5)
and (4.6) together are equivalent to (4.15).

ii) We only have to apply Theorem 4.3 ii). Indeed for ξ = −1 we have

σn

n
=

1
n

n∑
m=1

1
k

= O (1) (n →∞) .

For ξ ≤ 0 and ξ 6= −1 we have
n∑

k=2

kξ ≤
∫ n

1

xξdx ≤ nξ+1

ξ + 1

and we conclude

σn

n
=

1
n

n∑
k=1

kξ =
1
n

+
nξ

ξ + 1
= O (1) (n →∞) .

�

Remark 4.8. As we have seen in the proof of Theorem 4.3 i) for any real ξ
the condition 1/α ∈ `∞ trivially implies condition (4.14).
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Example 4.9. Taking ξ = 1 in Corollary 4.7 we deduce that for every X ∈ cs
we have

1
n

n∑
k=1

krk → l implies
xn

αn
→ l′ (n →∞) (4.16)

for some l, l′ ∈ C if and only if 1/α ∈ `∞.

4.3. A simplification of the previous results.

In this subsection we will characterize (4.1) and then rewrite Theorem
4.3 in each of the cases µ ∈ Ĉ1 and λ ∈ Γ̂.

Recall the definitions of the sets Ĉ1 and Γ̂ defined in [3],

Ĉ1 =

{
X ∈ U+ : [C (X) X]n =

1
xn

(
n∑

k=1

xk

)
= O (1) (n →∞)

}
and

Γ̂ =
{

X ∈ U+ : lim
n→∞

(
xn−1

xn

)
< 1
}

.

It can easily be seen that Γ̂ ⊂ Ĉ1 and note that for a > 1 we have (an)n≥1 ∈ Γ̂.

By [3] if X ∈ Ĉ1 there are M > 0 and γ > 1 such that

xn ≥ Mγn for all n.

From [4, Lemma 11, p. 49] we obtain the next lemma.

Lemma 4.10. Let α ∈ U+. Then
i) α ∈ Ĉ1 if and only if Σ is bijective from s0

α to itself,
ii) α ∈ Γ̂ if and only if Σ is bijective from s

(c)
α to itself.

Theorem 4.3 can be reduced to the next corollaries.

Corollary 4.11. Let µ ∈ Ĉ1.
i) Let λ ∈ U+ with λ/µ ∈ c0. Then condition (4.1) holds if and only if

(4.5) and (4.6) hold.
ii) Let λ ∈ U+ with µ/λ ∈ `∞. Then condition (4.1) holds if and only

if 1/α ∈ `∞.

Proof. Since µ ∈ Ĉ1 the operator Σ is bijective from s0
µ to itself and

C (λ) s0
µ = D1/λΣs0

µ = D1/λs0
µ = s0

µ/λ.

Now show i). We have c ⊂ s0
µ/λ since Dλ/µ ∈ (c, c0) which is equivalent to

λ/µ ∈ c0. By Lemma 4.1 for every Y we have

Y ∈ c
⋂

C (λ) s0
µ = c implies ∆+D1/µ∆ (λ) Y ∈ s(c)

α

that is ∆+D1/µ∆ (λ) ∈
(
c, s

(c)
α

)
. As we have seen in the proof of Theorem

4.3 iii) this means that (4.5) and (4.6) hold.
ii) By Lemma 1 we have Dµ/λ ∈ (c0, c) if and only if µ/λ ∈ `∞

and then s0
µ/λ ⊂ c. Then (4.1) means that ∆+D1/µ∆ (λ)Y ∈ s

(c)
α for
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all Y ∈ c
⋂

C (λ) s0
µ = s0

µ/λ, that is ∆+D1/µ∆ (λ) ∈
(
s0

µ/λ, s
(c)
α

)
and

D1/α∆+D1/µ∆ (λ)Dµ/λ ∈ (c0, c). Now since

∆+D1/µ∆ (λ) Dµ/λ = ∆+D1/µ∆ (µ)

we have
D1/α∆+D1/µ∆ (µ) ∈ (c0, c) . (4.17)

Using the calculation of ∆̃ explicited in (4.11) with λ = µ we deduce (3.1) is
equivalent to

sup
n

{
1

αn

[
µn−1

µn
+
(

1 +
µn

µn+1

)
+ 1
]}

< ∞. (4.18)

Now since µ ∈ Ĉ1 implies there is M > 1 such that µ−1
n

∑n
k=1 µk ≤ M for all

n ≥ 1 and we successively obtain

µn−1

µn
+
(

1 +
µn

µn+1

)
+ 1 ≤ 1

µn

n∑
k=1

µk +
1

µn+1

n+1∑
k=1

µk + 1 ≤ 2M + 1,

and
2

αn
≤ 1

αn

[
µn−1

µn
+
(

1 +
µn

µn+1

)
+ 1
]
≤ 1

αn
(2M + 1) for all n ≥ 1,

thus (4.18) is equivalent to 1/α ∈ `∞. This concludes the proof. �

Now consider the following conditions,

sup
n

{
1

αn

(
λn

µn
+

λn+1

µn+1

)}
< ∞, (4.19)

sup
n

1
αn

λn

µn
< ∞, (4.20)

lim
n→∞

1
αn

(
λn

µn
− λn+1

µn+1

)
= χ for some χ ∈ C. (4.21)

We can state the next corollary.

Corollary 4.12. Let λ ∈ Γ̂, µ ∈ U+ and assume conditions of Theorem 4.3
iii) hold.
Then condition (4.1) holds with l′ = l (1− a) χ, (a = limn→∞ λn−1/λn < 1)
if and only if α satisfies (4.20) and (4.21).

Proof. By conditions of Theorem 4.3 iii) we have D1/µ∆ (λ) ∈ (c, c0) and
∆ (λ) c ⊂ s0

µ and since C (λ) = ∆ (λ)−1 we have c ⊂ C (λ) s0
µ. So (4.1) means

that
X = ∆+D1/µ∆ (λ) Y ∈ s(c)

α for all Y ∈ c,

that is ∆+D1/µ∆ (λ) c ⊂ s
(c)
α . Now by Lemma 4.10 ii) λ ∈ Γ̂ implies ∆s

(c)
λ =

s
(c)
λ and

∆+D1/µ∆ (λ) c = ∆+D1/µ∆s
(c)
λ = ∆+D1/µs

(c)
λ = ∆+s

(c)
λ/µ.
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Then (4.1) is equivalent to ∆+ ∈
(
s
(c)
λ/µ, s

(c)
α

)
and to (4.19) and (4.21). By

Lemma 4.2 where κn = λn/αnµn and κ′n = λn+1/αnµn+1 we deduce that
∆+ ∈

(
s
(c)
λ/µ, s

(c)
α

)
is equivalent to (4.20) and (4.21).

Now show l′ = l (1− a) χ. If X ∈ cs and

X = ∆+D1/µ∆ (λ) Y = ∆+D1/µ∆DλY

= ∆+D1/µDλ

(
D1/λ∆Dλ

)
Y = ∆+Dλ/µ

(
D1/λ∆Dλ

)
Y,

and letting Ŷ = (ŷn)n≥1 =
(
D1/λ∆Dλ

)
Y , we have

ŷn = −λn−1

λn
yn−1 + yn.

Thus in particular if Y = e, then

lim
n→∞

ŷn = lim
n→∞

(
1− λn−1

λn

)
= 1− a.

And if Y ∈ c0 then, clearly, Ŷ =
(
D1/λ∆Dλ

)
Y ∈ c0. Consequently, if Y ∈ c

with l = limn→∞ yn, then ŷn − l → −al + l − l = −al (n →∞). Then by
(4.21), we obtain

xn

αn
=
(
D1/α∆+Dλ/µ

)
n

(
le +

(
Ŷ − le

))
=

1
αn

(
λn

µn
− λn+1

µn+1

)
l+

1
αn

(
λn

µn
− λn+1

µn+1

)
(ŷn − l) → χl − χal (n →∞) .

This concludes the proof. �

Example 4.13. As a direct application of the preceding we have

1
(n− 1)!

n∑
k=1

k!rk → 0 implies
xn

αn
→ l′ (n →∞) for all X ∈ cs (4.22)

if and only if there is C > 0 such that αn ≥ C/n for all n. Indeed conditions
(4.20) and (4.21) mean that supn {1/ (nαn)} < ∞ and limn→∞ 1/

(
n2αn

)
=

χ for some scalar χ. It can easily be seen that supn {1/ (nαn)} < ∞ implies
limn→∞ 1/

(
n2αn

)
= 0. Since χ = 0 we have l′ = 0. This concludes the proof.

Example 4.14. In the same way it can easily be shown that for 1 < a < b
and limn→∞ an/bnαn = L, we then have

a−n
n∑

k=1

bkrk → l implies
xn

αn
→ l

(
1− 1

a

)(
1− a

b

)
L (n →∞)

for all X ∈ cs if and only if (an/ (bnαn))n≥1 ∈ c.
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4.4. Study of the converse of tauberian results

For given α ∈ U+ we will determine the set of all λ, µ ∈ U+ such that

xn

αn
→ l implies

1
λn

n∑
k=1

µkrk → l′ (n →∞) for all X ∈ cs (4.23)

and give a characterization of (4.23).
We get the following theorem

Theorem 4.15. Let λ, µ, α ∈ U+. Suppose α ∈ cs. Then the sequences λ and
µ satisfy condition (4.23) if and only if 1/λ ∈ c and

lim
n→∞

φn (α) = L for some L ∈ C. (4.24)

Proof. First we note that α ∈ cs if and only if s
(c)
α ⊂ cs. Now condition (4.23)

means that

X ∈ s(c)
α

⋂
cs = s(c)

α implies
(
C (λ) DµΣ+

)
X = C (λ)Dµ

(
Σ+X

)
∈ c

by Lemma 3.2 which is equivalent to

C (λ) DµΣ+Dα ∈ (c, c) . (4.25)

We deduce from the proof of Theorem 3.5 (iv) that if we put C (λ) DµΣ+Dα =
(cnk)n,k≥1, then

cnk =


σk

λn
αk for k < n,

σn

λn
αk for k ≥ n.

So condition (4.25) is equivalent to 1/λ ∈ c, (4.24) and

sup
n
{φn (α)} < ∞. (4.26)

We conclude the proof since condition (4.24) implies condition (4.26). �

Now to state the next result recall the following result due to Kizmaz.

Lemma 4.16. ([7]) Let p = (pn)n≥1 be a strictly increasing sequence. If pX ∈
cs then (pnrn+1)n≥1 ∈ c0.

Corollary 4.17. Let ξ > 0 be a real, α ∈ U+ and assume
(
nξ+1αn

)
n≥1

∈ c

and
(
nξαn

)
n≥1

∈ cs. Then

xn

αn
→ l implies

1
n

n∑
k=1

kξrk → l′ (n →∞) .

for all X ∈ cs and for some scalars l, l′.

Proof. We only have to apply Theorem 4.15. For this it suffices to show that

1
n

n∑
k=1

σkαk → l1 and
1
n

σn

∞∑
k=n+1

αk → l2
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for some l1, l2 ≥ 0 with σn =
∑n

k=1 kξ. First we have

nξ+1

ξ + 1
≤ σn ≤

(n + 1)ξ+1 − 1
ξ + 1

for all n

and then σn ∼ nξ+1/ (ξ + 1) (n →∞). Since nξ+1αn → L (n →∞) we
deduce (σnαn)n≥1 ∈ c and

(
n−1

∑n
k=1 σkαk

)
n≥1

∈ c. Then putting pn =
σn/n we get

pn ∼
1
n

nξ+1

ξ + 1
=

nξ

ξ + 1
(n →∞)

and by Lemma 4.16 condition
∑∞

n=1 nξαn < ∞ implies

1
n

σn

∞∑
k=n+1

αk → 0 (n →∞) .

This concludes the proof. �

Example 4.18. Let γ > 2, then nγxn → l implies n−1
∑n

k=1 krk → l′ (n →∞)
for all X ∈ cs.

Indeed it is enough to put ξ = 1 and αn = n−γ .
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