The double Orlicz sequence spaces $\chi^{2}_{M}\left(p\right)$ and $\Lambda^{2}_{M}\left(p\right)$

Nagarajan Subramanian and Umakanta Misra

Abstract. In this paper, we introduce two general double sequence spaces $\chi^2_M(p)$ and $\Lambda^2_M(p)$ using Orlicz functions. We establish some inclusion relations, topological results and we characterize the duals of these double sequence spaces.

Mathematics Subject Classification (2010): 40A05, 40C05, 40D05.

Keywords: Gai sequence, analytic sequence, double sequence, duals, paranorm.

1. Introduction

Throughout w, χ and Λ denote the classes of gai and analytic scalar valued single sequences, respectively.

We write w^2 for the set of all complex sequences (x_{mn}) , where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces are due to Bromwich [4]. Later on, the double sequence spaces were studied by Hardy [8], Moricz [12], Moricz and Rhoades [13], Basarir and Solankan [2], Tripathy [20], Colak and Turkmenoglu [6], Turkmenoglu [22], and many others.

Let us define the following sets of double sequences:

$$\mathcal{M}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : \sup_{m,n \in N} |x_{mn}|^{p_{mn}} < \infty \right\},\$$
$$\mathcal{C}_{p}(t) := \left\{ (x_{mn}) \in w^{2} : p - \lim_{m,n \to \infty} |x_{mn} - \ell|^{p_{mn}} = 1 \text{ for some } \ell \in \mathbb{C} \right\},\$$
$$\mathcal{C}_{0p}(t) := \left\{ (x_{mn}) \in w^{2} : p - \lim_{m,n \to \infty} |x_{mn}|^{p_{mn}} = 1 \right\},\$$
$$\mathcal{L}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}|^{p_{mn}} < \infty \right\},\$$

$$\mathcal{C}_{bp}(t) := \mathcal{C}_{p}(t) \bigcap \mathcal{M}_{u}(t) \text{ and } \mathcal{C}_{0bp}(t) = \mathcal{C}_{0p}(t) \bigcap \mathcal{M}_{u}(t)$$

where $p = (p_{mn})$ is the sequence of strictly positive reals p_{mn} for all $m, n \in \mathbb{N}$ and $p - \lim_{m,n\to\infty}$ denotes the limit in the Pringsheim's sense. In the case $p_{mn} = 1$ for all $m, n \in \mathbb{N}; \mathcal{M}_u(t), \mathcal{C}_p(t), \mathcal{C}_{0p}(t), \mathcal{L}_u(t), \mathcal{C}_{bp}(t)$ and $\mathcal{C}_{0bp}(t)$ reduce to the sets $\mathcal{M}_u, \mathcal{C}_p, \mathcal{C}_{0p}, \mathcal{L}_u, \mathcal{C}_{bp}$ and \mathcal{C}_{0bp} , respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan and Colak [27, 28] have proved that $\mathcal{M}_{u}(t)$ and $\mathcal{C}_{p}\left(t\right),\mathcal{C}_{bp}\left(t\right)$ are complete paranormed spaces of double sequences and gave the $\alpha - \beta - \gamma - \beta$ duals of the spaces $\mathcal{M}_{u}(t)$ and $\mathcal{C}_{bp}(t)$. Quite recently, in her PhD thesis, Zeltser [29] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [30] have recently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Cesàro summable double sequences. Next, Mursaleen [31] and Mursaleen and Edely [32] have defined the almost strong regularity of matrices for double sequences and applied these matrices to establish a core theorem and introduced the M-core for double sequences and determined those four dimensional matrices transforming every bounded double sequences $x = (x_{ik})$ into one whose core is a subset of the M-core of x. More recently, Altay and Basar [33] have defined the spaces $\mathcal{BS}, \mathcal{BS}(t), \mathcal{CS}_p, \mathcal{CS}_{bp}, \mathcal{CS}_r$ and \mathcal{BV} of double sequences consisting of all double series whose sequence of partial sums are in the spaces $\mathcal{M}_{u}, \mathcal{M}_{u}(t), \mathcal{C}_{p}, \mathcal{C}_{bp}, \mathcal{C}_{r}$ and \mathcal{L}_{u} , respectively, and also examined some properties of those sequence spaces and determined the α - duals of the spaces $\mathcal{BS}, \mathcal{BV}, \mathcal{CS}_{bp}$ and the $\beta(\vartheta)$ – duals of the spaces \mathcal{CS}_{bp} and \mathcal{CS}_r of double series. Also Basar and Sever [34] have introduced the Banach space \mathcal{L}_q of double sequences corresponding to the well-known space ℓ_q of single sequences and examined some properties of the space \mathcal{L}_q . Quite recently Subramanian and Misra [35] have studied the space $\chi^2_M(p,q,u)$ of double sequences and gave some inclusion relations.

We need the following inequality in the sequel of the paper. For $a, b, \ge 0$ and 0 , we have

$$(a+b)^p \le a^p + b^p. \tag{1.1}$$

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence (s_{mn}) is convergent, where $s_{mn} = \sum_{i,j=1}^{m,n} x_{ij} (m, n \in \mathbb{N})$ (see [1]).

A sequence $x = (x_{mn})$ is said to be double analytic if

$$\sup_{mn} |x_{mn}|^{1/m+n} < \infty.$$

The vector space of all double analytic sequences will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double gai sequence if $((m+n)! |x_{mn}|)^{1/m+n} \rightarrow 0$ as $m, n \rightarrow \infty$. The double gai sequences will be denoted by χ^2 . By ϕ , we denote the set of all finite sequences.

Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \Im_{ij}$ for all $m, n \in \mathbb{N}$; where \Im_{ij} denotes the double sequence whose only nonzero term is $\frac{1}{(i+j)!}$ in the $(i,j)^{th}$ place for each $i, j \in \mathbb{N}$.

An FK-space (or a metric space) X is said to have AK property if (\mathfrak{T}_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$.

An FDK-space is a double sequence space endowed with a complete metric; locally convex topology under which the coordinate mappings $x = (x_k) \to (x_{mn})(m, n \in \mathbb{N})$ are also continuous.

Orlicz [16] used the idea of Orlicz function to construct the space (L^M) . Lindenstrauss and Tzafriri [10] investigated Orlicz sequence spaces in more details, and they proved that every Orlicz sequence space ℓ_M contains a subspace isomorphic to ℓ_p $(1 \le p < \infty)$. Subsequently, different classes of sequence spaces were defined by Parashar and Choudhary [17], Mursaleen et al. [14], Bektas and Altin [3], Tripathy et al. [21], Rao and Subramanian [18], and many others. The Orlicz sequence spaces are the special cases of Orlicz spaces studied in [9].

Recalling [16] and [9], an Orlicz function is a function $M : [0, \infty) \rightarrow [0, \infty)$ which is continuous, non-decreasing and convex, with M(0) = 0, M(x) > 0, for x > 0 and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$. If convexity of Orlicz function M is replaced by subadditivity of M, then this function is called modulus function, defined by Nakano [15] and further discussed by Ruckle [19] and Maddox [11], and many others.

An Orlicz function M is said to satisfy the Δ_2 - condition for all values of u if there exists a constant K > 0 such that $M(2u) \leq KM(u) (u \geq 0)$. The Δ_2 - condition is equivalent to $M(\ell u) \leq K\ell M(u)$, for all values of uand for $\ell > 1$.

Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to construct Orlicz sequence space

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\},\$$

The space ℓ_M with the norm

$$\|x\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\},\,$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t) = t^p (1 \le p < \infty)$, the spaces ℓ_M coincide with the classical sequence space ℓ_p . If X is a sequence space, we give the following definitions:

(i) X' = the continuous dual of X; (ii) $X^{\alpha} = \left\{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} |a_{mn}x_{mn}| < \infty, \text{ for each } x \in X \right\}$; (iii) $X^{\beta} = \left\{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} a_{mn}x_{mn} \text{ is convegent, for each } x \in X \right\}$; (iv) $X^{\gamma} = \left\{ a = (a_{mn}) : \sup_{MN} \ge 1 \left| \sum_{m,n=1}^{M,N} a_{mn}x_{mn} \right| < \infty, \text{ for each } x \in X \right\}$; (v) let X be a FK-space $\supset \phi$; then $X^{f} = \left\{ f(\Im_{mn}) : f \in X' \right\}$; (vi) $X^{\delta} = \left\{ a = (a_{mn}) : \sup_{mn} |a_{mn}x_{mn}|^{1/m+n} < \infty, \text{ for each } x \in X \right\};$ $X^{\alpha}, X^{\beta}, X^{\gamma} \text{ and } X^{\delta} \text{ are called } \alpha - \text{ (or Köthe-Toeplitz) dual of } X, \beta - \text{ (or generalized-Köthe-Toeplitz) dual of } X, \gamma - \text{ dual of } X, \delta - \text{ dual of } X \text{ respectively. } X^{\alpha} \text{ is defined by Gupta and Kamptan [24]. It is clear that } X^{\alpha} \subset X^{\beta} \text{ and } X^{\alpha} \subset X^{\gamma}, \text{ but } X^{\alpha} \subset X^{\gamma} \text{ does not hold, since the sequence of partial sums of a double convergent series need not to be bounded.}$

The notion of difference spaces of single sequences was introduced by Kizmaz [36] as follows

$$Z\left(\Delta\right) = \{x = (x_k) \in w : (\Delta x_k) \in Z\}$$

for $Z = c, c_0$ and ℓ_{∞} , where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$. Here w, c, c_0 and ℓ_{∞} denote the classes of all, convergent, null and bounded scalar valued single sequences respectively. The above difference spaces are Banach spaces normed by

$$||x|| = |x_1| + \sup_{k \ge 1} |\Delta x_k|.$$

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$Z\left(\Delta\right) = \left\{x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z\right\},\$$

where $Z = \Lambda^2, \chi^2$ and $\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1n} - x_{m+1n+1}) = x_{mn} - x_{mn+1} - x_{m+1n} + x_{m+1n+1}$ for all $m, n \in \mathbb{N}$.

This paper deals with various duals namely α, β, γ , complete paranormed space of $\Lambda_M^2(p)$ and paranormed space of $\chi_M^2(p)$ using Orlicz fuctions.

2. Definitions and preliminaries

Throughout the paper w^2 denotes the spaces of all sequences. $\chi^2_M(p)$ and $\Lambda^2_M(p)$ denote the Pringscheim's sense of double Orlicz space of gai sequences and Pringscheim's sense of double Orlicz space of bounded sequences respectively.

Let w^2 denote the set of all complex double sequences $x = (x_{mn})_{m,n=1}^{\infty}$ and $M : [0, \infty) \to [0, \infty)$ be an Orlicz function, or a modulus function.

Given a double sequence, $x \in w^2$. If $p = (p_{mn})$ is a double sequence of strictly positive real numbers p_{mn} then we write

$$\chi^2_M(p) = \left\{ x \in w^2 : \left(M\left(\frac{\left((m+n)! |x_{mn}|\right)^{1/m+n}}{\rho}\right)^{p_{mn}} \right) \to 0$$

as $m, n \to \infty$ for some $\rho > 0 \right\}$

and

$$\Lambda_M^2(p) = \left\{ x \in w^2 : \sup_{m,n \ge 1} \left(M\left(\frac{|x_{mn}|^{1/m+n}}{\rho}\right)^{p_{mn}} \right) < \infty \text{ for some } \rho > 0 \right\}.$$

The double Orlicz sequence spaces $\chi^2_M(p)$ and $\Lambda^2_M(p)$

The space $\Lambda_{M}^{2}\left(p\right)$ is a metric space with the metric

$$d(x,y) = \inf\left\{\rho > 0: \sup_{m,n \ge 1} \left(M\left(\frac{|x_{mn} - y_{mn}|}{\rho}\right)\right)^{p_{mn}/m+n} \le 1\right\}.$$

The space $\chi_{M}^{2}\left(p\right)$ is a metric space with the metric

$$d(x,y) = \inf\left\{\rho > 0: \sup_{m,n \ge 1} \left(M\left(\frac{(m+n)! |x_{mn} - y_{mn}|}{\rho}\right) \right)^{p_{mn}/m+n} \le 1 \right\}.$$

Throughout the paper we write \inf_{mn} , supp_{mn} and \sum_{mn} instead of $\inf_{m,n\geq 1}$, $\sup_{m,n\geq 1}$ and $\sum_{m,n=1}^{\infty}$ respectively.

3. Main results

Theorem 3.1. For every $p = (p_{mn})$,

$$\left[\Lambda_{M}^{2}\left(p\right)\right]^{\beta} = \left[\Lambda_{M}^{2}\left(p\right)\right]^{\alpha} = \left[\Lambda_{M}^{2}\left(p\right)\right]^{\gamma} = \eta_{M}^{2}\left(p\right),$$

where $\eta_{M}^{2}\left(p\right) = \bigcap_{N \in N-\{1\}} \left\{x = x_{mn} : \sum_{m,n} \left(M\left(\frac{|x_{mn}|N^{m+n/p_{mn}}}{\rho}\right)\right) < \infty\right\}.$

 $\begin{array}{l} \textit{Proof.} \ (1) \ \text{First we show that} \ \eta_{M}^{2}\left(p\right) \subset \left[\Lambda_{M}^{2}\left(p\right)\right]^{\beta}.\\ \text{Let} \ x \in \eta_{M}^{2}\left(p\right) \ \text{and} \ y \in \Lambda_{M}^{2}\left(p\right). \ \text{Then we can find a positive integer}\\ \textit{N such that} \ \left(\left|y_{mn}\right|^{1/m+n}\right)^{p_{mn}} < max\left(1, \sup_{m,n \geq 1}\left(\left|y_{mn}\right|^{1/m+n}\right)^{p_{mn}}\right) < N, \end{array}$ for all m, n.

Hence we may write

$$\left|\sum_{m,n} x_{mn} y_{mn}\right| \leq \sum_{m,n} |x_{mn} y_{mn}| \leq \sum_{mn} \left(M\left(\frac{|x_{mn} y_{mn}|}{\rho}\right) \right)$$
$$\leq \sum_{m,n} \left(M\left(\frac{|x_{mn}| N^{m+n/p_{mn}}}{\rho}\right) \right).$$

Since $x \in \eta_M^2(p)$ the series on the right side of the above inequality is convergent, whence $x \in [\Lambda_M^2(p)]^{\beta}$. Hence $\eta_M^2(p) \subset [\Lambda_M^2(p)]^{\beta}$. Now we show that $[\Lambda_M^2(p)]^{\beta} \subset \eta_M^2(p)$.

For this, let $x \in \left[\Lambda_M^2(p)\right]^{\beta}$, and suppose that $x \notin \Lambda_M^2(p)$. Then there exists a positive integer N > 1 such that $\sum_{m,n} \left(M\left(\frac{|x_{mn}|N^{m+n/p_{mn}}}{\rho}\right) \right) = \infty.$ If we define $y_{mn} = N^{m+n/p_{mn}} Sgnx_{mn} m, n = 1, 2, \cdots$, then $y \in \Lambda^2_M(p)$. But, since

$$\left|\sum_{m,n} x_{mn} y_{mn}\right| = \sum_{mn} \left(M\left(\frac{|x_{mn} y_{mn}|}{\rho}\right) \right)$$
$$= \sum_{m,n} \left(M\left(\frac{|x_{mn}| N^{m+n/p_{mn}}}{\rho}\right) \right) = \infty,$$

85

we get $x \notin \left[\Lambda_{M}^{2}(p)\right]^{\beta}$, which contradicts to the assumption $x \in \left[\Lambda_{M}^{2}(p)\right]^{\beta}$. Therefore $x \in \eta_M^2(p)$. Hence $\left[\Lambda_M^2(p)\right]^\beta = \eta_M^2(p)$.

(ii) and (iii) can be shown in a similar way with (i).

Theorem 3.2. Let $p = (p_{mn})$ be an analytic double sequence of strictly positive real numbers p_{mn} . Then

(i) $\Lambda^2_M(p)$ is a paranormed space with

$$g(x) = \sup_{m,n \ge 1} \left(M\left(\frac{|x_{mn}|^{1/m+n}}{\rho}\right)^{p_{mn}/M} \right)$$

if and only if $h = \inf_{mn} > 0$, where $M = \max(1, H)$ and $H = \sup_{mn} M$.

(ii) $\Lambda^2_M(p)$ is a complete paranormed linear metric space if the condition p in (i) is satisfied.

Proof. (i) Sufficiency. Let h > 0. It is trivial that $g(\theta) = 0$ and g(-x) = 0g(x). The inequality $g(x+y) \leq g(x) + g(y)$ follows from the inequality (1.1), since $p_{mn}/M \leq 1$ for all positive integers m, n. We also may write $g(\lambda x) \leq max\left(\left|\lambda\right|, \left|\overline{\lambda}\right|^{h/M}\right)g(x), \text{ since } \left|\lambda\right|^{p_{mn}} \leq max\left(\left|\lambda\right|^{h}, \left|\lambda\right|^{M}\right) \text{ for all }$ positive integers m, n and for any $\lambda \in C$, the set of complex numbers. Using this inequality, it can be proved that $\lambda x \to \theta$, when x is fixed and $\lambda \to 0$, or $\lambda \to 0$ and $x \to \theta$, or λ is fixed and $x \to \theta$.

Necessity. Let $\Lambda_{M}^{2}(p)$ be a paranormed space with the paranorm

$$g(x) = \sup_{m,n \ge 1} \left(M\left(\frac{|x_{mn}|^{1/m+n}}{\rho}\right)^{p_{mn}/M} \right)$$

and suppose that h = 0. Since $|\lambda|^{p_{mn}/M} \leq |\lambda|^{h/M} = 1$ for all positive integers $m, n \text{ and } \lambda \in C \text{ such that } 0 < |\lambda| \leq 1$, we have

$$\sup_{m,n\geq 1} \left(M\left(\frac{|\lambda|^{p_{mn}/M}}{\rho}\right) \right) = 1$$

Hence it follows that $g(\lambda x) = \sup_{m,n\geq 1} \left(M\left(\frac{|\lambda|^{p_{mn}/M}}{\rho}\right) \right) = 1$ for $x = (\alpha) \in \Lambda^2_M(p)$ as $\lambda \to 0$. But this contradicts the assumption $\Lambda^2_M(p)$ is a paranormed space with q(x).

(ii) The proof is clear.

Corollary 3.3. $\Lambda^2_M(p)$ is a complete paranormed space with the natural paranorm if and only if $\Lambda_M^2(p) = \Lambda_M^2$.

$$N_1 = \min\left\{n_0 : \sup_{m,n \ge n_0} \left(M\left(\frac{\left((m+n)! |x_{mn}|\right)^{1/m+n}}{\rho}\right)^{p_{mn}}\right) < \infty\right\},$$
$$N_2 = \min\left\{n_0 : \sup_{m,n \ge n_0} p_{mn} < \infty\right\} \text{ and } N = \max\left(N_1, N_2\right).$$

The double Orlicz sequence spaces $\chi^2_M\left(p\right)$ and $\Lambda^2_M\left(p\right)$

(i) $\chi^2_M(p)$ is a paranormed space with

$$g(x) = \lim_{N \to \infty} \sup_{m,n \ge N} \left(M\left(\frac{((m+n)! |x_{mn}|)^{1/m+n}}{\rho}\right)^{p_{mn}/M} \right)$$
(3.1)

if and only if $\mu > 0$, where

$$\mu = \lim_{N \to \infty} \inf_{m,n \ge N} p_{mn} \text{ and } M = \max\left(1, \sup_{m,n \ge N} p_{mn}\right).$$

(ii) $\chi^2_M(p)$ is complete with the paranorm (3.1).

Proof. (i) Necessity. Let $\chi^2_M(p)$ be a paranormed space with (3.1) and suppose that $\mu = 0$.

Then $\alpha = \inf_{m,n \geq N} p_{mn} = 0$ for all $N \in \mathbb{N}$, and hence we obtain $g(\lambda x) = \lim_{N \to \infty} \sup_{m,n \geq N} |\lambda|^{p_{mn}/M} = 1$ for all $\lambda \in (0,1]$, where $x = (\alpha) \in \chi_M^2(p)$. Whence $\lambda \to 0$ does not imply $\lambda x \to \theta$, when x is fixed. But this contradicts (3.1) to be a paranorm.

Sufficiency. Let $\mu > 0$. It is trivial that $g(\theta) = 0, g(-x) = g(x)$ and $g(x+y) \leq g(x) + g(y)$. Since $\mu > 0$ there exists a positive number β such that $p_{mn} > \beta$ for sufficiently large positive integer m, n. Hence for any $\lambda \in \mathbb{C}$, we may write $|\lambda|^{p_{mn}} \leq max \left(|\lambda|^M, |\lambda|^{\beta} \right)$ for sufficiently large positive integers $m, n \geq N$. Therefore, we obtain that $g(\lambda x) \leq max \left(|\lambda|, |\lambda|^{\beta/M} \right) g(x)$ using this, one can prove that $\lambda x \to \theta$, whenever x is fixed and $\lambda \to 0$, or $\lambda \to 0$ and $x \to \theta$, or λ is fixed and $x \to \theta$.

(ii) Let $(x^{k\ell})$ be a Cauchy sequence in $\chi^2_M(p)$, where

$$x^{k\ell} = \left(x_{mn}^{k\ell}\right)_{mn\in N}.$$

Then for every $\epsilon > 0$ ($0 < \epsilon < 1$) there exists a positive integer s_0 such that

$$g\left(x^{k\ell} - x^{rt}\right) = \lim_{N \to \infty} \sup_{m,n \ge N} \left(M\left(\frac{\left((m+n)! \left|x_{mn}^{k\ell} - x_{mn}^{rt}\right|\right)^{1/m+n}}{\rho}\right)^{p_{mn}/M}\right)$$
$$< \epsilon/2 \text{ for all } k, \ell, r, t > s_0.$$
(3.2)

By (3.2) there exists a positive integer n_0 such that

$$\sup_{m,n\geq N} \left(M\left(\frac{\left((m+n)! \left| x_{mn}^{k\ell} - x_{mn}^{rt} \right| \right)^{1/m+n}}{\rho} \right)^{p_{mn}/M} \right) < \epsilon/2$$

for all $k, \ell, r, t > s_0$ and for $N > n_0$. Hence we obtain

$$\left(M\left(\frac{\left((m+n)!\left|x_{mn}^{k\ell}-x_{mn}^{rt}\right|\right)^{1/m+n}}{\rho}\right)^{p_{mn}/M}\right) < \epsilon/2 < 1$$
(3.3)

87

so that

$$\left(M\left(\frac{\left((m+n)!\left|x_{mn}^{k\ell}-x_{mn}^{rt}\right|\right)^{1/m+n}}{\rho}\right)\right)$$

<
$$\left(M\left(\frac{\left((m+n)!\left|x_{mn}^{k\ell}-x_{mn}^{rt}\right|\right)^{1/m+n}}{\rho}\right)^{p_{mn}/M}\right) < \epsilon/2$$

for all $k, \ell, r, t, > s_0$. This implies that $\left(x_{mn}^{k\ell}\right)_{k\ell \in N}$ is a Cauchy sequence in C for each fixed $m, n > n_0$. Hence the sequence $(x_{mn}^{k\ell})_{k\ell \in \mathbb{N}}$ is convergent to x_{mn} say,

$$\lim_{k,\ell\to\infty} x_{mn}^{k\ell} = x_{mn} \text{ for each fixed } m, n > n_0$$
(3.4)

Getting x_{mn} , we define $x = (x_{mn})$. From (3.3) we obtain

$$g\left(x^{k\ell}-x\right)$$

$$= \lim_{N \to \infty} \sup_{m,n \ge N} \left(M\left(\frac{\left((m+n)! \left|x_{mn}^{k\ell} - x_{mn}\right|\right)^{1/m+n}}{\rho}\right)^{p_{mn}/M} \right) < \epsilon/2 \quad (3.5)$$

as $r, t \to \infty$, for $k, \ell > s_0$ by (3.5). This implies that $\lim_{k\ell \to \infty} x^{k\ell} = x$. Now we show that $x = (x_{mn}) \in \chi^2_M(p)$. Since $x^{k\ell} \in \chi^2_M(p)$ for each $(k, 1) \in N \times N$ for every $\epsilon > 0$ ($0 < \epsilon < 1$) there exists a positive integer $n_1 \in N$ such that

$$\left(M\left(\frac{\left((m+n)! \left|x_{mn}^{k\ell}\right|\right)^{1/m+n}}{\rho}\right)^{p_{mn}/M}\right) < \epsilon/2 \text{ for every } m, n > n_1. \quad (3.6)$$

By (3.5) and (3.6) and (3.1) we obtain

$$\left(M\left(\frac{\left((m+n)! |x_{mn}|\right)^{1/m+n}}{\rho}\right)^{p_{mn}/M}\right)$$
$$\leq \left(M\left(\frac{\left((m+n)! |x_{mn}^{k\ell}|\right)^{1/m+n}}{\rho}\right)^{p_{mn}/M}\right)$$
$$+ \left(M\left(\frac{\left((m+n)! |x_{mn}^{k\ell} - x_{mn}|\right)^{1/m+n}}{\rho}\right)^{p_{mn}/M}\right)$$
$$\leq \epsilon/2 + \epsilon/2 = \epsilon$$

for all $k, \ell > max(s_0, s_1)$ and $m, n > max(n_0, n_1)$. This implies that $x \in$ $\chi^2_M(p)$. This completes the proof. \square

Theorem 3.5. For every $p = (p_{mn})$, then $\eta_M^2(p) \subset [\chi_M^2(p)]^{\beta} \stackrel{\subset}{\neq} \Lambda^2$.

Proof. Case 1. First we show that $\eta_M^2(p) \subset \left[\chi_M^2(p)\right]^{\beta}$. We know that $\chi^{2}(p) \subset \Lambda^{2}_{M}(p), \left[\Lambda^{2}_{M}(p)\right]^{\beta} \subset \left[\chi^{2}_{M}(p)\right]^{\beta}$. But $\left[\Lambda_M^2(p)\right]^{\beta} = \eta_M^2(p)$, by Theorem 3.1. Therefore

$$\eta_M^2(p) \subset [\chi_M^2(p)]^\beta. \tag{3.7}$$

Case 2. Now we show that $|\chi_M^2(p)|^{\beta} \neq \Lambda^2$.

Let $y = \{y_{mn}\}$ be an arbitrary point in $(\chi^2_M(p))^{\beta}$. If y is not in Λ^2 , then for each natural number q, we can find an index $m_q n_q$ such that

$$\left(M\left(\frac{\left((m_q+n_q)!|y_{m_qn_q}|\right)^{1/m_q+n_q}}{\rho}\right)\right)^{p_{mn}} > q, (1, 2, 3, \cdots).$$

Define $x = \{x_{mn}\}$ by $\left(M\left(\frac{(m+n)!x_{mn}}{\rho}\right)\right)^{p_{mn}} = \frac{1}{q^{m+n}}$ for $(m,n) = (m_q, n_q)$ for some $q \in \mathbb{N}$; and $\left(M\left(\frac{(m+n)!x_{mn}}{\rho}\right)\right)^{p_{mn}} = 0$ otherwise. Then x is in $\chi^2_M(p)$, but for infinitely mn,

$$\left(M\left(\frac{(m+n)!\,|y_{mn}x_{mn}|}{\rho}\right)\right)^{p_{mn}} > 1.$$
(3.8)

Consider the sequence $z = \{z_{mn}\}$, where

$$\left(M\left(\frac{2!z_{11}}{\rho}\right)\right)^{p_{mn}} = \left(M\left(\frac{2!x_{11}}{\rho}\right)\right)^{p_{mn}} - s$$

with

$$s = \sum \left(M\left(\frac{(m+n)!x_{mn}}{\rho}\right) \right)^{p_{mn}};$$

and

$$\left(M\left(\frac{(m+n)!z_{mn}}{\rho}\right)\right)^{p_{mn}} = \left(M\left(\frac{(m+n)!x_{mn}}{\rho}\right)\right)^{p_{mn}} (m, n = 1, 2, 3, \cdots).$$

Then z is a point of $\chi^2_M(p)$. Also $\sum \left(M\left(\frac{(m+n):z_{mn}}{\rho}\right)\right) = 0$. Hence z is in $\chi^2_M(p)$.

But, by the equation (3.8), $\sum \left(M\left(\frac{(m+n)!z_{mn}y_{mn}}{\rho}\right) \right)^{p_{mn}}$ does not converge. $\Rightarrow \sum (m+n)! x_{mn} y_{mn}$ diverges.

Thus the sequence y would not be in $(\chi^2_M(p))^{\beta}$. This contradiction proves that

$$\left(\chi_M^2\left(p\right)\right)^\beta \subset \Lambda^2. \tag{3.9}$$

If we now choose $p = (p_{mn})$ constant, M = id, where *id* is the identity and $(1+n)!y_{1n} = (1+n)!x_{1n} = 1$ and $(m+n)!y_{mn} = (m+n)!x_{mn} = 0$ (m > 1) for all n, then obviously $x \in \chi^2_M(p)$ and $y \in \Lambda^2$, but

$$\sum_{m,n=1}^{\infty} (m+n)! x_{mn} y_{mn} = \infty,$$

hence

$$y \notin \left(\chi_M^2\left(p\right)\right)^{\beta}.\tag{3.10}$$

From (3.9) and (3.10) we are granted

$$\left(\chi_M^2\left(p\right)\right)^{\beta} \stackrel{\subset}{\neq} \Lambda^2. \tag{3.11}$$

Hence (3.7) and (3.11) we are granted $\eta_M^2(p) \subset \left[\chi_M^2(p)\right]^{\beta} \neq \Lambda^2$. This completes the proof.

Theorem 3.6. Let M be an Orlicz function or modulus function which satisfies the Δ_2 -condition. Then $\chi^2(p) \subset \chi^2_M(p)$.

Proof. Let

$$x \in \chi^2\left(p\right). \tag{3.12}$$

Then $\left(\left((m+n)! |x_{mn}|\right)^{1/m+n}\right)^{p_{mn}} \leq \epsilon$ for sufficiently large m, n and every $\epsilon > 0$.

But then by taking $\rho \geq 1/2$,

$$\left(M\left(\frac{\left((m+n)!\,|x_{mn}|\right)^{1/m+n}}{\rho}\right)\right)^{p_{mn}} \le \left(M\left(\frac{\epsilon}{\rho}\right)\right)$$

(because M is non-decreasing)

$$\leq \left(M\left(2\epsilon\right)\right)$$

$$\Rightarrow \left(M\left(\frac{\left((m+n)! |x_{mn}|\right)^{1/m+n}}{\rho} \right) \right)^{p_{mn}} \le KM\left(\epsilon\right)$$

(by the Δ_2 - condition, for some k > 0)

$$\leq \epsilon$$

(by defining $M(\epsilon) < \epsilon/K$)

$$\left(M\left(\frac{\left((m+n)!\,|x_{mn}|\right)^{1/m+n}}{\rho}\right)\right)^{p_{mn}} \to 0 \text{ as } m, n \to \infty.$$
(3.13)

Hence

$$x \in \chi_M^2\left(p\right). \tag{3.14}$$

From (3.12) and (3.14) we get $\chi^2(p) \subset \chi^2_M(p)$. This completes the proof. \Box

Acknowledgement. I wish to thank the referees for their several remarks and valuable suggestions that improved the presentation of the paper.

The double Orlicz sequence spaces $\chi^2_M(p)$ and $\Lambda^2_M(p)$

References

- [1] Apostol, T., Mathematical Analysis, Addison-Wesley, London, 1978.
- [2] Basarir, M., Solancan, O., On some double sequence spaces, J. Indian Acad. Math., 21(1999), no. 2, 193-200.
- [3] Bektas, C., Altin, Y., The sequence space $\ell_M(p,q,s)$ on seminormed spaces, Indian J. Pure Appl. Math., **34**(2003), no. 4, 529-534.
- [4] Bromwich, T.J.I'A., An introduction to the theory of infinite series, Macmillan and Co. Ltd., New York, 1965.
- [5] Burkill, J.C., Burkill, H., A Second Course in Mathematical Analysis, Cambridge University Press, Cambridge, New York, 1980.
- [6] Colak, R., Turkmenoglu, A., The double sequence spaces $\ell^2_{\infty}(p), c^2_0(p)$ and $c^2(p)$, (to appear).
- [7] Gupta, M., Kamthan, P.K., Infinite matrices and tensorial transformations, Acta Math., Vietnam, 5(1980), 33-42.
- [8] Hardy, G.H., On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19(1917), 86-95.
- [9] Krasnoselskii, M.A., Rutickii, Y.B., Convex functions and Orlicz spaces, Gorningen, Netherlands, 1961.
- [10] Lindenstrauss, J., Tzafriri, L., On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
- [11] Maddox, I.J., Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc, 100(1986), no. 1, 161-166.
- [12] Moricz, F., Extentions of the spaces c and c₀ from single to double sequences, Acta. Math. Hungarica, 57(1991), no. 1-2, 129-136.
- [13] Moricz, F., Rhoades, B.E., Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104(1988), 283-294.
- [14] Mursaleen, M., Khan, M.A., Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Math., XXXII(1999), 145-150.
- [15] Nakano, H., Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
- [16] Orlicz, W., Über Raume (L^M) , Bull. Int. Acad. Polon. Sci. A, 1936, 93-107.
- [17] Parashar, S.D., Choudhary, B., Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 25(1994), no. 4, 419-428.
- [18] Chandrasekhara Rao, K., Subramanian, N., The Orlicz space of entire sequences, Int. J. Math. Math. Sci., 68(2004), 3755-3764.
- [19] Ruckle, W.H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
- [20] Tripathy, B.C., On statistically convergent double sequences, Tamkang J. Math., 34(2003), no. 3, 231-237.
- [21] Tripathy, B.C., Et, M., Altin, Y., Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Analysis and Applications, 1(2003), no. 3, 175-192.
- [22] Turkmenoglu, A., Matrix transformation between some classes of double sequences, Jour. Inst. of Math. and Comp. Sci. (Math. Ser.), 12(1999), no. 1, 23-31.

- [23] Wilansky, A., Summability through Functional Analysis, North-Holland Mathematics Studies, North-Holland Publishing, Amsterdam, 85(1984).
- [24] Kamthan, P.K., Gupta, M., Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, Inc., New York, 1981.
- [25] Gupta, M., Kamthan, P.K., Infinite matrices and tensorial transformations, Acta Math. Vietnam, 5(1980), 33-42.
- [26] Subramanian, N., Nallswamy, R., Saivaraju, N., Characterization of entire sequences via double Orlicz space, International Journal of Mathematics and Mathematical Sciences, Vol. 2007, Article ID 59681, 10 pages.
- [27] Gökhan, A., Colak, R., The double sequence spaces c₂^P (p) and c₂^{PB} (p), Appl. Math. Comput., 157(2004), no. 2, 491-501.
- [28] Gökhan, A., Colak, R., Double sequence spaces ℓ_2^{∞} , Appl. Math. Comput., **160**(2005), no. 1, 147-153.
- [29] Zeltser, M., Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
- [30] Mursaleen, M., Edely, O.H.H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288(2003), no. 1, 223-231.
- [31] Mursaleen, M., Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2004), no. 2, 523-531.
- [32] Mursaleen, M., Edely, O.H.H., Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293(2004), no. 2, 532-540.
- [33] Altay, B., Basar, F., Some new spaces of double sequences, J. Math. Anal. Appl., 309(2005), no. 1, 70-90.
- [34] Basar, F., Sever, Y., The space \mathcal{L}_p of double sequences, Math. J. Okayama Univ., **51**(2009), 149-157.
- [35] Subramanian, N., Misra, U.K., The seminormed space defined by a double gai sequence of modulus function, Fasciculi Math., 46(2010).
- [36] Kizmaz, H., On certain sequence spaces, Cand. Math. Bull., 24(1981), no. 2, 169-176.
- [37] Subramanian, N., Misra, U.K., Characterization of gai sequences via double Orlicz space, Southeast Asian Bulletin of Mathematics, (revised).
- [38] Subramanian, N., Tripathy, B.C., Murugesan, C., The double sequence space of Γ², Fasciculi Math., 40(2008), 91-103.
- [39] Subramanian, N., Tripathy, B.C., Murugesan, C., The Cesaro of double entire sequences, International Mathematical Forum, 4(2009), no. 2, 49-59.
- [40] Subramanian, N., Misra, U.K., The Generalized double of gai sequence spaces, Fasciculi Math., 43(2010).
- [41] Subramanian, N., Misra, U.K., Tensorial transformations of double gai sequence spaces, International Journal of Computational and Mathematical Sciences, 3(2009), 186-188.
- [42] Maddox, I.J., Inclusion between FK spaces and Kuttner's theorem, Math. Proc. Cambridge Philos. Soc., 101(1987), 523-527.

Nagarajan Subramanian Department of Mathematics, SASTRA University Thanjavur-613 401, India e-mail: nsmaths@yahoo.com

Umakanta Misra Department of Mathematics, Berhampur University Berhampur-760 007, Odissa, India e-mail: umakanta_misra@yahoo.com