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A class of uniformly convex functions
involving a differential operator

Srikandan Sivasubramanian and Chellakutti Ramachandran

Abstract. The main purpose of this paper is to introduce a new class
UH(α, β, γ, λ, k), of functions which are analytic in the open disc ∆ =
{z ∈ C : |z| < 1}. We obtain various results including characterization,
coefficients estimates, distortion and covering theorems, radii of close-
to-convexity, starlikeness and convexity for functions belonging to the
class UH(α, β, γ, λ, k).
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1. Introduction and motivations

Let A denote the class of functions of the form

f(z) = z +
∞∑

n=2

anzn,

that are analytic in the open unit disc ∆ := {z ∈ C : |z| < 1}. Let S be
a subclass of A consisting of univalent functions in ∆. By K(β), and S∗(β)
respectively, we mean the classes of analytic functions that satisfy the analytic
conditions

Re
{

1 +
zf ′′(z)
f ′(z)

}
> β and Re

{
zf ′(z)
f(z)

}
> β, z ∈ ∆

for 0 5 β < 1. In particular, K = K(0) and S∗ = S∗(0) respectively, are the
well-known standard class of convex and starlike functions.

The function f ∈ A is said to be close-to-convex of order β, β = 0, with
respect to a starlike function g and φ ∈ R if∣∣∣∣arg eiφ f(z)

g(z)

∣∣∣∣ 5 β
π

2
, z ∈ ∆.

Let CC(β) denote the union of all such close-to-convex functions of order β.
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Let T denote the subclass of S of functions of the form

f(z) = z −
∞∑

n=2

anzn, an = 0, (1.1)

that are analytic in the open unit disk ∆. This class was introduced and stud-
ied in [9]. Analogous to the subclasses S∗(β) and K(β) of S respectively, the
subclasses of T denoted by T ∗(β) and C(β), 0 5 β < 1, were also investigated
in [9].

The main class which we investigate in this present paper uses the oper-
ator known as the Cho-Srivastava operator. In fact, One important concept
that is useful in discussing this operator is the convolution or Hadamard
product. Here by convolution we mean the following: For f, g analytic with
f(z) = a0 +a1z+a2z

2 + · · · and g(z) = b0 +b1z+b2z
2 + · · · , the (Hadamard)

convolution of f and g is defined by (f ∗ g)(z) = a0b0 + a1b1z + a2b2z
2 + · · · .

It is natural to use the notation f(z) ∗ g(z) for (f ∗ g)(z) and vice versa
frequently.

For functions f ∈ A, we recall the multiplier transformation I(λ, k)
introduced by Cho and Srivastava [3] defined as

I(λ, k)f(z) = z +
∞∑

n=2

Ψnanzn ( λ = 0; k ∈ Z) (1.2)

where

Ψn :=
(

n + λ

1 + λ

)k

(1.3)

so that, obviously,

I(λ, k) (I(λ, m) f(z)) = I(λ, k + m) f(z) (k,m ∈ Z) . (1.4)

For λ = 1, the operators I(λ, k) were studied by Uralegaddi and Somanatha
[12]. The operators I(λ, k) are closely related to the multiplier transforma-
tions studied by Flett [4] and also to the differential and integral operators
investigated by Sălăgean [7]. For a detailed analysis of various convolution
operators, which are related to the multiplier transformations of Flett [4], re-
fer the work of Li and Srivastava [5] (as well as the references cited by them).
Now we define an unified class of analytic function based on this operator.

Definition 1.1. For 0 5 γ 5 1, 0 5 β < 1, α = 0, and for all z ∈ ∆, we let
the class UH(α, β, γ, λ, k), consists of functions f ∈ T is said to be in the
class satisfying the condition

Re
{

zF ′(z)
F (z)

}
> α

∣∣∣∣zF ′(z)
F (z)

− 1
∣∣∣∣ + β, (1.5)

with,

F (z) := γ(1 + λ)I(λ, k + 1)f(z) + (1− γ(1 + λ))I(λ, k)f(z), (1.6)

where I(λ, k)f(z) is the Cho-Srivastava operator as defined by (1.2)
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The family UH(α, β, γ, λ, k), unifies various well known classes of an-
alytic univalent functions. We list a few of them. The class UH(2, 1, λ, β, 0)
studied in [1]. Many classes including UH(2, 1, 0, β, 0) and UH(2, 1, 1, β, 0)
given in [11], are particular cases of this class. Further that, the class
UH(2, 1, λ, 0, β, k) is the class of k−uniformly convex of order β, was in-
troduced and studied in [10] (also see [2]).

In this present paper, we obtain a characterization, coefficients esti-
mates, distortion theorem and covering theorem, extreme points and radii of
close-to-convexity, starlikeness and convexity for functions belonging to the
class UH(α, β, γ, λ, k),.

2. Characterization and coefficient estimates

Theorem 2.1. Let f ∈ T . Then f ∈ UH(α, β, γ, λ, k), 0 5 γ 5 1, 0 5 β <
1 and α = 0,

∞∑
n=2

[n(α + 1)− (α + β)] (γ(n− 1) + 1) Ψn|an| 5 1− β. (2.1)

This result is sharp for the function

f(z) = z − 1− β

[n(α + 1)− (α + β)][γ(n− 1) + 1]Ψn
zn n = 2. (2.2)

Proof. We employ the technique adopted by [2]. We have

f ∈ UH(α, β, γ, λ, k),

if and only if the condition (1.5) is satisfied, which is equivalent to

Re
{

zF ′(z)(1 + keiθ)− F (z)keiθ

F (z)

}
> β, −π 5 θ < π. (2.3)

Now, letting G(z) = zF ′(z)(1+keiθ)−F (z)keiθ, equation (2.3) is equivalent
to

|G(z) + (1− β)F (z)| > |G(z)− (1 + β)F (z)|, 0 5 β < 1.

where F (z) is as defined in (1.6). Now a simple computation gives

|G(z) + (1− β)F (z)|

= (2− β)|z| −
∞∑

n=2

(
n(α + 1)− (α + β) + 1

) (
γ(n− 1) + 1

)
Ψnan|z|n

and similarly,

|G(z)− (1 + β)F (z)|

5 β|z|+
∞∑

n=2

(
(n(α + 1)− (α + β)− 1)

) (
γ(n− 1) + 1

)
Ψnan|z|n.

Therefore,
|G(z) + (1− β)F (z)| − |G(z)− (1 + β)F (z)|
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= 2(1− β)|z| −2
∞∑

n=2

(
(n(α + 1)− (α + β))

)
(γ(n− 1) + 1) Ψnan|z|n = 0,

which is equivalent to the result (2.1).
On the other hand, for all −π 5 θ < π, we must have

Re
{

zF ′(z)
F (z)

(1 + keiθ)− keiθ

}
> β.

Now, choosing the values of z on the positive real axis, where 0 5 |z| = r < 1,
and using Re {−eiθ} = −|eiθ| = −1, the above inequality can be written as

Re


(1− β)−

∞∑
n=2

(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψnanrn−1

1−
∞∑

n=2

(
γ(n− 1) + 1

)
Ψnanrn−1

 = 0.

Setting r → 1−, we get the desired result. �

Many known results can be obtained as particular cases of Theorem 2.1.
For details, we refer to [6, 8].

By taking α = 0, γ = 1, λ = 0 and k = 1 in Theorem 2.1, we get the
following interesting result given in [9].

Corollary 2.2. [9] If f ∈ T , then f ∈ C(β) if and only if
∞∑

n=2

n(n− β)an 5 1− β.

Indeed, since f ∈ UH(α, β, γ, λ, k), (2.1), we have
∞∑

n=2

(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψnan 5 1− β.

Hence for all n = 2, we have

an 5
1− β(

n(α + 1)− (α + β)
) (

γ(n− 1) + 1
)
Ψn

,

whenever 0 5 γ 5 1, 0 5 β < 1 and α = 0. Hence we state this important
observation as a separate theorem.

Theorem 2.3. If f ∈ UH(q, s, λ, β, k), then

an 5
1− β(

n(α + 1)− (α + β)
) (

γ(n− 1) + 1
)
Ψn

, n = 2, (2.4)

where 0 5 γ 5 1, 0 5 β < 1 and α = 0. Equality in (2.4) holds for the
function

f(z) = z − 1− β(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn

. (2.5)

This theorem also contains many known results for the special values of
the parameters. For example, see [6, 8].
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3. Distortion and covering theorems

Theorem 3.1. If f ∈ UH(α, β, γ, λ, k), then f ∈ T ∗(δ), where

δ = 1− 1− β(
2(α + 1)− (α + β)

) (
γ + 1

)
Ψ2 − (1− β)

.

This result is sharp with the extremal function being

f(z) = z − 1− β(
2(α + 1)− (α + β)

) (
γ + 1

)
Ψ2

z2.

Proof. It is sufficient to show that (2.1) implies
∞∑

n=2

(n−δ)an 5 1−δ [9], that

is,
n− δ

1− δ
5

(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn

1− β
, n = 2. (3.1)

Since, for n = 2, (3.1) is equivalent to

δ 5 1− (n− 1)(1− β)(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn − (1− β)

= Φ(n),

and Φ(n) 5 Φ(2), (3.1) holds true for any 0 5 γ 5 1, 0 5 β < 1 and α = 0.
This completes the proof of the Theorem 3.1. �

As in the previous cases we note this result has many special cases. If
we take α1 = 1, α2 = 1, β1 = 1, q = 2, s = 1, λ = 1 and k = 0 in Theorem
3.1, then we have the following result of [9].

Corollary 3.2. [9] If f ∈ C(β), then f ∈ T ∗
(

2
3− β

)
. The result is sharp for

the extremal function

f(z) = z − 1− β

2(2− β)
z2.

Remark. Since distortion theorem and covering theorem are available for the
class T ∗(β) [9], we can also obtain the corresponding results for the class
UH(α, β, γ, λ, k), from the respective results of T ∗(β) by using Theorem
3.1, and we state them without proof.

Theorem 3.3. Let Ψn be defined as in (1.3). Then, for f ∈ UH(α, β, γ, λ, k),
with z = reiθ ∈ ∆, we have

r −B(α, β, γ, λ)r2 5 |f(z)| 5 r + B(α, β, γ, λ)r2, (3.2)

where,

B(α, β, γ, λ) :=
1− β(

2(α + 1)− (α + β)
) (

γ + 1
)

Ψ2

.

Theorem 3.4. If f ∈ UH(α, β, γ, λ, k), then for |z| = r < 1

1−B(α, β, γ, λ)r 5 |f ′(z)| 5 1 + B(α, β, γ, λ)r , (3.3)

where B(α, β, γ, λ) as in Theorem 3.3.



76 Srikandan Sivasubramanian and Chellakutti Ramachandran

Note that in Theorem 3.3 and Theorem 3.4 equality holds for the func-
tion

f(z) = z − 1− β(
2(α + 1)− (α + β)

) (
γ + 1

)
Ψ2

z2.

4. Extreme points of the class UH(α, β, γ, λ, k),

Theorem 4.1. Let f1(z) = z and

fn(z) = z − 1− β(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn

zn, n = 2

and Ψn be as defined in (1.3). Then f ∈ UH(α, β, γ, λ, k), if and only if it
can be represented in the form

f(z) =
∞∑

n=1

µnfn(z), µn = 0,
∞∑

n=1

µn = 1. (4.1)

Proof. Suppose f(z) can be written as in (4.1). Then

f(z) = z −
∞∑

n=2

µn

{
1− β(

n(α + 1)− (α + β)
) (

γ(n− 1) + 1
)
Ψn

}
zn.

Now,
∞∑

n=2

µn

(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn(1− β)

(1− β)
(

n(α + 1)− (α + β)
) (

γ(n− 1) + 1
)
Ψn

=
∞∑

n=2

µn =1−µ1 5 1.

Thus f ∈ UH(α, β, γ, λ, k). Conversely, let us have f ∈ UH(α, β, γ, λ, k).
Then by using (2.4), we may write

µn =

(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn

1− β
an, n = 2,

and µ1 = 1 −
∞∑

n=2

µn. Then f(z) =
∞∑

n=1

µnfn(z), with fn(z) is as in the

Theorem. �

Corollary 4.2. The extreme points of f ∈ UH(α, β, γ, λ, k), are the functions
f1(z) = z and

fn(z) = z − 1− β(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn

zn, n = 2.

Remark. As in earlier theorems, we can deduce known results for various
other classes and we omit details.

Theorem 4.3. The class UH(α, β, γ, λ, k) is a convex set.
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Proof. Let the function

fj(z) =
∞∑

n=2

an, jz
n, an, j = 0, j = 1, 2 , (4.2)

be the class UH(α, β, γ, λ, k). It sufficient to show that the function g(z)
defined by

g(z) = µf1(z) + (1− µ)f2(z), 0 5 µ 5 1,

is in the class UH(α, β, γ, λ, k). Since

g(z) = z −
∞∑

n=2

[µan,1 + (1− µ)an,2]zn,

an easy computation with the aid of Theorem 2.1 gives,
∞∑

n=2

(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn[µan,1 + (1− µ)an,2]

+(1− µ)
∞∑

n=2

( n(α + 1)− (α + β))( γ(n− 1) + 1)Ψn

5 µ(1− β) + (1− µ)(1− β) 5 1− β,

which implies that g ∈ UH(α, β, γ, λ, k). Hence UH(α, β, γ, λ, k) is convex.
�

5. Modified Hadamard products

For functions of the form (4.2), we define the modified Hadamard prod-
uct as

(f1∗f2)(z) = z −
∞∑

n=2

an, 1 an, 2z
n. (5.1)

Theorem 5.1. If fj(z) ∈ UH(q, s, λ, β, k), j = 1, 2, then

(f1∗f2)(z) ∈ UH(q, s, λ, β, k, ξ),

where

ξ =
(2− β)

(
2(α + 1)− (α + β)

) (
γ + 1

)
Ψ2 − 2(1− β)2

(2− β)
(

2(α + 1)− (α + β)
) (

γ + 1
)
Ψ2 − (1− β)2

,

with Ψn be defined as in (1.3).

Proof. Since fj(z) ∈ UH(q, s, λ, β, k), j = 1, 2, we have
∞∑

n=2

(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψnan, j 5 1− β, j = 1, 2.

The Cauchy-Schwartz inequality leads to
∞∑

n=2

(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψnan, j

1− β

√
an, 1 an, 2 5 1. (5.2)
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Note that we need to find the largest ξ such that
∞∑

n=2

(
n(k + 1)− (k + ξ)

) (
γ(n− 1) + 1

)
Ψnan, j

1− ξ
an, 1 an, 2 5 1. (5.3)

Therefore, in view of (5.2) and (5.3), whenever
n− ξ

1− ξ

√
an, 1 an, 2 5

n− β

1− β
, n = 2

holds, then (5.3) is satisfied. We have, from (5.2),

√
an, 1 an, 2 5

1− β(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn

, n = 2. (5.4)

Thus, if(
n− ξ

1− ξ

) [
1− β(

n(α + 1)− (α + β)
) (

γ(n− 1) + 1
)
Ψn

]
5

n− β

1− β
, n = 2,

or, if

ξ 5
(n− β)

(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn − n(1− β)2

(n− β)
(

n(α + 1)− (α + β)
) (

γ(n− 1) + 1
)
Ψn − (1− β)2

, n = 2,

then (5.2) is satisfied. Note that the right hand side of the above expression
is an increasing function on n. Hence, setting n = 2 in the above inequality
gives the required result. Finally, by taking the function

f(z) = z − 1− β

(2− β)
(
2(α + 1)− (α + β)

) (
γ + 1

)
Ψ2

z2,

we see that the result is sharp. �

6. Radii of close-to-convexity, starlikeness and convexity

Theorem 6.1. Let the function f ∈ T be in the class UH(q, s, λ, β, k). Then
f(z) is close-to-convex of order ρ, 0 5 ρ < 1 in |z| < r1(α, β, γ, ρ), where

r1(α, β, γ, ρ) = inf
n

[
(1− ρ)

(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn

n(1− β)

] 1
n−1

,

n = 2, with Ψn be defined as in (1.3). This result is sharp for the function
f(z) given by (2.2).

Proof. It is sufficient to show that |f ′(z) − 1| 5 1 − ρ, 0 5 ρ < 1, for
|z| < r1(α, β, γ, ρ), or equivalently

∞∑
n=2

(
n

1− ρ

)
an|z|n−1 5 1. (6.1)

By Theorem 2.1, (6.1) will be true if(
n

1− ρ

)
|z|n−1 5

(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn

1− β
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or, if

|z| 5

[
(1− ρ)

(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn

n(1− β)

] 1
n−1

. (6.2)

The theorem follows easily from (6.2). �

Theorem 6.2. Let the function f(z) defined by (1.1) be in the class
UH(α, β, γ, λ, k). Then f(z) is starlike of order ρ, 0 5 ρ < 1 in |z| <
r2(α, β, γ, ρ), where

r2(α, β, γ, ρ) = inf
n

[
(1− ρ)

(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn

(n− ρ)(1− β)

] 1
n−1

,

n = 2, with Ψn be defined as in (1.3). This result is sharp for the function
f(z) given by (2.2).

Proof. It is sufficient to show that∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ 5 1− ρ, or equivalently

∞∑
n=2

(
n− ρ

1− ρ

)
an|z|n−1 5 1, (6.3)

for 0 5 ρ < 1, and |z| < r2(α, β, γ, ρ). Proceeding as in Theorem 6.1, with
the use of Theorem 2.1, we get the required result. �

Theorem 6.3. Let the function f(z) defined by (1.1) be in the class
UH(α, β, γ, λ, k). Then f(z) is convex of order ρ, 0 5 ρ < 1 in |z| <
r3(α, β, γ, ρ), where

r3(α, β, γ, ρ) = inf
n

[
(1− ρ)

(
n(α + 1)− (α + β)

) (
γ(n− 1) + 1

)
Ψn

n(n− ρ)(1− β)

] 1
n−1

,

n = 2, with Ψn be defined as in (1.3). This result is sharp for the function
f(z) given by (2.2).

Proof. It is sufficient to show that∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ 5 1− ρ or equivalently
∞∑

n=2

(
n(n− ρ)

1− ρ

)
an|z|n−1 5 1, (6.4)

for 0 5 ρ < 1 and |z| < r3(α, β, γ, ρ). Proceeding as in Theorem 6.1, we get
the required result. �
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[7] Sălăgean, G.S., Subclasses of univalent functions, in Complex analysis - fifth
Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes
in Math., 1013, Springer, Berlin.

[8] Shanmugam, T.N., Sivasubramanian, S., Kamali, M., On the unified class of
k−uniformly convex functions associated with Sălăgean derivative, J. Approx.
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