A class of uniformly convex functions involving a differential operator

Srikandan Sivasubramanian and Chellakutti Ramachandran

Abstract

The main purpose of this paper is to introduce a new class $\mathcal{U H}(\alpha, \beta, \gamma, \lambda, k)$, of functions which are analytic in the open disc $\Delta=$ $\{z \in \mathbb{C}:|z|<1\}$. We obtain various results including characterization, coefficients estimates, distortion and covering theorems, radii of close-to-convexity, starlikeness and convexity for functions belonging to the class $\mathcal{U H}(\alpha, \beta, \gamma, \lambda, k)$.

Mathematics Subject Classification (2010): 30C45.
Keywords: Analytic function, starlike function, convex function, uniformly convex function, convolution product, Cho-Srivastava operator.

1. Introduction and motivations

Let \mathcal{A} denote the class of functions of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

that are analytic in the open unit disc $\Delta:=\{z \in \mathbb{C}:|z|<1\}$. Let \mathcal{S} be a subclass of \mathcal{A} consisting of univalent functions in Δ. By $\mathcal{K}(\beta)$, and $\mathcal{S}^{*}(\beta)$ respectively, we mean the classes of analytic functions that satisfy the analytic conditions

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta \quad \text { and } \quad \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta, \quad z \in \Delta
$$

for $0 \leqq \beta<1$. In particular, $\mathcal{K}=\mathcal{K}(0)$ and $\mathcal{S}^{*}=\mathcal{S}^{*}(0)$ respectively, are the well-known standard class of convex and starlike functions.

The function $f \in \mathcal{A}$ is said to be close-to-convex of order $\beta, \beta \geqq 0$, with respect to a starlike function g and $\phi \in \mathbb{R}$ if

$$
\left|\arg e^{i \phi} \frac{f(z)}{g(z)}\right| \leqq \beta \frac{\pi}{2}, \quad z \in \Delta
$$

Let $\mathcal{C C}(\beta)$ denote the union of all such close-to-convex functions of order β.

Let \mathcal{T} denote the subclass of \mathcal{S} of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad a_{n} \geqq 0 \tag{1.1}
\end{equation*}
$$

that are analytic in the open unit disk Δ. This class was introduced and studied in [9]. Analogous to the subclasses $\mathcal{S}^{*}(\beta)$ and $\mathcal{K}(\beta)$ of \mathcal{S} respectively, the subclasses of \mathcal{T} denoted by $\mathcal{T}^{*}(\beta)$ and $\mathcal{C}(\beta), 0 \leqq \beta<1$, were also investigated in [9].

The main class which we investigate in this present paper uses the operator known as the Cho-Srivastava operator. In fact, One important concept that is useful in discussing this operator is the convolution or Hadamard product. Here by convolution we mean the following: For f, g analytic with $f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots$ and $g(z)=b_{0}+b_{1} z+b_{2} z^{2}+\cdots$, the (Hadamard) convolution of f and g is defined by $(f * g)(z)=a_{0} b_{0}+a_{1} b_{1} z+a_{2} b_{2} z^{2}+\cdots$. It is natural to use the notation $f(z) * g(z)$ for $(f * g)(z)$ and vice versa frequently.

For functions $f \in \mathcal{A}$, we recall the multiplier transformation $I(\lambda, k)$ introduced by Cho and Srivastava [3] defined as

$$
\begin{equation*}
I(\lambda, k) f(z)=z+\sum_{n=2}^{\infty} \Psi_{n} a_{n} z^{n} \quad(\lambda \geqq 0 ; k \in \mathbb{Z}) \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{n}:=\left(\frac{n+\lambda}{1+\lambda}\right)^{k} \tag{1.3}
\end{equation*}
$$

so that, obviously,

$$
\begin{equation*}
I(\lambda, k)(I(\lambda, m) f(z))=I(\lambda, k+m) f(z) \quad(k, m \in \mathbb{Z}) . \tag{1.4}
\end{equation*}
$$

For $\lambda=1$, the operators $I(\lambda, k)$ were studied by Uralegaddi and Somanatha [12]. The operators $I(\lambda, k)$ are closely related to the multiplier transformations studied by Flett [4] and also to the differential and integral operators investigated by Sălăgean [7]. For a detailed analysis of various convolution operators, which are related to the multiplier transformations of Flett [4], refer the work of Li and Srivastava [5] (as well as the references cited by them). Now we define an unified class of analytic function based on this operator.

Definition 1.1. For $0 \leqq \gamma \leqq 1,0 \leqq \beta<1, \alpha \geqq 0$, and for all $z \in \Delta$, we let the class $\mathcal{U H}(\alpha, \beta, \gamma, \lambda, k)$, consists of functions $f \in \mathcal{T}$ is said to be in the class satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z F^{\prime}(z)}{F(z)}\right\}>\alpha\left|\frac{z F^{\prime}(z)}{F(z)}-1\right|+\beta \tag{1.5}
\end{equation*}
$$

with,

$$
\begin{equation*}
F(z):=\gamma(1+\lambda) I(\lambda, k+1) f(z)+(1-\gamma(1+\lambda)) I(\lambda, k) f(z) \tag{1.6}
\end{equation*}
$$

where $I(\lambda, k) f(z)$ is the Cho-Srivastava operator as defined by (1.2)

The family $\mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \lambda, k)$, unifies various well known classes of analytic univalent functions. We list a few of them. The class $\mathcal{U H}(2,1, \lambda, \beta, 0)$ studied in [1]. Many classes including $\mathcal{U H}(2,1,0, \beta, 0)$ and $\mathcal{U H}(2,1,1, \beta, 0)$ given in [11], are particular cases of this class. Further that, the class $\mathcal{U} \mathcal{H}(2,1, \lambda, 0, \beta, k)$ is the class of k-uniformly convex of order β, was introduced and studied in [10] (also see [2]).

In this present paper, we obtain a characterization, coefficients estimates, distortion theorem and covering theorem, extreme points and radii of close-to-convexity, starlikeness and convexity for functions belonging to the class $\mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \lambda, k)$,

2. Characterization and coefficient estimates

Theorem 2.1. Let $f \in \mathcal{T}$. Then $f \in \mathcal{U H} \mathcal{H}(\alpha, \beta, \gamma, \lambda, k), \quad 0 \leqq \gamma \leqq 1, \quad 0 \leqq \beta<$ 1 and $\alpha \geqq 0$,

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n(\alpha+1)-(\alpha+\beta)](\gamma(n-1)+1) \Psi_{n}\left|a_{n}\right| \leqq 1-\beta . \tag{2.1}
\end{equation*}
$$

This result is sharp for the function

$$
\begin{equation*}
f(z)=z-\frac{1-\beta}{[n(\alpha+1)-(\alpha+\beta)][\gamma(n-1)+1] \Psi_{n}} z^{n} n \geqq 2 . \tag{2.2}
\end{equation*}
$$

Proof. We employ the technique adopted by [2]. We have

$$
f \in \mathcal{U H}(\alpha, \beta, \gamma, \lambda, k)
$$

if and only if the condition (1.5) is satisfied, which is equivalent to

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z F^{\prime}(z)\left(1+k e^{i \theta}\right)-F(z) k e^{i \theta}}{F(z)}\right\}>\beta, \quad-\pi \leqq \theta<\pi . \tag{2.3}
\end{equation*}
$$

Now, letting $G(z)=z F^{\prime}(z)\left(1+k e^{i \theta}\right)-F(z) k e^{i \theta}$, equation (2.3) is equivalent to

$$
|G(z)+(1-\beta) F(z)|>|G(z)-(1+\beta) F(z)|, 0 \leqq \beta<1
$$

where $F(z)$ is as defined in (1.6). Now a simple computation gives

$$
\begin{aligned}
& |G(z)+(1-\beta) F(z)| \\
& \quad \geqq(2-\beta)|z|-\sum_{n=2}^{\infty}(n(\alpha+1)-(\alpha+\beta)+1)(\gamma(n-1)+1) \Psi_{n} a_{n}|z|^{n}
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
& |G(z)-(1+\beta) F(z)| \\
& \quad \leqq \beta|z|+\sum_{n=2}^{\infty}((n(\alpha+1)-(\alpha+\beta)-1))(\gamma(n-1)+1) \Psi_{n} a_{n}|z|^{n} .
\end{aligned}
$$

Therefore,

$$
|G(z)+(1-\beta) F(z)|-|G(z)-(1+\beta) F(z)|
$$

$$
\geqq 2(1-\beta)|z|-2 \sum_{n=2}^{\infty}((n(\alpha+1)-(\alpha+\beta)))(\gamma(n-1)+1) \Psi_{n} a_{n}|z|^{n} \geqq 0
$$

which is equivalent to the result (2.1).
On the other hand, for all $-\pi \leqq \theta<\pi$, we must have

$$
\operatorname{Re}\left\{\frac{z F^{\prime}(z)}{F(z)}\left(1+k e^{i \theta}\right)-k e^{i \theta}\right\}>\beta
$$

Now, choosing the values of z on the positive real axis, where $0 \leqq|z|=r<1$, and using $\operatorname{Re}\left\{-e^{i \theta}\right\} \geqq-\left|e^{i \theta}\right|=-1$, the above inequality can be written as
$\operatorname{Re}\left\{\frac{(1-\beta)-\sum_{n=2}^{\infty}(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n} a_{n} r^{n-1}}{1-\sum_{n=2}^{\infty}(\gamma(n-1)+1) \Psi_{n} a_{n} r^{n-1}}\right\} \geqq 0$.
Setting $r \rightarrow 1^{-}$, we get the desired result.
Many known results can be obtained as particular cases of Theorem 2.1. For details, we refer to $[6,8]$.

By taking $\alpha=0, \gamma=1, \lambda=0$ and $k=1$ in Theorem 2.1, we get the following interesting result given in [9].
Corollary 2.2. [9] If $f \in \mathcal{T}$, then $f \in \mathcal{C}(\beta)$ if and only if

$$
\sum_{n=2}^{\infty} n(n-\beta) a_{n} \leqq 1-\beta
$$

Indeed, since $f \in \mathcal{U H} \mathcal{H}(\alpha, \beta, \gamma, \lambda, k)$, (2.1), we have

$$
\sum_{n=2}^{\infty}(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n} a_{n} \leqq 1-\beta
$$

Hence for all $n \geqq 2$, we have

$$
a_{n} \leqq \frac{1-\beta}{(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}}
$$

whenever $0 \leqq \gamma \leqq 1,0 \leqq \beta<1$ and $\alpha \geqq 0$. Hence we state this important observation as a separate theorem.
Theorem 2.3. If $f \in \mathcal{U} \mathcal{H}(q, s, \lambda, \beta, k)$, then

$$
\begin{equation*}
a_{n} \leqq \frac{1-\beta}{(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}}, n \geqq 2 \tag{2.4}
\end{equation*}
$$

where $0 \leqq \gamma \leqq 1,0 \leqq \beta<1$ and $\alpha \geqq 0$. Equality in (2.4) holds for the function

$$
\begin{equation*}
f(z)=z-\frac{1-\beta}{(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}} \tag{2.5}
\end{equation*}
$$

This theorem also contains many known results for the special values of the parameters. For example, see $[6,8]$.

3. Distortion and covering theorems

Theorem 3.1. If $f \in \mathcal{U H} \mathcal{H}(\alpha, \beta, \gamma, \lambda, k)$, then $f \in \mathcal{T}^{*}(\delta)$, where

$$
\delta=1-\frac{1-\beta}{(2(\alpha+1)-(\alpha+\beta))(\gamma+1) \Psi_{2}-(1-\beta)} .
$$

This result is sharp with the extremal function being

$$
f(z)=z-\frac{1-\beta}{(2(\alpha+1)-(\alpha+\beta))(\gamma+1) \Psi_{2}} z^{2}
$$

Proof. It is sufficient to show that (2.1) implies $\sum_{n=2}^{\infty}(n-\delta) a_{n} \leqq 1-\delta[9]$, that is,

$$
\begin{equation*}
\frac{n-\delta}{1-\delta} \leqq \frac{(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}}{1-\beta}, n \geqq 2 \tag{3.1}
\end{equation*}
$$

Since, for $n \geqq 2$, (3.1) is equivalent to

$$
\delta \leqq 1-\frac{(n-1)(1-\beta)}{(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}-(1-\beta)}=\Phi(n)
$$

and $\Phi(n) \leqq \Phi(2),(3.1)$ holds true for any $0 \leqq \gamma \leqq 1,0 \leqq \beta<1$ and $\alpha \geqq 0$. This completes the proof of the Theorem 3.1.

As in the previous cases we note this result has many special cases. If we take $\alpha_{1}=1, \alpha_{2}=1, \beta_{1}=1, q=2, s=1, \lambda=1$ and $k=0$ in Theorem 3.1 , then we have the following result of [9].

Corollary 3.2. [9] If $f \in \mathcal{C}(\beta)$, then $f \in \mathcal{T}^{*}\left(\frac{2}{3-\beta}\right)$. The result is sharp for the extremal function

$$
f(z)=z-\frac{1-\beta}{2(2-\beta)} z^{2}
$$

Remark. Since distortion theorem and covering theorem are available for the class $\mathcal{T}^{*}(\beta)$ [9], we can also obtain the corresponding results for the class $\mathcal{U H}(\alpha, \beta, \gamma, \lambda, k)$, from the respective results of $\mathcal{T}^{*}(\beta)$ by using Theorem 3.1, and we state them without proof.

Theorem 3.3. Let Ψ_{n} be defined as in (1.3). Then, for $f \in \mathcal{U H}(\alpha, \beta, \gamma, \lambda, k)$, with $z=r e^{i \theta} \in \Delta$, we have

$$
\begin{equation*}
r-B(\alpha, \beta, \gamma, \lambda) r^{2} \leqq|f(z)| \leqq r+B(\alpha, \beta, \gamma, \lambda) r^{2} \tag{3.2}
\end{equation*}
$$

where,

$$
B(\alpha, \beta, \gamma, \lambda):=\frac{1-\beta}{(2(\alpha+1)-(\alpha+\beta))(\gamma+1) \Psi_{2}}
$$

Theorem 3.4. If $f \in \mathcal{U H} \mathcal{H}(\alpha, \beta, \gamma, \lambda, k)$, then for $|z|=r<1$

$$
\begin{equation*}
1-B(\alpha, \beta, \gamma, \lambda) r \leqq\left|f^{\prime}(z)\right| \leqq 1+B(\alpha, \beta, \gamma, \lambda) r \tag{3.3}
\end{equation*}
$$

where $B(\alpha, \beta, \gamma, \lambda)$ as in Theorem 3.3.

Note that in Theorem 3.3 and Theorem 3.4 equality holds for the function

$$
f(z)=z-\frac{1-\beta}{(2(\alpha+1)-(\alpha+\beta))(\gamma+1) \Psi_{2}} z^{2}
$$

4. Extreme points of the $\operatorname{class} \mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \lambda, k)$,

Theorem 4.1. Let $f_{1}(z)=z$ and

$$
f_{n}(z)=z-\frac{1-\beta}{(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}} z^{n}, \quad n \geqq 2
$$

and Ψ_{n} be as defined in (1.3). Then $f \in \mathcal{U H}(\alpha, \beta, \gamma, \lambda, k)$, if and only if it can be represented in the form

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} \mu_{n} f_{n}(z), \quad \mu_{n} \geqq 0, \quad \sum_{n=1}^{\infty} \mu_{n}=1 \tag{4.1}
\end{equation*}
$$

Proof. Suppose $f(z)$ can be written as in (4.1). Then

$$
f(z)=z-\sum_{n=2}^{\infty} \mu_{n}\left\{\frac{1-\beta}{(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}}\right\} z^{n}
$$

Now,
$\sum_{n=2}^{\infty} \mu_{n} \frac{(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}(1-\beta)}{(1-\beta)(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}}=\sum_{n=2}^{\infty} \mu_{n}=1-\mu_{1} \leqq 1$.
Thus $f \in \mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \lambda, k)$. Conversely, let us have $f \in \mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \lambda, k)$. Then by using (2.4), we may write

$$
\mu_{n}=\frac{(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}}{1-\beta} a_{n}, \quad n \geqq 2
$$

and $\mu_{1}=1-\sum_{n=2}^{\infty} \mu_{n}$. Then $f(z)=\sum_{n=1}^{\infty} \mu_{n} f_{n}(z)$, with $f_{n}(z)$ is as in the Theorem.

Corollary 4.2. The extreme points of $f \in \mathcal{U H}(\alpha, \beta, \gamma, \lambda, k)$, are the functions $f_{1}(z)=z$ and

$$
f_{n}(z)=z-\frac{1-\beta}{(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}} z^{n}, \quad n \geqq 2
$$

Remark. As in earlier theorems, we can deduce known results for various other classes and we omit details.

Theorem 4.3. The class $\mathcal{U H}(\alpha, \beta, \gamma, \lambda, k)$ is a convex set.

Proof. Let the function

$$
\begin{equation*}
f_{j}(z)=\sum_{n=2}^{\infty} a_{n, j} z^{n}, \quad a_{n, j} \geqq 0, \quad j=1,2, \tag{4.2}
\end{equation*}
$$

be the class $\mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \lambda, k)$. It sufficient to show that the function $g(z)$ defined by

$$
g(z)=\mu f_{1}(z)+(1-\mu) f_{2}(z), \quad 0 \leqq \mu \leqq 1
$$

is in the class $\mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \lambda, k)$. Since

$$
g(z)=z-\sum_{n=2}^{\infty}\left[\mu a_{n, 1}+(1-\mu) a_{n, 2}\right] z^{n}
$$

an easy computation with the aid of Theorem 2.1 gives,

$$
\begin{gathered}
\sum_{n=2}^{\infty}(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}\left[\mu a_{n, 1}+(1-\mu) a_{n, 2}\right] \\
+(1-\mu) \sum_{n=2}^{\infty}(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n} \\
\leqq \mu(1-\beta)+(1-\mu)(1-\beta) \leqq 1-\beta
\end{gathered}
$$

which implies that $g \in \mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \lambda, k)$. Hence $\mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \lambda, k)$ is convex.

5. Modified Hadamard products

For functions of the form (4.2), we define the modified Hadamard product as

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z-\sum_{n=2}^{\infty} a_{n, 1} a_{n, 2} z^{n} . \tag{5.1}
\end{equation*}
$$

Theorem 5.1. If $f_{j}(z) \in \mathcal{U} \mathcal{H}(q, s, \lambda, \beta, k), j=1,2$, then

$$
\left(f_{1} * f_{2}\right)(z) \in \mathcal{U H}(q, s, \lambda, \beta, k, \xi),
$$

where

$$
\xi=\frac{(2-\beta)(2(\alpha+1)-(\alpha+\beta))(\gamma+1) \Psi_{2}-2(1-\beta)^{2}}{(2-\beta)(2(\alpha+1)-(\alpha+\beta))(\gamma+1) \Psi_{2}-(1-\beta)^{2}},
$$

with Ψ_{n} be defined as in (1.3).
Proof. Since $f_{j}(z) \in \mathcal{U} \mathcal{H}(q, s, \lambda, \beta, k), j=1,2$, we have

$$
\sum_{n=2}^{\infty}(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n} a_{n, j} \leqq 1-\beta, \quad j=1,2 .
$$

The Cauchy-Schwartz inequality leads to

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n} a_{n, j}}{1-\beta} \sqrt{a_{n, 1} a_{n, 2}} \leqq 1 \tag{5.2}
\end{equation*}
$$

Note that we need to find the largest ξ such that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(n(k+1)-(k+\xi))(\gamma(n-1)+1) \Psi_{n} a_{n, j}}{1-\xi} a_{n, 1} a_{n, 2} \leqq 1 \tag{5.3}
\end{equation*}
$$

Therefore, in view of (5.2) and (5.3), whenever

$$
\frac{n-\xi}{1-\xi} \sqrt{a_{n, 1} a_{n, 2}} \leqq \frac{n-\beta}{1-\beta}, n \geqq 2
$$

holds, then (5.3) is satisfied. We have, from (5.2),

$$
\begin{equation*}
\sqrt{a_{n, 1} a_{n, 2}} \leqq \frac{1-\beta}{(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}}, n \geqq 2 \tag{5.4}
\end{equation*}
$$

Thus, if

$$
\left(\frac{n-\xi}{1-\xi}\right)\left[\frac{1-\beta}{(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}}\right] \leqq \frac{n-\beta}{1-\beta}, n \geqq 2,
$$

or, if

$$
\xi \leqq \frac{(n-\beta)(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}-n(1-\beta)^{2}}{(n-\beta)(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}-(1-\beta)^{2}}, n \geqq 2
$$

then (5.2) is satisfied. Note that the right hand side of the above expression is an increasing function on n. Hence, setting $n=2$ in the above inequality gives the required result. Finally, by taking the function

$$
f(z)=z-\frac{1-\beta}{(2-\beta)(2(\alpha+1)-(\alpha+\beta))(\gamma+1) \Psi_{2}} z^{2}
$$

we see that the result is sharp.

6. Radii of close-to-convexity, starlikeness and convexity

Theorem 6.1. Let the function $f \in \mathcal{T}$ be in the class $\mathcal{U} \mathcal{H}(q, s, \lambda, \beta, k)$. Then $f(z)$ is close-to-convex of order $\rho, 0 \leqq \rho<1$ in $|z|<r_{1}(\alpha, \beta, \gamma, \rho)$, where

$$
r_{1}(\alpha, \beta, \gamma, \rho)=\inf _{n}\left[\frac{(1-\rho)(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}}{n(1-\beta)}\right]^{\frac{1}{n-1}}
$$

$n \geqq 2$, with Ψ_{n} be defined as in (1.3). This result is sharp for the function $f(z)$ given by (2.2).

Proof. It is sufficient to show that $\left|f^{\prime}(z)-1\right| \leqq 1-\rho, 0 \leqq \rho<1$, for $|z|<r_{1}(\alpha, \beta, \gamma, \rho)$, or equivalently

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n}{1-\rho}\right) a_{n}|z|^{n-1} \leqq 1 \tag{6.1}
\end{equation*}
$$

By Theorem 2.1, (6.1) will be true if

$$
\left(\frac{n}{1-\rho}\right)|z|^{n-1} \leqq \frac{(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}}{1-\beta}
$$

or, if

$$
\begin{equation*}
|z| \leqq\left[\frac{(1-\rho)(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}}{n(1-\beta)}\right]^{\frac{1}{n-1}} \tag{6.2}
\end{equation*}
$$

The theorem follows easily from (6.2).
Theorem 6.2. Let the function $f(z)$ defined by (1.1) be in the class $\mathcal{U H}(\alpha, \beta, \gamma, \lambda, k)$. Then $f(z)$ is starlike of order $\rho, 0 \leqq \rho<1$ in $|z|<$ $r_{2}(\alpha, \beta, \gamma, \rho)$, where

$$
r_{2}(\alpha, \beta, \gamma, \rho)=\inf _{n}\left[\frac{(1-\rho)(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}}{(n-\rho)(1-\beta)}\right]^{\frac{1}{n-1}}
$$

$n \geqq 2$, with Ψ_{n} be defined as in (1.3). This result is sharp for the function $f(z)$ given by (2.2).

Proof. It is sufficient to show that

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leqq 1-\rho, \text { or equivalently } \quad \sum_{n=2}^{\infty}\left(\frac{n-\rho}{1-\rho}\right) a_{n}|z|^{n-1} \leqq 1 \tag{6.3}
\end{equation*}
$$

for $0 \leqq \rho<1$, and $|z|<r_{2}(\alpha, \beta, \gamma, \rho)$. Proceeding as in Theorem 6.1, with the use of Theorem 2.1, we get the required result.

Theorem 6.3. Let the function $f(z)$ defined by (1.1) be in the class $\mathcal{U H}(\alpha, \beta, \gamma, \lambda, k)$. Then $f(z)$ is convex of order $\rho, 0 \leqq \rho<1$ in $|z|<$ $r_{3}(\alpha, \beta, \gamma, \rho)$, where

$$
r_{3}(\alpha, \beta, \gamma, \rho)=\inf _{n}\left[\frac{(1-\rho)(n(\alpha+1)-(\alpha+\beta))(\gamma(n-1)+1) \Psi_{n}}{n(n-\rho)(1-\beta)}\right]^{\frac{1}{n-1}}
$$

$n \geqq 2$, with Ψ_{n} be defined as in (1.3). This result is sharp for the function $f(z)$ given by (2.2).

Proof. It is sufficient to show that

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leqq 1-\rho \quad \text { or equivalently } \quad \sum_{n=2}^{\infty}\left(\frac{n(n-\rho)}{1-\rho}\right) a_{n}|z|^{n-1} \leqq 1 \tag{6.4}
\end{equation*}
$$

for $0 \leqq \rho<1$ and $|z|<r_{3}(\alpha, \beta, \gamma, \rho)$. Proceeding as in Theorem 6.1, we get the required result.

References

[1] Altintas, O., On a subclass of certain starlike functions with negative coefficients, Math. Japon., 36(1991), no. 3, 1-7.
[2] Aqlan, E., Jahangiri, J.M., Kulkarni, S.R., Classes of $k-$ uniformly convex and starlike functions, Tamkang J. Math., 35(2004), no. 3, 1-7.
[3] Cho, N.E., Srivastava, H.M., Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, 37(2003), no. 1-2, 39-49.
[4] Flett, T.M., The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl., 38(1972), 746-765.
[5] Li, J.-L., Srivastava, H.M., Some inclusion properties of the class $\mathcal{P}_{\alpha}(\beta)$, Integral Transform. Spec. Funct., 8(1999), no. 1-2, 57-64.
[6] Gangadharan, A., Shanmugam, T.N., Srivastava, H.M., Generalized hypergeometric functions associated with k-uniformly convex functions, Comput. Math. Appl., 44(2002), 1515-1526.
[7] Sălăgean, G.S., Subclasses of univalent functions, in Complex analysis - fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin.
[8] Shanmugam, T.N., Sivasubramanian, S., Kamali, M., On the unified class of k-uniformly convex functions associated with Sălăgean derivative, J. Approx. Theory and Appl., 1(2)(2005), 141-155.
[9] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.
[10] Srivastava, H.M., Owa, S., Chatterjea, S.K., A note on certain classes of starlike functions, Rend. Sem. Mat. Univ Padova, 77(1987), 115-124.
[11] Srivastava, H.M., Saigo, M., Owa, S., A class of distortion theorems involving certain operator of fractional calculus, J. Math. Anal. Appl., 131(1988), 412420.
[12] Uralegaddi, B.A., Somanatha, C., Certain classes of univalent functions, in Current topics in analytic function theory, (Edited by H.M. Srivastava and S.Owa), 371-374, World Scientific, Singapore, 1992.

Srikandan Sivasubramanian
Department of Mathematics
University College of Engineering
Anna University-Chennai
Saram-604 307, India
e-mail: sivasaisastha@rediffmail.com
Chellakutti Ramachandran
Department of Mathematics
University College of Engineering
Anna University-Chennai
Villupuram, India
e-mail: crjsp2004@yahoo.com

