# Coefficient bounds for certain classes of multivalent functions 

Murat Çağlar, Halit Orhan and Erhan Deniz


#### Abstract

In this paper, sharp upper bounds for $\left|a_{p+2}-\eta a_{p+1}^{2}\right|$ and $\left|a_{p+3}\right|$ are derived for a class of Mocanu $\alpha$-convex $p$-valent functions defined by an extended linear multiplier differential operator (LMDO) $\mathcal{J}_{p}^{\delta}(\lambda, \mu, l)$.


Mathematics Subject Classification (2010): Primary 30C45, 30C50, Secondary 30C80.

Keywords: Analytic functions, starlike functions, convex functions, $p$-valent functions, subordination, convolution (or Hadamard product).

## 1. Introduction

Let $\mathcal{A}_{p}$ be the class of all functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit $\operatorname{disk} \mathcal{U}:=\{z:|z|<1\}$ and let $\mathcal{A}:=\mathcal{A}_{1}$. For $f(z)$ given by (1.1) and $g(z)$ given by $g(z)=z^{p}+\sum_{n=p+1}^{\infty} b_{n} z^{n}$, their convolution (or Hadamard product), denoted by $f * g$, is defined by

$$
(f * g)(z):=z^{p}+\sum_{n=p+1}^{\infty} a_{n} b_{n} z^{n} .
$$

The function $f(z)$ is subordinate to the function $g(z)$, written $f(z) \prec$ $g(z)$, provided there exists analytic function $w(z)$ defined on $\mathcal{U}$ with $w(0)=0$ and $|w(z)|<1$ such that $f(z)=g(w(z))$. Let $\varphi$ be an analytic function with positive real part in the unit $\operatorname{disk} \mathcal{U}$ with $\varphi(0)=1$ and $\varphi^{\prime}(0)>0$ that maps $\mathcal{U}$ onto a region which is starlike with respect to 1 and symmetric with respect
to the real axis. R. M. Ali et al. [1] defined and studied the class $\mathcal{S}_{b, p}^{*}(\varphi)$ consisting of functions in $f \in \mathcal{A}_{p}$ for which

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{1}{p} \frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \varphi(z) \quad(z \in \mathcal{U}, \quad b \in \mathbb{C} \backslash\{0\}) \tag{1.2}
\end{equation*}
$$

and the class $\mathcal{C}_{b, p}(\varphi)$ of all functions in $f \in \mathcal{A}_{p}$ for which

$$
\begin{equation*}
1-\frac{1}{b}+\frac{1}{b p}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \varphi(z) \quad(z \in \mathcal{U}, \quad b \in \mathbb{C} \backslash\{0\}) \tag{1.3}
\end{equation*}
$$

R. M. Ali et al. [1] also defined and studied the class $\mathcal{R}_{b, p}(\varphi)$ to be the class of all functions in $f \in \mathcal{A}_{p}$ for which

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{f^{\prime}(z)}{p z^{p-1}}-1\right) \prec \varphi(z) \quad(z \in \mathcal{U}, \quad b \in \mathbb{C} \backslash\{0\}) \tag{1.4}
\end{equation*}
$$

Note that $\mathcal{S}_{1,1}^{*}(\varphi)=\mathcal{S}^{*}(\varphi)$ and $\mathcal{C}_{1,1}(\varphi)=\mathcal{C}(\varphi)$, the classes introduced and studied by Ma and Minda [8]. The familiar class $\mathcal{S}^{*}(\alpha)$ of starlike functions of order $\alpha$ and the class $\mathcal{C}(\alpha)$ of convex functions of order $\alpha$, $0 \leq \alpha<1$ are the special case of $\mathcal{S}_{1,1}^{*}(\varphi)$ and $\mathcal{C}_{1,1}(\varphi)$, respectively, when $\varphi(z)=(1+(1-2 \alpha) z) /(1-z)$.

Owa [9] introduced and studied the class $\mathcal{H}_{p}(A, B, \alpha, \beta)$ of all functions in $f \in \mathcal{A}_{p}$ satisfying

$$
\begin{equation*}
(1-\beta)\left(\frac{f(z)}{z^{p}}\right)^{\alpha}+\beta \frac{z f^{\prime}(z)}{p f(z)}\left(\frac{f(z)}{z^{p}}\right)^{\alpha} \prec \frac{1+A z}{1+B z} \tag{1.5}
\end{equation*}
$$

where $z \in \mathcal{U},-1 \leq B<A \leq 1,0 \leq \beta \leq 1, \alpha \geq 0$.
We note that $\mathcal{H}_{1}(A, B, \alpha, \beta)$ is a subclass of Bazilevic functions [4].
A function $f \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{R}_{(b, p, \alpha, \beta)}(\varphi)$ if

$$
\begin{equation*}
1+\frac{1}{b}\left\{(1-\beta)\left(\frac{f(z)}{z^{p}}\right)^{\alpha}+\beta \frac{z f^{\prime}(z)}{p f(z)}\left(\frac{f(z)}{z^{p}}\right)^{\alpha}-1\right\} \prec \varphi(z) \tag{1.6}
\end{equation*}
$$

$(0 \leq \beta \leq 1, \alpha \geq 0)$. The class $\mathcal{R}_{(b, p, \alpha, \beta)}(\varphi)$ was defined and studied by Ramachandran et al. [12].

A class of functions which unifies the classes $\mathcal{S}_{b, p}^{*}(\varphi)$ and $\mathcal{C}_{b, p}(\varphi)$ was introduced by T. N. Shanmugam, S. Owa, C. Ramachandran, S. Sivasubramanian and Y. Nakamura in [14]. They defined this class in the following way.

Let $\varphi(z)$ be a univalent starlike function with respect to 1 which maps the open unit disk $\mathcal{U}$ onto a region in the right half plane and is symmetric with respect to real axis, $\varphi(0)=1$ and $\varphi^{\prime}(0)>0$. A function $f \in \mathcal{A}_{p}$ is in the class $\mathcal{M}_{(b, p, \alpha, \lambda)}(\varphi)$ if

$$
\begin{equation*}
1+\frac{1}{b}\left[\frac{1}{p}\left((1-\alpha) \frac{z F^{\prime}(z)}{F(z)}+\alpha\left(1+\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}\right)\right)-1\right] \prec \varphi(z) \tag{1.7}
\end{equation*}
$$

$(0 \leq \alpha \leq 1)$, where

$$
F(z):=(1-\lambda) f(z)+\lambda z f^{\prime}(z)
$$

T. N. Shangumugam et al. [14] obtained certain coefficient inequalities for function $f \in \mathcal{A}_{p}$ which are in the class $\mathcal{M}_{(b, p, \alpha, \lambda)}(\varphi)$.

For a function $f$ in $\mathcal{A}_{p}$, the linear multiplier differential operator (LMDO) $\mathcal{J}_{p}^{\delta}(\lambda, \mu, l) f: \mathcal{A}_{p} \rightarrow \mathcal{A}_{p}$ was defined by the authors in [5] in the following way.

Definition 1.1. Let $f \in \mathcal{A}_{p}$. For the parameters $\delta, \lambda, \mu, l \in \mathbb{R} ; \lambda \geq \mu \geq 0$ and $\delta, l \geq 0$ the LMDO $\mathcal{J}_{p}^{\delta}(\lambda, \mu, l)$ on $\mathcal{A}_{p}$ is defined by

$$
\begin{gather*}
\mathcal{J}_{p}^{0}(\lambda, \mu, l) f(z)=f(z)  \tag{1.8}\\
(p+l) \mathcal{J}_{p}^{1}(\lambda, \mu, l) f(z) \\
=\lambda \mu z^{2} f^{\prime \prime}(z)+(\lambda-\mu+(1-p) \lambda \mu) z f^{\prime}(z)+(p(1-\lambda+\mu)+l) f(z) \\
(p+l) \mathcal{J}_{p}^{2}(\lambda, \mu, l) f(z) \\
=\lambda \mu z^{2}\left[\mathcal{J}_{p}^{1}(\lambda, \mu, l) f(z)\right]^{\prime \prime}+(\lambda-\mu+(1-p) \lambda \mu) z\left[\mathcal{J}_{p}^{1}(\lambda, \mu, l) f(z)\right]^{\prime} \\
+(p(1-\lambda+\mu)+l) \mathcal{J}_{p}^{1}(\lambda, \mu, l) f(z) \\
\mathcal{J}_{p}^{\delta_{1}}(\lambda, \mu, l)\left(\mathcal{J}_{p}^{\delta_{2}}(\lambda, \mu, l) f(z)\right)=\mathcal{J}_{p}^{\delta_{2}}(\lambda, \mu, l)\left(\mathcal{J}_{p}^{\delta_{1}}(\lambda, \mu, l) f(z)\right), \quad \delta_{1}, \delta_{2} \geq 0 \\
\text { for } z \in \mathcal{U} \text { and } p \in \mathbb{N}:=\{1,2, \ldots\} \text {. }
\end{gather*}
$$

If $f$ is given by (1.1) then from the definition of the $\operatorname{LMDO} \mathcal{J}_{p}^{\delta}(\lambda, \mu, l)$, we can easily see that

$$
\mathcal{J}_{p}^{\delta}(\lambda, \mu, l) f(z)=z^{p}+\sum_{k=p+1}^{\infty} \Phi_{p}^{k}(\delta, \lambda, \mu, l) a_{k} z^{k}
$$

where

$$
\Phi_{p}^{k}(\delta, \lambda, \mu, l)=\left[\frac{(k-p)(\lambda \mu k+\lambda-\mu)+p+l}{p+l}\right]^{\delta}
$$

When $p=1, l=0$ and $\delta=m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ we get Deniz-Orhan [6] (Also for earlier $0 \leq \mu \leq \lambda \leq 1$ Raducanu-Orhan [11]) differential operator, when $p=1, l=0=\mu$ and $\delta=m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ we obtain the differential operator defined by Al-Oboudi [2] and when $p=1, l=0=\mu, \lambda=1$ and $\delta=m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ we obtain the differential operator defined by Sălăgean [13]. We note that by specializing the parameters $\delta, \lambda, \mu, l$ and $p$, the $L M D O \mathcal{J}_{p}^{\delta}(\lambda, \mu, l)$ reduces to other several well-known operators of analytic functions. Detailed information can be found in [5].

Now, by making use of the operator $\mathcal{J}_{p}^{\delta}(\lambda, \mu, l)$, we define a new subclass of functions belonging to the class $\mathcal{A}_{p}$.

Definition 1.2. Let $\varphi(z)$ be a univalent starlike function with respect to 1 which maps the open unit disk $\mathcal{U}$ onto a region in the right half plane and is symmetric with respect to real axis, $\varphi(0)=1$ and $\varphi^{\prime}(0)>0$. A function $f \in \mathcal{A}_{p}$ is in the class $\mathcal{M}_{(b, p, \alpha, \lambda, \mu, l, \nu)}^{\delta}(\varphi)$ if

$$
\begin{equation*}
1+\frac{1}{b}\left[\frac{1}{p}\left((1-\alpha) \frac{z\left(F_{\nu, \delta}(z)\right)^{\prime}}{F_{\nu, \delta}(z)}+\alpha\left(1+\frac{z\left(F_{\nu, \delta}(z)\right)^{\prime \prime}}{\left(F_{\nu, \delta}(z)\right)^{\prime}}\right)\right)-1\right] \prec \varphi(z) \tag{1.9}
\end{equation*}
$$

where $0 \leq \alpha \leq 1 ; \delta, \lambda, \mu, l \in \mathbb{R} ; \delta, l \geq 0 ; 0 \leq \mu \leq \lambda ; p \in \mathbb{N}$, and

$$
F_{\nu, \delta}(z)=(1-\nu) J_{p}^{\delta}(\lambda, \mu, l) f(z)+\nu J_{p}^{\delta+1}(\lambda, \mu, l) f(z) \quad(0 \leq \nu \leq 1)
$$

Note that the class $\mathcal{M}_{(b, p, \alpha, \lambda, \mu, l, \nu)}^{\delta}(\varphi)$ reduces to the classes

$$
\begin{aligned}
\mathcal{M}_{(1,1,1,0,0,0,0)}^{1}(\varphi) & \equiv \mathcal{C}(\varphi), \\
\mathcal{M}_{(1,1,0,0,0,0,0)}^{1}(\varphi) & \equiv \mathcal{S}^{*}(\varphi)
\end{aligned}
$$

which were introduced and studied by Ma and Minda [8]. Also,

$$
\begin{aligned}
\mathcal{M}_{(1, p, 0,0,0,0,0)}^{1}(\varphi) & \equiv \mathcal{S}_{p}^{*}(\varphi), \\
\mathcal{M}_{(1, p, 1,0,0,0,0)}^{1}(\varphi) & \equiv \mathcal{C}_{p}(\varphi), \\
\mathcal{M}_{(b, p, 0,0,0,0,0)}^{1}(\varphi) & \equiv \mathcal{S}_{b, p}^{*}(\varphi)
\end{aligned}
$$

and $\mathcal{M}_{(b, p, 1,0,0,0,0)}^{1}(\varphi) \equiv \mathcal{C}_{b, p}(\varphi)$ were introduced and studied by R. M. Ali et al. [1]. Also recently for $\delta \in \mathbb{N}_{0}$ Altuntaş and Kamali [3] were introduced and studied the class $\mathcal{M}_{(b, p, \alpha, 1,0,0, \nu)}^{\delta}(\varphi)=\mathcal{M}_{(b, p, \alpha, \nu, \delta)}(\varphi)$

In this paper, we obtain Fekete-Szegö like inequalities and bounds for the coefficient $a_{p+3}$ for the class $\mathcal{M}_{(1, p, \alpha, \lambda, \mu, l, \nu)}^{\delta}(\varphi)$. These results can be extended to other classes defined earlier.

Let $\Omega$ be the class of analytic functions of the form

$$
w(z)=w_{1} z+w_{2} z^{2}+w_{3} z^{3}+\ldots
$$

in the unit disk $\mathcal{U}$ satisfying the condition $|w(z)|<1$.
We need the following lemmas to prove our main results.
Lemma 1.3. [1] If $w \in \Omega$, then

$$
\left|w_{2}-t w_{1}^{2}\right| \leq\left\{\begin{array}{ccc}
-t & \text { if } & t \leq-1  \tag{1.10}\\
1 & \text { if } & -1 \leq t \leq 1 \\
t & \text { if } & t \geq 1
\end{array}\right.
$$

When $t<-1$ or $t>1$, the equality holds if and only if $w(z)=z$ or one of its rotations.

If $-1<t<1$, then equality holds if and only if $w(z)=z^{2}$ or one of its rotations.

Equality holds for $t=-1$ if and only if $w(z)=\frac{z(z+\lambda)}{1+\lambda z} \quad(0 \leq \lambda \leq 1)$ or one of its rotations, while for $t=1$ the equality holds if and only if $w(z)=$ $-\frac{z(z+\lambda)}{1+\lambda z} \quad(0 \leq \lambda \leq 1)$ or one of its rotations.

Although the above upper bound is sharp, it can be improved as follows when $-1<t<1$ :

$$
\begin{equation*}
\left|w_{2}-t w_{1}^{2}\right|+(1+t)\left|w_{1}\right|^{2} \leq 1 \quad(-1<t \leq 0) \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|w_{2}-t w_{1}^{2}\right|+(1-t)\left|w_{1}\right|^{2} \leq 1 \quad(0<t<1) \tag{1.12}
\end{equation*}
$$

Lemma 1.4. [7] If $w \in \Omega$, then for any complex number $t$

$$
\begin{equation*}
\left|w_{2}-t w_{1}^{2}\right| \leq \max \{1 ;|t|\} \tag{1.13}
\end{equation*}
$$

The result is sharp for the functions $w(z)=z$ or $w(z)=z^{2}$.
Lemma 1.5. [10] If $w \in \Omega$, then for any real numbers $q_{1}$ and $q_{2}$ the following sharp estimate holds:

$$
\begin{equation*}
\left|w_{3}+q_{1} w_{1} w_{2}+q_{2} w_{1}^{3}\right| \leq H\left(q_{1}, q_{2}\right) \tag{1.14}
\end{equation*}
$$

where

$$
=\left\{\begin{array}{ccc}
1 & \text { for } & \left(q_{1}, q_{2}\right) \in D_{1} \cup D_{2}, \\
\left|q_{2}\right| & \text { for } & \left(q_{1}, q_{2}\right) \in \bigcup_{k=3}^{7} D_{k}, \\
\frac{2}{3}\left(\left|q_{1}\right|+1\right)\left(\frac{\left|q_{1}\right|+1}{\left.3| | q_{1}+1+q_{2}\right)}\right)^{\frac{1}{2}} & \text { for } & \left(q_{1}, q_{2}\right) \in D_{8} \cup D_{9}, \\
\frac{q_{2}}{3}\left(\frac{q_{1}-4}{\left.q_{1}^{2}-4 q_{2}\right)\left(\frac{q_{2}^{2}-4}{3\left(q_{2}-1\right)}\right)^{\frac{1}{2}}}\right. & \text { for } & \left(q_{1}, q_{2}\right) \in D_{10} \cup D_{11} \backslash\{ \pm 2,1\}, \\
\frac{2}{3}\left(\left|q_{1}\right|-1\right)\left(\frac{\left|q_{1}\right|-1}{3\left(\left|q_{1}\right|-1-q_{2}\right.}\right)^{\frac{1}{2}} & \text { for } & \left(q_{1}, q_{2}\right) \in D_{12 .} .
\end{array}\right.
$$

The extremal functions, up to rotations, are of the form

$$
\begin{aligned}
& w(z)=z^{3}, w(z)=z, w(z)=w_{0}(z)=\frac{\left(z\left[(1-\lambda) \varepsilon_{2}+\lambda \varepsilon_{1}\right]-\varepsilon_{1} \varepsilon_{2} z\right)}{1-\left[(1-\lambda) \varepsilon_{1}+\lambda \varepsilon_{2}\right] z} \\
& w(z)=w_{1}(z)=\frac{z\left(t_{1}-z\right)}{1-t_{1} z}, w(z)=w_{2}(z)=\frac{z\left(t_{2}+z\right)}{1+t_{2} z} \\
& \left|\varepsilon_{1}\right|=\left|\varepsilon_{2}\right|=1, \varepsilon_{1}=t_{0}-e^{\frac{-i \theta_{0}}{2}}(a \pm b), \varepsilon_{2}=-e^{\frac{-i \theta_{0}}{2}}(i a \pm b) \\
& a=t_{0} \cos \frac{\theta_{0}}{2}, b=\sqrt{1-t_{0}^{2} \sin ^{2} \frac{\theta_{0}}{2}}, \lambda=\frac{b \pm a}{2 b} \\
& t_{0}=\left[\frac{2 q_{2}\left(q_{1}^{2}+2\right)-3 q_{1}^{2}}{3\left(q_{2}-1\right)\left(q_{1}^{2}+4 q_{2}\right)}\right], t_{1}=\left(\frac{\left|q_{1}\right|+1}{3\left(\left|q_{1}\right|+1+q_{2}\right)}\right)^{\frac{1}{2}} \\
& t_{2}=\left(\frac{\left|q_{1}\right|-1}{3\left(\left|q_{1}\right|-1-q_{2}\right)}\right)^{\frac{1}{2}}, \cos \frac{\theta_{0}}{2}=\frac{q_{1}}{2}\left[\frac{q_{2}\left(q_{1}^{2}+8\right)-2\left(q_{1}^{2}+2\right)}{2 q_{2}\left(q_{1}^{2}+2\right)-3 q_{1}^{2}}\right]
\end{aligned}
$$

The sets $D_{k}, k=1,2, \ldots, 12$, are defined as follows:

$$
\begin{gathered}
D_{1}=\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \leq \frac{1}{2}, \quad\left|q_{2}\right| \leq 1\right\} \\
D_{2}=\left\{\left(q_{1}, q_{2}\right): \frac{1}{2} \leq\left|q_{1}\right| \leq 2, \quad \frac{4}{27} \leq\left(\left|q_{1}\right|+1\right)^{3}-\left(\left|q_{1}\right|+1\right) \leq q_{2} \leq 1\right\} \\
D_{3}=\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \leq \frac{1}{2}, \quad q_{2} \leq-1\right\} \\
D_{4}= \\
\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \geq \frac{1}{2}, \quad q_{2} \leq-\frac{2}{3}\left(\left|q_{1}\right|+1\right)\right\} \\
D_{5}=\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \leq 2, \quad q_{2} \geq 1\right\}
\end{gathered}
$$

$$
\begin{gathered}
D_{6}=\left\{\left(q_{1}, q_{2}\right): 2 \leq\left|q_{1}\right| \leq 4, \quad q_{2} \geq \frac{1}{12}\left(q_{1}^{2}+8\right)\right\}, \\
D_{7}=\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \geq 4, \quad q_{2} \geq \frac{2}{3}\left(\left|q_{1}\right|-1\right)\right\}, \\
D_{8}=\left\{\left(q_{1}, q_{2}\right): \frac{1}{2} \leq\left|q_{1}\right| \leq 2,-\frac{2}{3}\left(\left|q_{1}\right|+1\right) \leq q_{2} \leq \frac{4}{27}\left(\left|q_{1}\right|+1\right)^{3}-\left(\left|q_{1}\right|+1\right)\right\}, \\
D_{9}=\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \geq 2, \quad-\frac{2}{3}\left(\left|q_{1}\right|+1\right) \leq q_{2} \leq \frac{2\left|q_{1}\right|\left(\left|q_{1}\right|+1\right)}{q_{1}^{2}+2\left|q_{1}\right|+4}\right\}, \\
D_{10}=\left\{\left(q_{1}, q_{2}\right): 2 \leq\left|q_{1}\right| \leq 4, \frac{2\left|q_{1}\right|\left(\left|q_{1}\right|+1\right)}{q_{1}^{2}+2\left|q_{1}\right|+4} \leq q_{2} \leq \frac{1}{12}\left(q_{1}^{2}+8\right)\right\}, \\
D_{11}=\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \geq 4, \quad \frac{2\left|q_{1}\right|\left(\left|q_{1}\right|+1\right)}{q_{1}^{2}+2\left|q_{1}\right|+4} \leq q_{2} \leq \frac{2\left|q_{1}\right|\left(\left|q_{1}\right|-1\right)}{q_{1}^{2}-2\left|q_{1}\right|+4}\right\}, \\
D_{12}=\left\{\left(q_{1}, q_{2}\right):\left|q_{1}\right| \geq 4, \quad \frac{2\left|q_{1}\right|\left(\left|q_{1}\right|-1\right)}{q_{1}^{2}-2\left|q_{1}\right|+4} \leq q_{2} \leq \frac{2}{3}\left(\left|q_{1}\right|-1\right)\right\} .
\end{gathered}
$$

## 2. Coefficient Bounds

By making use of Lemmas 1.3-1.5, we obtain the following results.
Theorem 2.1. Let $\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\ldots$, where $B_{n}$ are real with $B_{1}>0$ and $B_{2} \geq 0$. Let $0 \leq \alpha \leq 1 ; \delta, \lambda, \mu, l \in \mathbb{R} ; \delta, l \geq 0 ; 0 \leq \mu \leq \lambda$; $p \in \mathbb{N} ; 0 \leq \nu \leq 1$.

If $f(z)$ given by (1.1) belongs to $\mathcal{M}_{(1, p, \alpha, \lambda, \mu, l, \nu)}^{\delta}(\varphi)$, then

$$
\left|a_{p+2}-\eta a_{p+1}^{2}\right| \leq
$$

$$
\begin{cases}\frac{p^{2}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N^{\delta}}\left\{B_{2}+p B_{1}^{2} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, \nu)\right\} & \text { if } \eta \leq \psi_{1}  \tag{2.1}\\ \frac{p^{2} B_{1}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}} & \text { if } \psi_{1} \leq \eta \leq \psi_{2} \\ -\frac{p^{2}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}}\left\{B_{2}+p B_{1}^{2} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, \nu)\right\} & \text { if } \eta \geq \psi_{2}\end{cases}
$$

Further, if $\psi_{1} \leq \eta \leq \psi_{3}$, then

$$
\begin{align*}
& \left|a_{p+2}-\eta a_{p+1}^{2}\right|+\frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{(p+\alpha)^{2}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}} \\
& \times\left(B_{1}-B_{2}-p B_{1}^{2} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, v)\right)\left|a_{p+1}\right|^{2} \\
\leq & \frac{p^{2} B_{1}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}} . \tag{2.2}
\end{align*}
$$

If $\psi_{3} \leq \eta \leq \psi_{2}$, then

$$
\begin{align*}
& \left|a_{p+2}-\eta a_{p+1}^{2}\right|+\frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{(p+\alpha)^{2}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}} \\
& \times\left(B_{1}+B_{2}+p B_{1}^{2} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, v)\right)\left|a_{p+1}\right|^{2} \\
\leq & \frac{p^{2} B_{1}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}} . \tag{2.3}
\end{align*}
$$

For any complex number $\eta$,

$$
\begin{aligned}
&\left|a_{p+2}-\eta a_{p+1}^{2}\right| \leq \frac{p^{2} B_{1}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}} \\
& \times \max \left\{1 ;\left|\frac{B_{2}}{B_{1}}+p B_{1} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, \nu)\right|\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \psi_{1}=\frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{\left\{\left(B_{2}-B_{1}\right)(p+\alpha)^{2}+p B_{1}^{2}\left(p^{2}+2 \alpha p+\alpha\right)\right\}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}} \\
& \psi_{2}=\frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{\left\{\left(B_{2}+B_{1}\right)(p+\alpha)^{2}+p B_{1}^{2}\left(p^{2}+2 \alpha p+\alpha\right)\right\}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}} \\
& \psi_{3}=\frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{\left\{B_{2}(p+\alpha)^{2}+p B_{1}^{2}\left(p^{2}+2 \alpha p+\alpha\right)\right\}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}} \\
& \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, \nu)=\frac{p^{2}+2 \alpha p+\alpha}{(p+\alpha)^{2}}-2 \eta p \frac{M_{2} N_{2}^{\delta}}{M_{1}^{2} N_{1}^{2 \delta}} \frac{(p+2 \alpha)(p+l)^{\delta+1}}{(p+\alpha)^{2}}
\end{aligned}
$$

and $M_{c}=[p+c \nu(\lambda \mu(p+c)+\lambda-\mu)], N_{c}=[c(\lambda \mu(p+c)+\lambda-\mu)+p+l]$, $M_{c}^{d}=\left(M_{c}\right)^{d}, N_{c}^{d}=\left(N_{c}\right)^{d}, c \in \mathbb{N}=\{1,2,3, \ldots\}$.

Further,

$$
\begin{equation*}
\left|a_{p+3}\right| \leq \frac{p^{2} B_{1}}{3(p+3 \alpha)} \frac{(p+l)^{\delta+1}}{M_{3} N_{3}^{\delta}} H\left(q_{1}, q_{2}\right) \tag{2.4}
\end{equation*}
$$

where $H\left(q_{1}, q_{2}\right)$ is defined as in Lemma 1.5, with

$$
\begin{aligned}
q_{1}= & \frac{2 B_{2}}{B_{1}}+\frac{3}{2} \frac{\left(p^{2}+3 \alpha p+2 \alpha\right)}{(p+\alpha)(p+2 \alpha)} p B_{1} \\
q_{2}= & \frac{B_{3}}{B_{1}}+\frac{3}{2} \frac{\left(p^{2}+3 \alpha p+2 \alpha\right)}{(p+\alpha)(p+2 \alpha)} p B_{1}\left[\frac{B_{2}}{B_{1}}+p B_{1} \frac{\left(p^{2}+2 \alpha p+\alpha\right)}{(p+\alpha)^{2}}\right] \\
& -\frac{\left(p^{3}+3 \alpha p^{2}+3 \alpha p+\alpha\right)}{(p+\alpha)^{3}} p^{2} B_{1}^{2} .
\end{aligned}
$$

These results are sharp.
Proof. If $f(z) \in \mathcal{M}_{(1, p, \alpha, \lambda, \mu, l, \nu)}^{\delta}(\varphi)$, then there is a Schwarz function

$$
w(z)=w_{1} z+w_{2} z^{2}+\ldots \in \Omega
$$

such that

$$
\begin{equation*}
\frac{1}{p}\left\{(1-\alpha) \frac{z\left(F_{\nu, \delta}(z)\right)^{\prime}}{F_{\nu, \delta}(z)}+\alpha\left(1+\frac{z\left(F_{\nu, \delta}(z)\right)^{\prime \prime}}{\left(F_{\nu, \delta}(z)\right)^{\prime}}\right)\right\}=\varphi(w(z)) \tag{2.5}
\end{equation*}
$$

where $0 \leq \alpha \leq 1 ; \delta, \lambda, \mu, l \in \mathbb{R} ; \delta, l \geq 0 ; 0 \leq \mu \leq \lambda ; p \in \mathbb{N} ; 0 \leq \nu \leq 1$; $F_{\nu, \delta}(z)=(1-\nu) J_{p}^{\delta}(\lambda, \mu, l) f(z)+\nu J_{p}^{\delta+1}(\lambda, \mu, l) f(z)$ and

$$
J_{p}^{\delta}(\lambda, \mu, l) f(z)=z^{p}+\sum_{k=p+1}^{\infty}\left[\frac{(k-p)(\lambda \mu k+\lambda-\mu)+p+l}{p+l}\right]^{\delta} a_{k} z^{k} .
$$

By definition of $J_{p}^{\delta}(\lambda, \mu, l) f(z)$ and $F_{\nu, \delta}(z)$, we can write

$$
\begin{align*}
F_{\nu, \delta}(z) & =z^{p}+\frac{M_{1} N_{1}^{\delta}}{(p+l)^{\delta+1}} a_{p+1} z^{p+1}+\frac{M_{2} N_{2}^{\delta}}{(p+l)^{\delta+1}} a_{p+2} z^{p+2} \\
& +\frac{M_{3} N_{3}^{\delta}}{(p+l)^{\delta+1}} a_{p+3} z^{p+3}+\ldots \tag{2.6}
\end{align*}
$$

where

$$
\begin{gathered}
M_{c}=[p+c \nu(\lambda \mu(p+c)+\lambda-\mu)] \\
N_{c}=[c(\lambda \mu(p+c)+\lambda-\mu)+p+l]
\end{gathered}
$$

$c \in \mathbb{N}=\{1,2,3, \ldots\}$.
Let

$$
T_{p+c}=\frac{M_{c} N_{c}^{\delta}}{(p+l)^{\delta+1}} a_{p+c} ; \quad c \in \mathbb{N}=\{1,2,3, \ldots\}
$$

Then, we have

$$
\begin{equation*}
F_{\nu, \delta}(z)=z^{p}+T_{p+1} z^{p+1}+T_{p+2} z^{p+2}+T_{p+3} z^{p+3}+\ldots \tag{2.7}
\end{equation*}
$$

and differentiating both sides of the (2.7), we obtain the following equality $\left(F_{\nu, \delta}(z)\right)^{\prime}=p z^{p-1}+(p+1) T_{p+1} z^{p}+(p+2) T_{p+2} z^{p+1}+(p+3) T_{p+3} z^{p+2}+\ldots$.

From (2.7) and (2.8), we deduce

$$
\begin{equation*}
\frac{z\left(F_{\nu, \delta}(z)\right)^{\prime}}{F_{\nu, \delta}(z)}=p+T_{p+1} z+\left(2 T_{p+2}-T_{p+1}^{2}\right) z^{2}+\left(3 T_{p+3}-3 T_{p+2} T_{p+1}+T_{p+1}^{3}\right) z^{3}+\ldots \tag{2.9}
\end{equation*}
$$

Similarly, if we take $U_{p+c}=(p+c) T_{p+c}$, we have

$$
\begin{align*}
\frac{z\left(F_{\nu, \delta}(z)\right)^{\prime \prime}}{\left(F_{\nu, \delta}(z)\right)^{\prime}}= & p-1+\frac{1}{p} U_{p+1} z+\frac{1}{p}\left(2 U_{p+2}-\frac{1}{p} U_{p+1}^{2}\right) z^{2}  \tag{2.10}\\
& +\frac{1}{p}\left(3 U_{p+3}-\frac{3}{p} U_{p+2} U_{p+1}+\frac{1}{p^{2}} U_{p+1}^{3}\right) z^{3}+\ldots
\end{align*}
$$

Since

$$
\begin{align*}
& \frac{1}{p}\left\{(1-\alpha) \frac{z\left(F_{\nu, \delta}(z)\right)^{\prime}}{F_{\nu, \delta}(z)}+\alpha\left(1+\frac{z\left(F_{\nu, \delta}(z)\right)^{\prime \prime}}{\left(F_{\nu, \delta}(z)\right)^{\prime}}\right)\right\}=\frac{1}{p}\left\{( 1 - \alpha ) \left[p+T_{p+1} z\right.\right.  \tag{2.11}\\
& \left.+\left(2 T_{p+2}-T_{p+1}^{2}\right) z^{2}+\left(3 T_{p+3}-3 T_{p+2} T_{p+1}+T_{p+1}^{3}\right) z^{3}+\ldots\right]
\end{align*}
$$

$$
\begin{aligned}
& +\alpha\left[1+p-1+\frac{1}{p} U_{p+1} z+\frac{1}{p}\left(2 U_{p+2}-\frac{1}{p} U_{p+1}^{2}\right) z^{2}\right. \\
& \left.\left.+\frac{1}{p}\left(3 U_{p+3}-\frac{3}{p} U_{p+2} U_{p+1}+\frac{1}{p^{2}} U_{p+1}^{3}\right) z^{3}+\ldots\right]\right\} \\
& =1+\frac{1}{p}\left(\frac{p+\alpha}{p}\right) T_{p+1} z+\frac{1}{p}\left(\frac{2(p+2 \alpha)}{p} T_{p+2}-\frac{p^{2}+2 \alpha p+\alpha}{p^{2}} T_{p+1}^{2}\right) z^{2} \\
& \quad+\frac{1}{p}\left(\frac{3}{p}(p+3 \alpha) T_{p+3}-\frac{3}{p^{2}}\left(p^{2}+3 \alpha p+2 \alpha\right) T_{p+2} T_{p+1}\right. \\
& \left.\quad+\frac{1}{p^{3}}\left(p^{3}+3 \alpha p^{2}+3 \alpha p+\alpha\right) T_{p+1}^{3}\right) z^{3}+\ldots
\end{aligned}
$$

and

$$
\begin{align*}
\varphi(w(z))= & 1+B_{1} w_{1} z+\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right) z^{2}  \tag{2.12}\\
& +\left(B_{1} w_{3}+2 B_{2} w_{1} w_{2}+B_{3} w_{1}^{3}\right) z^{3}+\ldots
\end{align*}
$$

by using equality (2.5), we have the equalities that follow.
Firstly, from

$$
B_{1} w_{1}=\frac{1}{p}\left(\frac{p+\alpha}{p}\right) \frac{M_{1} N_{1}^{\delta}}{(p+l)^{\delta+1}} a_{p+1}
$$

we can write

$$
\begin{equation*}
a_{p+1}=\frac{p^{2} B_{1} w_{1}}{(p+\alpha)} \frac{(p+l)^{\delta+1}}{M_{1} N_{1}^{\delta}} \tag{2.13}
\end{equation*}
$$

Secondly, from

$$
\begin{gathered}
B_{1} w_{2}+B_{2} w_{1}^{2}= \\
=\frac{1}{p}\left(\frac{2(p+2 \alpha)}{p} \frac{M_{2} N_{2}^{\delta}}{(p+l)^{\delta+1}} a_{p+2}-\frac{p^{2}+2 \alpha p+\alpha}{p^{2}} \frac{M_{1}^{2} N_{1}^{2 \delta}}{(p+l)^{2(\delta+1)}} a_{p+1}^{2}\right)
\end{gathered}
$$

we can write

$$
\begin{equation*}
a_{p+2}=\frac{p^{2} B_{1}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}}\left\{w_{2}-w_{1}^{2}\left[-\frac{B_{2}}{B_{1}}-\frac{p B_{1}\left(p^{2}+2 \alpha p+\alpha\right)}{(p+\alpha)^{2}}\right]\right\} \tag{2.14}
\end{equation*}
$$

Thus, by using (2.13) and (2.14), we can write

$$
\begin{aligned}
a_{p+2}-\eta a_{p+1}^{2} & =\frac{p^{2} B_{1}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}}\left\{w_{2}-w_{1}^{2}\left[-\frac{B_{2}}{B_{1}}-\frac{p B_{1}\left(p^{2}+2 \alpha p+\alpha\right)}{(p+\alpha)^{2}}\right.\right. \\
& \left.\left.+2 \eta p^{2} \frac{M_{2} N_{2}^{\delta}}{M_{1}^{2} N_{1}^{2 \delta}} \frac{B_{1}(p+2 \alpha)(p+l)^{\delta+1}}{(p+\alpha)^{2}}\right]\right\} .
\end{aligned}
$$

Let

$$
t=-\frac{B_{2}}{B_{1}}-p B_{1} \frac{\left(p^{2}+2 \alpha p+\alpha\right)}{(p+\alpha)^{2}}+2 \eta p^{2} \frac{M_{2} N_{2}^{\delta}}{M_{1}^{2} N_{1}^{2 \delta}} \frac{B_{1}(p+2 \alpha)(p+l)^{\delta+1}}{(p+\alpha)^{2}}
$$

Therefore, we have

$$
\begin{equation*}
a_{p+2}-\eta a_{p+1}^{2}=\frac{p^{2} B_{1}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}}\left\{w_{2}-t w_{1}^{2}\right\} \tag{2.15}
\end{equation*}
$$

By using Lemma 1.3, we can write for $\eta \leq \psi_{1}$

$$
\begin{aligned}
\left|a_{p+2}-\eta a_{p+1}^{2}\right| \leq & \frac{p^{2}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}}\left\{B_{2}+p B_{1}^{2}\left[\frac{\left(p^{2}+2 \alpha p+\alpha\right)}{(p+\alpha)^{2}}\right.\right. \\
& \left.\left.-2 \eta p \frac{M_{2} N_{2}^{\delta}}{M_{1}^{2} N_{1}^{2 \delta}} \frac{(p+2 \alpha)(p+l)^{\delta+1}}{(p+\alpha)^{2}}\right]\right\} \\
= & \frac{p^{2}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}}\left\{B_{2}+p B_{1}^{2} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, \nu)\right\}
\end{aligned}
$$

for $\eta \geq \psi_{2}$

$$
\begin{aligned}
\left|a_{p+2}-\eta a_{p+1}^{2}\right|= & -\frac{p^{2}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}}\left\{B_{2}+p B_{1}^{2}\left[\frac{\left(p^{2}+2 \alpha p+\alpha\right)}{(p+\alpha)^{2}}\right.\right. \\
& \left.\left.-2 \eta p \frac{M_{2} N_{2}^{\delta}}{M_{1}^{2} N_{1}^{2 \delta}} \frac{(p+2 \alpha)(p+l)^{\delta+1}}{(p+\alpha)^{2}}\right]\right\} \\
= & -\frac{p^{2}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}}\left\{B_{2}+p B_{1}^{2} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, \nu)\right\}
\end{aligned}
$$

and for $\psi_{1} \leq \eta \leq \psi_{2}$

$$
\left|a_{p+2}-\eta a_{p+1}^{2}\right| \leq \frac{p^{2}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}}
$$

where

$$
\begin{aligned}
& \psi_{1}=\frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{\left\{\left(B_{2}-B_{1}\right)(p+\alpha)^{2}+p B_{1}^{2}\left(p^{2}+2 \alpha p+\alpha\right)\right\}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}} \\
& \psi_{2}=\frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{\left\{\left(B_{2}+B_{1}\right)(p+\alpha)^{2}+p B_{1}^{2}\left(p^{2}+2 \alpha p+\alpha\right)\right\}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}} \\
& \psi_{3}=\frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{\left\{B_{2}(p+\alpha)^{2}+p B_{1}^{2}\left(p^{2}+2 \alpha p+\alpha\right)\right\}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}}
\end{aligned}
$$

and

$$
\phi(\alpha, p, \mu, \eta, \lambda, \delta, l, \nu)=\frac{p^{2}+2 \alpha p+\alpha}{(p+\alpha)^{2}}-2 \eta p \frac{M_{2} N_{2}^{\delta}}{M_{1}^{2} N_{1}^{2 \delta}} \frac{(p+2 \alpha)(p+l)^{\delta+1}}{(p+\alpha)^{2}} .
$$

Further, if $\psi_{1} \leq \eta \leq \psi_{3}$, then

$$
\begin{aligned}
& \left|a_{p+2}-\eta a_{p+1}^{2}\right|+\frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{(p+\alpha)^{2}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}} \\
& \quad \times\left(B_{1}-B_{2}-p B_{1}^{2} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, v)\right)\left|a_{p+1}\right|^{2}
\end{aligned}
$$

$$
\leq \frac{p^{2} B_{1}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}}
$$

If $\psi_{3} \leq \eta \leq \psi_{2}$, then

$$
\begin{aligned}
& \left|a_{p+2}-\eta a_{p+1}^{2}\right|+\frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{(p+\alpha)^{2}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}} \\
& \times\left(B_{1}+B_{2}+p B_{1}^{2} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, v)\right)\left|a_{p+1}\right|^{2} \\
\leq & \frac{p^{2} B_{1}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}} .
\end{aligned}
$$

By using Lemma 1.4, we can write

$$
\left|a_{p+2}-\eta a_{p+1}^{2}\right| \leq \frac{p^{2} B_{1}}{2(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}} \max \left\{1 ;\left|\frac{B_{2}}{B_{1}}+p B_{1} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, \nu)\right|\right\}
$$

for any complex number $\eta$.
By using equalities (2.11) and (2.12)

$$
\begin{aligned}
& \frac{1}{p}\left\{\frac{3}{p}(p+3 \alpha) \frac{M_{3} N_{3}^{\delta}}{(p+l)^{\delta+1}} a_{p+3}-\frac{3}{p^{2}}\left(p^{2}+3 \alpha p+2 \alpha\right)\right. \\
& \left.\times \frac{M_{2} N_{2}^{\delta}}{(p+l)^{\delta+1}} \frac{M_{1} N_{1}^{\delta}}{(p+l)^{\delta+1}} a_{p+2} a_{p+1}+\frac{1}{p^{3}}\left(p^{3}+3 \alpha p^{2}+3 \alpha p+\alpha\right) \frac{M_{1}^{3} N_{1}^{3 \delta}}{(p+l)^{3(\delta+1)}} a_{p+1}^{3}\right\} \\
& =B_{1} w_{3}+2 B_{2} w_{1} w_{2}+B_{3} w_{1}^{3}
\end{aligned}
$$

Thus, we obtain

$$
\begin{align*}
a_{p+3} & =\frac{p^{2} B_{1}}{3(p+3 \alpha)} \frac{(p+l)^{\delta+1}}{M_{3} N_{3}^{\delta}}\left\{w_{3}+\left(\frac{2 B_{2}}{B_{1}}+\frac{3}{2} \frac{\left(p^{2}+3 \alpha p+2 \alpha\right)}{(p+\alpha)(p+2 \alpha)} p B_{1}\right) w_{1} w_{2}\right. \\
& +\left(\frac{B_{3}}{B_{1}}+\frac{3}{2} \frac{\left(p^{2}+3 \alpha p+2 \alpha\right)}{(p+\alpha)(p+2 \alpha)} p B_{1}\left[\frac{B_{2}}{B_{1}}+p B_{1} \frac{\left(p^{2}+2 \alpha p+\alpha\right)}{(p+\alpha)^{2}}\right]\right. \\
& \left.\left.-\frac{\left(p^{3}+3 \alpha p^{2}+3 \alpha p+\alpha\right)}{(p+\alpha)^{3}} p^{2} B_{1}^{2}\right) w_{1}^{3}\right\} . \tag{2.16}
\end{align*}
$$

Let

$$
\begin{aligned}
q_{1}= & \frac{2 B_{2}}{B_{1}}+\frac{3}{2} \frac{\left(p^{2}+3 \alpha p+2 \alpha\right)}{(p+\alpha)(p+2 \alpha)} p B_{1} \\
q_{2}= & \frac{B_{3}}{B_{1}}+\frac{3}{2} \frac{\left(p^{2}+3 \alpha p+2 \alpha\right)}{(p+\alpha)(p+2 \alpha)} p B_{1}\left[\frac{B_{2}}{B_{1}}+p B_{1} \frac{\left(p^{2}+2 \alpha p+\alpha\right)}{(p+\alpha)^{2}}\right] \\
& -\frac{\left(p^{3}+3 \alpha p^{2}+3 \alpha p+\alpha\right)}{(p+\alpha)^{3}} p^{2} B_{1}^{2} .
\end{aligned}
$$

Then, from equality (2.16), we obtain

$$
a_{p+3}=\frac{p^{2} B_{1}}{3(p+3 \alpha)} \frac{(p+l)^{\delta+1}}{M_{3} N_{3}^{\delta}}\left\{w_{3}+q_{1} w_{1} w_{2}+q_{2} w_{1}^{3}\right\} .
$$

Thus, we can write

$$
\begin{equation*}
\left|a_{p+3}\right| \leq \frac{p^{2} B_{1}}{3(p+3 \alpha)} \frac{(p+l)^{\delta+1}}{M_{3} N_{3}^{\delta}} H\left(q_{1}, q_{2}\right) \tag{2.17}
\end{equation*}
$$

where $H\left(q_{1}, q_{2}\right)$ is defined as in Lemma 1.5.
To show that the bounds in (2.1)-(2.3) are sharp, we define the functions $K_{\varphi, n}(n=2,3, \ldots)$ by

$$
\begin{gather*}
\frac{1}{p}\left\{(1-\alpha) \frac{z\left(K_{\varphi, n}\right)^{\prime}(z)}{\left(K_{\varphi, n}\right)(z)}+\alpha\left(1+\frac{z\left(K_{\varphi, n}\right)^{\prime \prime}(z)}{\left(K_{\varphi, n}\right)^{\prime}}\right)\right\}=\varphi\left(z^{n-1}\right)  \tag{2.18}\\
{\left[K_{\varphi, n}\right](0)=0=\left[K_{\varphi, n}\right]^{\prime}(0)-1}
\end{gather*}
$$

and the function $F_{\lambda, m}$ and $G_{\lambda, m}\left(0 \leq \lambda \leq 1, m \in \mathbb{N}_{0}\right)$ by

$$
\begin{gather*}
\frac{1}{p}\left\{(1-\alpha) \frac{z\left(F_{\lambda, m}\right)^{\prime}(z)}{\left(F_{\lambda, m}\right)(z)}+\alpha\left(1+\frac{z\left(F_{\lambda, m}\right)^{\prime \prime}(z)}{\left(F_{\lambda, m}\right)^{\prime}}\right)\right\}=\varphi\left(z \frac{z+\lambda}{1+\lambda z}\right)  \tag{2.19}\\
{\left[F_{\lambda, m}\right](0)=0=\left[F_{\lambda, m}\right]^{\prime}(0)-1,}
\end{gather*}
$$

and

$$
\begin{gather*}
\frac{1}{p}\left\{(1-\alpha) \frac{z\left(G_{\lambda, m}\right)^{\prime}(z)}{\left(G_{\lambda, m}\right)(z)}+\alpha\left(1+\frac{z\left(G_{\lambda, m}\right)^{\prime \prime}(z)}{\left(G_{\lambda, m}\right)^{\prime}}\right)\right\}=\varphi\left(-z \frac{z+\lambda}{1+\lambda z}\right) \\
\left(G_{\lambda, m}\right)(0)=0=\left[G_{\lambda, m}\right]^{\prime}(0)-1 . \tag{2.20}
\end{gather*}
$$

Clearly the functions $K_{\varphi, n}, F_{\lambda, m}, G_{\lambda, m} \in \mathcal{M}_{(1, p, \alpha, \lambda, \mu, l, \nu)}^{\delta}(\varphi)$. Also we write $K_{\varphi}=K_{\varphi, 2}$. If $\eta<\psi_{1}$ or $\eta>\psi_{2}$, then the equality holds if and only if $f$ is $K_{\varphi}$ or one of its rotations. When $\psi_{1}<\eta<\psi_{2}$, then the equality holds if and only if $f$ is $K_{\varphi, 3}$ or one of its rotations. If $\eta=\psi_{1}$, then the equality holds if and only if $f$ is $F_{\lambda, m}$ or one of its rotations. If $\eta=\psi_{2}$, then the equality holds if and only if $f$ is $G_{\lambda, m}$ or one of its rotations.

## Remark 2.2.

1. For $l=\mu=0$ and $\lambda=1$ in Theorem 2.1, we get the result obtained by Altuntaş and Kamali [3].
2. For $l=\delta=\mu=\alpha=\nu=0$ and $\lambda=1$ in Theorem 2.11, we obtain the result obtained by R. M. Ali et al. [1].
3. For $l=\delta=\mu=\alpha=\nu=0$ and $p=\lambda=1$ in Theorem 2.1, we obtain the result obtained by Ma and Minda et al. [8].
4. For $l=\alpha=0$ and $p=b=1$ in Theorem 2.1, we obtain the result obtained by Deniz and Orhan et al. [6].

## 3. Applications to functions defined by convolution

We define $\mathcal{M}_{(b, p, \alpha, \lambda, \mu, l, \nu, g)}^{\delta}(\varphi)$ to be the class of all functions $f \in \mathcal{A}_{p}$ for which $f * g \in \mathcal{M}_{(b, p, \alpha, \lambda, \mu, l, \nu)}^{\delta}(\varphi)$, where $g$ is a fixed function with positive coefficients and the class $\mathcal{M}_{(b, p, \alpha, \lambda, \mu, l, \nu)}^{\delta}(\varphi)$ is as in Definition 1.2. In Theorem
2.1 we obtained the coefficient estimate for the class $\mathcal{M}_{(1, p, \alpha, \lambda, \mu, l, \nu)}^{\delta}(\varphi)$. Now we obtain the coefficient estimates for the class $\mathcal{M}_{(1, p, \alpha, \lambda, \mu, l, \nu, g)}^{\delta}(\varphi)$.

Theorem 3.1. Let $\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\ldots$, where $B_{n}$ are real with $B_{1}>0$ and $B_{2} \geq 0$. Let $0 \leq \alpha \leq 1 ; \delta, \lambda, \mu, l \in \mathbb{R} ; \delta, l \geq 0 ; 0 \leq \mu \leq \lambda$; $p \in \mathbb{N} ; 0 \leq \nu \leq 1$.

If $f(z)$ given by (1.1) belongs to $\mathcal{M}_{(1, p, \alpha, \lambda, \mu, l, \nu, g)}^{\delta}(\varphi)$, then

$$
\begin{aligned}
& \qquad\left|a_{p+2}-\eta a_{p+1}^{2}\right| \leq \\
& \begin{cases}\frac{p^{2}}{2(p+2 \alpha) g_{p+2}} \frac{(p+l)^{\delta+1}}{M_{2} N^{\delta}}\left\{B_{2}+p B_{1}^{2} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, \nu)\right\} & \text { if } \eta \leq \psi_{1} \\
\frac{p^{2} B_{1}}{2(p+2 \alpha) g_{p+2}} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}} & \text { if } \psi_{1} \leq \eta \leq \psi_{2} \\
-\frac{p^{2}}{2(p+2 \alpha) g_{p+2}} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}}\left\{B_{2}+p B_{1}^{2} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, \nu)\right\} & \text { if } \eta \geq \psi_{2} \\
\text { Further, if } \psi_{1} \leq \eta \leq \psi_{3}, \text { then } & \end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \left|a_{p+2}-\eta a_{p+1}^{2}\right|+\frac{g_{p+1}^{2}}{g_{p+2}} \frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{(p+\alpha)^{2}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}} \\
& \times\left(B_{1}-B_{2}-p B_{1}^{2} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, v, g)\right)\left|a_{p+1}\right|^{2} \\
\leq & \frac{p^{2} B_{1}}{2 g_{p+2}(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}}
\end{aligned}
$$

If $\psi_{3} \leq \eta \leq \psi_{2}$, then

$$
\begin{aligned}
& \left|a_{p+2}-\eta a_{p+1}^{2}\right|+\frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{(p+\alpha)^{2}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}} \\
& \times\left(B_{1}+B_{2}+p B_{1}^{2} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, v, g)\right)\left|a_{p+1}\right|^{2} \\
\leq & \frac{p^{2} B_{1}}{2 g_{p+2}(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}}
\end{aligned}
$$

For any complex number $\eta$,

$$
\begin{aligned}
& \left|a_{p+2}-\eta a_{p+1}^{2}\right| \leq \frac{g_{p+1}^{2}}{g_{p+2}} \frac{p^{2} B_{1}}{2 g_{p+2}(p+2 \alpha)} \frac{(p+l)^{\delta+1}}{M_{2} N_{2}^{\delta}} \\
& \quad \times \max \left\{1 ;\left|\frac{B_{2}}{B_{1}}+p B_{1} \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, \nu, g)\right|\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \psi_{1}=\frac{g_{p+1}^{2}}{g_{p+2}} \frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{\left\{\left(B_{2}-B_{1}\right)(p+\alpha)^{2}+p B_{1}^{2}\left(p^{2}+2 \alpha p+\alpha\right)\right\}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}} \\
& \psi_{2}=\frac{g_{p+1}^{2}}{g_{p+2}} \frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{\left\{\left(B_{2}+B_{1}\right)(p+\alpha)^{2}+p B_{1}^{2}\left(p^{2}+2 \alpha p+\alpha\right)\right\}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}} \\
& \psi_{3}=\frac{g_{p+1}^{2}}{g_{p+2}} \frac{M_{1}^{2} N_{1}^{2 \delta}}{M_{2} N_{2}^{\delta}} \frac{\left\{B_{2}(p+\alpha)^{2}+p B_{1}^{2}\left(p^{2}+2 \alpha p+\alpha\right)\right\}}{2 p^{2} B_{1}^{2}(p+2 \alpha)(p+l)^{\delta+1}} \\
& \phi(\alpha, p, \mu, \eta, \lambda, \delta, l, \nu, g)=\frac{p^{2}+2 \alpha p+\alpha}{(p+\alpha)^{2}}-2 \eta p \frac{g_{p+2}}{g_{p+1}^{2}} \frac{M_{2} N_{2}^{\delta}}{M_{1}^{2} N_{1}^{2 \delta}} \frac{(p+2 \alpha)(p+l)^{\delta+1}}{(p+\alpha)^{2}} .
\end{aligned}
$$

and $M_{c}=[p+c \nu(\lambda \mu(p+c)+\lambda-\mu)], N_{c}=[c(\lambda \mu(p+c)+\lambda-\mu)+p+l]$, $M_{c}^{d}=\left(M_{c}\right)^{d}, N_{c}^{d}=\left(N_{c}\right)^{d}, c \in \mathbb{N}=\{1,2,3, \ldots\}$.

Further,

$$
\left|a_{p+3}\right| \leq \frac{p^{2} B_{1}}{3 g_{p+3}(p+3 \alpha)} \frac{(p+l)^{\delta+1}}{M_{3} N_{3}^{\delta}} H\left(q_{1}, q_{2}\right)
$$

where $H\left(q_{1}, q_{2}\right)$ is defined as in Lemma 1.5,

$$
\begin{aligned}
q_{1} & =\frac{2 B_{2}}{B_{1}}+\frac{3}{2} \frac{\left(p^{2}+3 \alpha p+2 \alpha\right)}{(p+\alpha)(p+2 \alpha)} p B_{1} \\
q_{2} & =\frac{B_{3}}{B_{1}}+\frac{3}{2} \frac{\left(p^{2}+3 \alpha p+2 \alpha\right)}{(p+\alpha)(p+2 \alpha)} p B_{2} \\
& +\left(\frac{3}{2} \frac{\left(p^{2}+3 \alpha p+2 \alpha\right)\left(p^{2}+2 \alpha p+\alpha\right)}{(p+2 \alpha)(p+\alpha)^{3}}-\frac{\left(p^{3}+3 \alpha p^{2}+3 \alpha p+\alpha\right)}{(p+\alpha)^{3}}\right) p^{2} B_{1}^{2}
\end{aligned}
$$

These results are sharp.
Proof. The proof is similar to the proof of Theorem 2.1

## Remark 3.2.

1. For $l=\delta=\mu=\alpha=\nu=0$ and $\lambda=1$ in Theorem 3.1, we obtain the result obtained by Ali et al. [1].
2. For $l=\delta=\mu=\alpha=\nu=0$ and $p=\lambda=1$ in Theorem 3.1, we obtain the result obtained by Ma and Minda et al. [8].
3. For $l=\alpha=0$ and $p=b=1$ in Theorem 2.1, we obtain the result obtained by Deniz and Orhan et al. [6].

## Acknowledgements

1. The present investigation was supported by Ataturk University Rectorship under BAP Project (The Scientific and Research Project of Atatürk University) Project No: 2010/28.
2. Authors would like to thank the referee for thoughtful comments and suggestions.

## References

[1] Ali, R.M., Ravichandran, V., Seenivasagan, N., Coefficient bounds for $p-$ valent functions, Appl. Math. Comput., 187(2007), 35-46.
[2] Al-Oboudi, F.M., On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci., 27(2004), 1429-1436.
[3] Altuntaş, F., Kamali, M., On certain coefficient bounds for multivalent functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 63, 2009, 1-16.
[4] Bazilevič, I.E., On a case of integrability in quadratures of the Loewner-Kufarev equation, Matematicheskiî Sbornik. Novaya Seriya, 37(79)(1955), 471-476.
[5] Deniz, E., Orhan, H., Certain subclasses of multivalent functions defined by new multiplier transformations, Arabian Journal for Science and Engineering, 36(2011), no. 6, 1091-1112.
[6] Deniz, E., Orhan, H., The Fekete-Szegö problem for a generalized subclass of analytic functions, Kyungpook Math. J., 50(2010), no. 1, 37-47.
[7] Keogh, F.R., Merkes, E.P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12.
[8] Ma, W.C., Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Z. Li, F. Ren, L. Yang, and S. Zhang (Eds.), Int. Press, Cambridge, MA, 1994, 157-169.
[9] Owa, S., Properties of certain integral operators, Southeast Asian Bull. Math., 24(2000), no. 3, 411-419.
[10] Prokhorov, D.V., Szynal, J., Inverse coefficients for $(\alpha ; \beta)-$ convex functions, Ann.Univ. Mariae Curie-Skłodowska Sect. A 35, 1981, 125-143.
[11] Raducanu, D., Orhan, H., Subclasses of analytic functions defined by a generalized differential operator, Int. Journal of Math. Analysis, 4(2010), no. 1, 1-15.
[12] Ramachandran, C., Sivasubramanian, S., Silverman, H., Certain coefficients bounds for p-valent functions, Int. J. Math. Math. Sci., vol. 2007, Art. ID 46576, 11 pp.
[13] Sălăgean, G.S., Subclasses of Univalent Functions, in: Lecture Notes in Math., vol. 1013, Springer-Verlag, 1983, 362-372.
[14] Shanmugam, T.N., Owa, S., Ramachandran, C., Sivasubramanian, S., Nakamura, Y., On certain coefficient inequalities for multivalent functions, J. Math. Inequal., 3(2009), 31-41.

Murat Çağlar
Department of Mathematics
Faculty of Science
Ataturk University
Erzurum, 25240, Turkey
e-mail: mcaglar@atauni.edu.tr
Halit Orhan
Department of Mathematics
Faculty of Science
Ataturk University
Erzurum, 25240, Turkey
e-mail: horhan@atauni.edu.tr
Erhan Deniz
Department of Mathematics
Faculty of Science and Art
Kafkas University
Kars, 36100, Turkey
e-mail: edeniz@atauni.edu.tr

