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On the Hausdorff dimension of the graph
of a Weierstrass type function
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Abstract. In this note a theorem to compare the box dimension of Weier-
strass type functions and their Hausdorff dimension is established. More-
over a method to determine the Hausdorff dimension of the graphs of
functions such as the Weierstrass or the Mandelbrot functions is given.
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1. Introduction

In this paper the Hausdorff and the box dimension of the graphs of
some Weierstrass type functions are compared. Recall that the Hausdorff
dimension of a set E ⊆ Rn is defined in terms of the k-dimensional Hausdorff
measure of E, denoted by Hk(E) and given by

Hk(E) = lim
δ→0

inf{
∑

i

|Ei|k, E ⊆
⋃
Ei, |Ei| < δ}, (1.1)

where |Ei| denotes the diameter of Ei and the infimum is over all (countable)
δ-covers Ei of E (see Falconer [2] and [3]). It is given by:

H − dimE = inf{k > 0 : Hk(E) = 0}. (1.2)

There are other classes of covers leading to the Hausdorff dimension; in
particular it is possible to consider in definition (1.1) instead of all covers of
E, the covers obtained by the family of half-open d-adic cubes in Rn, that is
cubes of the form:

{x ∈ Rn, hid
−m ≤ xi < (hi + 1)d−m, for i = 1, 2, . . . , n}

where hi and m are arbitrary integers. Then if the minimum in (1.1) is
restricted to the class of these particular covers, one obtains the net measure
of E, denoted by Nk(E). It is evident that Hk(E) ≤ Nk(E), but it is also
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possible to prove that there exists a constant A > 0, only depending on the
dimension of the space, n, and on d, such that Nk(E) ≤ AHk(E) for every
E ⊆ Rn (see Mattila [4], 5.2 and Falconer [2], 5.1 for binary cubes). One
of the most immediate modification of the Hausdorff dimension is given in
terms of the upper and lower box dimension of a set, defined in the following
way. Let Nδ(E) be the smallest number of sets of diameter at most δ which
cover E. Then the following numbers:

dimBE = limδ→0

logNδ(E)
−logδ

(1.3)

dimBE = limδ→0
logNδ(E)
−logδ

(1.4)

are called respectively the lower and upper box dimensions or lower and upper
Minkowski dimensions of E, and, if they agree, their common value is the
box dimension of E, denoted by dimB E or ∆(E). It is possible to prove that
in (1.3) or in (1.4), Nδ(E) can be substituted by the number of δ − mesh
cubes meeting E, that is the cubes of the form:

{x ∈ Rn : hiδ ≤ xi < hi + 1)δ, i = 1, 2, . . . , n}
where δ > 0 and h1, . . . , hn are integers. In general it is:

H − dim(E) ≤ dimBE ≤ dimBE.

If f : [a, b] → R is a continuous function and if

G = {(a, b) ∈ R2 : a ≤ x ≤ b, y = f(x)}
is its graph, then H − dimG ≥ 1 (see Falconer [2] , lemma 1.8); moreover,
if f is α-Hölder continuous then: dimBG ≤ 2− α (see Falconer [2], Theorem
8.1).

Some general discussion about the Hausdorff dimension of the graph
of a Hölder continuous function can be found in [5]. In this paper we will
consider Weierstrass type functions:

f(x) =
∑
n∈N

ϕ(bnx)
bδn

,

where ϕ : R → R is periodic (with period 1), Lipschitz continuous and bn is
a sequence for which there exists B > 1 such that b1 ≥ B, bn+1 ≥ Bbn for
every n ∈ N. Obviously it is not restrictive to suppose ϕ(x) ≥ 0 for every
x ∈ R, since if this is not the case, it is possible to consider ψ(x) = ϕ(x)+m,
where m = minx∈[0,1]ϕ(x) and observe that ψ(x) ≥ 0 for every x ∈ R and∑

n∈N

ψ(bnx)
bδn

= f(x) +
∑
n∈N

m

bδn
,

that is the corresponding function to ψ differs from f by a constant.
In the main theorems of this paper (Theorem 3.2, Remark 3.3, Theorem

3.4) rather general hypotheses for a class of Weierstrass type functions will
be established in order the Hausdorff dimension of the graph of f to be equal
to the box dimension when this achieves its maximum. To obtain this result
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some technical ideas (in Lemma 2.2) have been borrowed from an old paper
by Besicovitch and Ursell (see [1]). Interesting suggestions have been found
also in [6].

2. Three lemmas

In order to establish the main theorem some lemmas are needed:

Lemma 2.1. Let f : [a, b] → R be an α-Hölder continuous function, (0 < α ≤
1), d a natural number, d > 1, let {Qi} be a finite cover of G constituted by
meshes, and let Q be a 1

dr -mesh (r ∈ N) from the cover {Qi}. Let {Qj}j∈A

be a cover of G
⋂
Q constituted by 1

dk -meshes with fixed k > r. Then there
exists a constant C > 0 depending only on f such that∑

j∈A

|Qj |2−α ≤ Cm(F ), (2.1)

where F is the projection of G
⋂
Q on the x-axis and m is the unidimensional

Lebesgue measure

Proof. F is a Lebesgue measurable set, since it is the projection of a Borel set.
It is m(F ) = lims→∞m(As), where m is the Lebesgue measure and {As}s∈N

is a sequence of open sets, decreasing with respect to the inclusion relation.
Let us cover As by intervals In that are linear 1

dk -meshes. The oscillation of f
in every one of these intervals is less than or equal to L( 1

dk )α, where L is the
Hölder coefficient of f. Therefore the part of G whose projection is enclosed
in As is covered by 1

dk -square meshes whose number is at most m(As)L|In|α
|In|2 ;

let us call these meshes by Qs,n; then, if s is fixed, it is:∑
n

|Qs,n|2−α ≤ m(As)L(
√

2)2−α.

Since this inequality holds for every s ∈ N, we have, keeping in mind
that

⋂
s∈N{Qs,n} is a cover {Qj}j∈A of G

⋂
Q constituted by 1

dk -meshes:∑
j∈A

|Qj |2−α ≤ L(
√

2)2−α lim
s→∞

m(As),

whence (2.1) and the lemma is proved. �

In the next lemma, very near to the ideas of a well known paper by
Besicovitch and Ursell (see [1], where however a particular case is considered),
and in the sequel we will consider a periodic function ϕ : R → [0, P ] with
period 1, nonnegative, continuous and piecewise differentiable; assume that
ϕ′−(x) and ϕ′+(x) are finite and different from 0 for every x ∈ R. Then there
exist two constants c > 0 and c1 > 0 such that:

c ≤ |ϕ′(x)| ≤ c1 (2.2)

for every x ∈ R such that ϕ is differentiable in x.
If ϕ satisfies all the previous conditions we will refer to it as a smooth

function.
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Lemma 2.2. Consider, for 0 < α < 1, the following function:

f(x) =
∑
n∈N

ϕ(bnx)
bαn

, (2.3)

where ϕ is a smooth function and where (bn)n∈N is such that there exists
B > 1, B ∈ N for which bn+1 ≥ Bbn for every n ∈ N and

lim
n→∞

logbn+1

logbn
= 1. (2.4)

Let {Qi} be a cover of G constituted by 1
Bu -meshes (u ∈ N), and let Q be

a 1
Br -mesh from {Qi}. Let {Qj}j∈A be a cover of G

⋂
Q constituted by 1

Bk -
meshes with fixed k > r. Then, if B1−α > 1 + c1

c , where c and c1 are as in
(2.2), there exists a constant λ > 0 such that, for enough large r:∑

j∈A

|Qj |2−α ≤ λ|Q|2−α. (2.5)

Proof. By (2.1), in order to prove (2.5) we have to determine an upper bound
for the measure of the set F = {x ∈ R : (x, f(x)) ∈ Q}. To this end observe
that, if we consider for every s ∈ N the function fs(x) =

∑
n≤s

ϕ(bnx)
bα

n
and if

ϕ(x) ≤ 1 for every x ∈ R as is not restrictive to suppose, then:

|f(x)− fk+ν−1| ≤ Σn≥k+ν
ϕ(bnx)
bαn

≤ Bα

bαk+ν(Bα − 1)
,

where, given r ∈ N and k > r, ν has been chosen in such a way that:
1

bαk+ν

≤ 1
Br

<
1

bαk+ν−1

.

Therefore:

|f(x)− fk+ν−1| ≤
Bα

Br(Bα − 1)
. (2.6)

Consider the strip S obtained prolonging Q downwards a distance Bα

Br(Bα−1) .

By (2.6) if (x, f(x)) ∈ Q then (x, fk+ν−1(x)) ∈ S and, since fk+ν−1(x) ≤
fk+ν(x) ≤ f(x), also (x, fk+ν(x)) ∈ S. Therefore:

F ⊆ Fk+ν−1

⋂
Fk+ν ,

where Fs = {x ∈ R : (x, fs(x)) ∈ S} for every s ∈ N. By hypotheses ϕ is
strictly increasing or decreasing in a finite number of intervals of [0, 1]: let
M ∈ N be their number.

Now in every interval I in which f ′s(x) is either positive or negative, it
is, for every x ∈ I :

f ′s(x) = Σn≤sb
1−α
n ϕ′(bnx) = b1−α

s Σn≤s(
bn
bs

)1−αϕ′(bnx),

whence, by (2.2), there exists c2 = c− c1
B1−α−1 > 0 by hypothesis, such that:

|f ′s(x)| ≥ c2b
1−α
s (2.7)
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and therefore, for every s ∈ N, the sign of f ′s(x) in I is the same of ϕ′(bsx).
Consequently in every interval of unitary length, the function fk+ν−1 is
strictly increasing or decreasing in at most M([bk+ν−1] + 1) intervals, where
[bk+ν−1] denotes the integer part of bk+ν−1 ; by Lagrange theorem and by
(2.7) the length of an interval I where the oscillation of fk+ν−1 is not greater
than 1

Br (1 + Bα

Bα−1 ) = Cα

Br is given by:

|I| ≤ Cα

Brc2b
1−α
k+ν−1

.

Consider now the intervals J enclosed in the previous ones in which the
function fk+ν has an oscillation less or equal to Cα

Br . As before we have:

|J | ≤ Cα

Brc2b
1−α
k+ν

.

For every previous interval I there are

M([bk+ν ] + 1)|I| ≤ MCα2bk+ν

Brc2b
1−α
k+ν−1

,

such intervals and therefore :

m(F ) ≤ MCα2bk+ν

Brc2b
1−α
k+ν−1

Cα

Brc2b
1−α
k+ν

≤
2MC2

αb
α
k+ν

c22B
2rb1−α

k+ν−1

whence, by the choice of ν :

m(F ) ≤
2MC2

αb
α
k+ν

c22B
r(2−α)bα

2+1−α
k+ν−1

. (2.8)

By (2.4), for every ε > 0 it is possible to determine ko such that for every
k > ko it is bk+ν ≤ b1+ε

k+ν−1. Now it is possible to determine ε > 0 in such a way

that (1+ε)α ≤ α2−α+1 and therefore, for enough large k: bαk+ν ≤ bα
2−α+1

k+ν−1 .
By (2.8) we can conclude that there is a positive constant γ > 0 such that
m(F ) ≤ γ

Br(2−α) for enough large r and, by (2.1), the lemma is proven. �

Remark 2.3. It is worth noticing that it is possible to apply Lemma 2.2 even
in situations in which the conditions stated there do not hold, for example
if ϕ is such that it is possible to perform on it a geometrical transformation
obtaining a smooth function ψ in such a way that the corresponding func-
tions to ϕ and ψ have the same geometrical measure properties. For example
consider the function

ϕ(x) =
1 + sin(2πx)

4
if − 1

4
≤ x <

3
4
, ϕ(x+ 1) = ϕ(x) for every x ∈ R;

the hypotheses of Lemma 2.2 are not satisfied, since there exist points x such
that ϕ′(x) = 0. Consider now the function:

ψ(x) =
1
2

+2x−ϕ(x) if − 1
4
≤ x <

1
4
, ψ(x) =

3
2
−2x−ϕ(x) if

1
4
≤ x ≤ 3

4
,

ψ(x+ 1) = ψ(x) for every x ∈ R.
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It is a smooth function since it is nonnegative and continuous in R, piecewise
differentiable and 2− π

2 ≤ |ψ′(x)| ≤ 2+ π
2 for every x where ψ is differentiable.

Consider the function (2.3), where bn = dn with a fixed d ∈ N, consider
also the function:

fk(x) = Σn≤k
ϕ(bnx)
bαn

.

Let I be an interval where ϕ(bkx) is either strictly increasing or strictly
decreasing and therefore ϕ(bsx) for every s ≤ k is either strictly increasing or
strictly decreasing. But then also ψ(bsx) for s ≤ k is either strictly increasing
or decreasing. Therefore it is easy to check that if x′ and x” belong to I,
then, substituting ϕ by ψ in fk, we get:

fk(x′)− fk(x”) = (x′ − x”)Σn≤k
±2
dnα

− ψ(dkx′)− ψ(dkx”)
dkα

−Σn<k
ψ(dnx′)− ψ(dnx”)

dnα

whence:

|fk(x′)− fk(x”)| ≥ |x′ − x”|
{
dk(1−α)(2− π

2
)− 2

dα − 1
− (2 +

π

2
)
dk(1−α)

d1−α − 1

}
Let d be large enough that 2ρ = 2 − π

2 −
2+ π

2
d1−α−1 > 0; then fix ko in such

a way that for every k > ko it is dk(1−α)(2 − π
2 −

2+ π
2

d1−α−1 >
4

dα−1 . Then for
every k > ko it is:

|fk(x′)− fk(x”)| ≥ |x′ − x”|ρdk(1−α).

Then a valuation of the length of an interval I where fk has an oscillation
not greater than Cα

Br (see the proof of Lemma 2.2, where B = d ∈ N) is given
by

|I| ≤ Cα

ρdrdk(1−α)
.

From this point onwards the proof proceeds as the proof of Lemma 2.2.
Another example is given by the function

ϕ(x) =
1− cos(2πx)

2
x ∈ [0, 1]; ϕ(x+ 1) = ϕ(x) for every x ∈ R;

in this case we can consider the related smooth function:

ψ(x) = 4x− ϕ(x) if 0 ≤ x ≤ 1
2
; ψ(x) = 4(1− x)− ϕ(x) if

1
2
≤ x < 1;

ψ(x+ 1) = ψ(x) for every x ∈ R.

Repeating the procedure developed above it is easily seen that Lemma 2.2
holds.
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Lemma 2.4. Let f : [a, b] → R be an α-Hölder continuous function, (0 <
α ≤ 1), and let {Qi} be a cover of G constituted by 1

dk -meshes, with d ∈ N,
d > 1 and variable k ∈ N . Then there exists a sequence of finite covers
{Qn

i }i=1,...,kn
of G such that, for every s ≥ 2− α it is:

+∞∑
i=1

|Qi|s = lim
n→∞

∑
i=1,...,kn

|Qn
i |s.

As a consequence, for such values of s it is:

Ns(G) = lim
δ→0

inf{
∑

i

|Qi|s : G ⊆
⋃
Qi, Qi finite and |Qi| =

1
dk

< δ.}

(2.9)

Proof. If {Qi} is finite then put {Qn
i } = {Qi} for every n ∈ N . Otherwise

there exist meshes in {Qi} whose diameter is arbitrarily small and it is pos-
sible to execute the following construction.

Let 1
dl be the greatest edge of the meshes appearing in Qi and let

{Q1
i }i=1,...,k1 the (finite) cover of G constituted by 1

dl -meshes only.
Among all the 1

dl -meshes considered above, take only those appearing
in {Qi}.

Divide the remaining 1
dl -meshes in 1

dl+1 -meshes and consider only those
having a common point with G. Let {Q2

i }i=1,...,k2 be the cover of G consti-
tuted by the 1

dl -meshes appearing in {Qi} and by the 1
dl+1 -meshes disjoint

from the preceding ones and with at least one common point with G.
Iterate the procedure: at step n let {Qn

i }i=1,...,kn be the finite cover of
G constituted by all the 1

dl -meshes, the 1
dl+1 -meshes, . . . , the 1

dl+n−2 -meshes
appearing in {Qi} and by the 1

dl+n−1 -meshes disjoint from the preceding ones
and having at least one common point with G.

Divide the sum
∑

i=1,...,kn
|Qn

i |s (s > 0) in two parts: in the first one
put the contributes of all the elements appearing in the starting cover {Qi};
in the second part put the contributes of the remaining elements, let they be,
for every n ∈ N, {Tn

i } and let hn be their number. By construction, for every
n ∈ N the diameter |Tn

i | is constant with respect to i = 1, . . . , hn. Moreover:

hn ≤ L(
|Tn

i |√
2

)α 2m(Pn)
|Tn

i |2
= L(

√
2)2−α|Tn

i |α−2m(Pn),

where m(Pn) is the linear Lebesgue measure of the projection on the x-axis
of the set

⋃
i=1,...,hn

Tn
i . Therefore:∑

i=1,...,hn

|Tn
i |s ≤ L(

√
2)2−α|Tn

i |s−(2−α)m(Pn).

Since {Qi} is a cover of G, the sequence (Pn) is decreasing with re-
spect to the inclusion relation and limn→∞m(Pn) = 0. It follows that
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limn→∞
∑

i=1,...,hn
|Tn

i |s = 0, since s− (2− α) ≥ 0. On the other hand:

lim
n→∞

∑
i=1,...,kn

|Qn
i |s =

+∞∑
i=1

|Qi|s + lim
n→∞

∑
i=1,...,hn

|Tn
i |s

and Lemma 2.4 is proven. �

3. The main theorems

By the definition of H2−α(G), if f : [a, b] → R is α-Hölder continuous,
then

H2−α(G) ≤ limδ→0Nδ(G)δ2−α.

Lemmas 2.2 and 2.4 allow us to prove that, under the hypotheses of Lemma
2.2, the last inequality can be inverted. Indeed the following theorem holds:

Theorem 3.1. Let

f(x) =
∑
n∈N

ϕ(bnx)
bαn

, (0 < α < 1)

where ϕ is a smooth function and where (bn)n∈N is such that there exists
B > 1, B ∈ N for which bn+1 ≥ Bbn for every n ∈ N and (2.4) holds. Then,
if B1−α > 1+ c1

c , where c and c1 are as in (2.2), there exists a constant γ > 0
such that:

limδ→0Nδ(G)δ2−α ≤ γH2−α(G). (3.1)

Proof. Let {Qi} be a finite cover of G constituted by 1
dk -meshes, with k

variable in N, such that 1
dk < δ. By Lemma 2.2 passing to the g.l.b. we get,

for enough small δ:

inf
δ1<δ

Nδ1(G)δ2−α
1 ≤ γ1 inf{Σ|Qi|2−α, Qi finite,G ⊆

⋃
Qi, |Qi| < δ},

where δ1 is the minimum length of the edges of the elements of {Qi} and γ1

is a suitable constant. Passing to the limit, by Lemma 2.4, one gets:

limδ→0Nδ(G)δ2−α ≤ γ1N
2−α(G);

since there exists a constant A > 0 such that N2−α(G) ≤ AH2−α(G) (see
[4], 5.2), the thesis follows. �

Theorem 3.2. Let

f(x) =
∑
n∈N

ϕ(bnx)
bαn

,

where 0 < α < 1, ϕ is a smooth function and where (bn)n∈N is such that
there exist two numbers B > 1, B ∈ N and µ > 0 for which: bn+1 ≥ Bbn for
every n ∈ N and bn ≥ µbn+1 for every n ∈ N (whence (7.7)) holds). Then,
if B is enough large, the Hausdorff dimension of G is maximum, equal to
2 − α. Moreover there exists a constant C > 0 such that, for every interval
[a, b] ⊆ R it is H2−α(G) ≥ C(b− a) if the portion of G whose projection on
the x- axis is [a, b] is considered.
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Proof. It is easy to see that f is α-Hölder continuous and therefore the Haus-
dorff dimension of G is less than or equal to 2− α.

To prove the converse inequality we will use Theorem 3.1 of this Section.
Indeed consider, for every δ > 0, the cover of [0, 1] constituted by the intervals
[0, δ[, [δ, 2δ[, . . . , [pδ, (p+ 1)δ[, with p = [1δ ]. Let k ∈ N be such that:

2
bk+1

≤ δ <
2
bk

(3.2)

and let h = 1
4bk+1

. Since δ ≥ 2
bk+1

, in every interval of the cover there is an
interval whose length is 1

bk+1
, let

[
j

bk+1
,
j + 1
bk+1

[⊆ [lδ, (l + 1)δ[

for suitable j ∈ N. Therefore, for every l = 1, 2, . . . , p, the oscillation in
[lδ, (l + 1)δ[ is not less than

|f(
j

bk+1
+ h)− f(

j

bk+1
)| = |

+∞∑
n=1

ϕ[bn( j
bk+1

+ h)]− ϕ(bn j
bk+1

)

bαn
|.

Assume that c is the Lipschitz coefficient of ϕ and, as is not restrictive, that
ϕ(0) = 0, ϕ is positive and increasing in ]0, 1

4 ] and therefore ϕ( 1
4 ) > 0; we

have:

|f(
j

bk+1
+ h)− f(

j

bk+1
)| ≥

|ϕ( 1
4 )|

bαk+1

− c
n=k∑
n=1

1
4bk+1

bαn
− 2Σn≥k+2

1
bαn
. (3.3)

Then it is:

|f(
j

bk+1
+ h)− f(

j

bk+1
)| ≥ ϕ(

1
4
)4αhα − chα

41−α
[

1
bα1 b

1−α
k+1

+ . . .+
1

bαk b
1−α
k+1

]

− 2
bαk+2

[1 +
1
Bα

+ . . .] ≥ 4αhα[ϕ(
1
4
)− c

4B(k+1)(1−α)(Bα − 1)
− 2
Bα − 1

].

Therefore, if B is enough large, there exists a constant C1 > 0 such that
for every δ > 0 and for every interval [lδ, (l + 1)δ[ with l = 1, . . . , p, we have
that the oscillation of f in such an interval is greater than or equal to C1h

α

(for the method used here to obtain this inequality see the proof of Zhou
and He in Lemma 2.5 of [6], where the particular case of ϕ(x) = sin(x) is
considered).

Therefore it is Nδ(G) ≥ C1hα

δ2 , whence, by the hypothesis, for every
δ > 0 :

Nδ(G)δ2−α ≥ C1h
α

δα
≥ C2(

bk
bk+1

)α ≥ C2µ
α > 0.

It follows that limδ→0Nδδ
2−α ≥ C2µ

α > 0 and the thesis follows, since
this inequality implies, by previous Theorem 3.1, that it is also H2−α(G) > 0.
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Finally if in the preceding proof we consider that part of G whose projection
on the x-axis is the interval [a, b] instead of the interval [0, 1], we obtain:

H2−α(G) ≥ C2µ
α(b− a)

whence the thesis. �

As we have seen in Remark 2.3, Lemma 2.2 and therefore also Theorem
3.2, whose proof is essentially based upon Lemma 2.2, can be proved also
under other less restrictive hypotheses. For example we claim that:

Theorem 3.3. If d ∈ N is enough large, the graph of the Weierstrass function

f(x) = Σn∈N
sin(2πdnx)

dnα
, (0 < α < 1)

has Hausdorff dimension equal to 2− α. The same conclusion holds , if d is
enough large, for the following function introduced by Mandelbrot (1977):

g(x) = Σn∈N
1− cos(2πdnx)

dnα
, (0 < α < 1).

Proof. Indeed consider the function:

ϕ(x) =
1 + sin(2πx)

4
, −1

4
≤ x <

3
4
, ϕ(x+ 1) = ϕ(x) for every x ∈ R;

as we have seen in Remark 2.3, we can apply Lemma 2.2 and therefore also
Theorem 3.2 to this function, obtaining that the Hausdorff dimension of the
graph of the function:

Σn∈N
ϕ(dnx)
dnα

=
1
4
(Σn∈N

1
dnα

+ Σn∈N
sin(2πdnx)

dnα

coincides with 2 − α and obviously the same happens for the graph of the
function f. With the same procedure we prove the thesis about Mandelbrot
function: in this case we condider the function

ϕ(x) =
1− cos(2πx)

2
and the related smooth function ψ given in Remark 2.3. Then Theorem 3.2
is applicable and the thesis is proven. �

Theorem 3.4. Let

f(x) =
∑
n∈N

(−1)nϕ(bnx)
bαn

, (0 < α < 1)

where ϕ and (bn)n∈N are as in Theorem 3.2. Then, if B is enough large, both
the box dimension and the Hausdorff dimension of G are equal to 2− α.

Proof. As in the proof of Theorem 3.2 above, it is easy to see that f is α-
Hölder continuous and therefore the Hausdorff dimension of G is less than
or equal to 2 − α. To prove the converse inequality let δ > 0 and consider
the cover of [0, 1] : [0, δ[, [δ, 2δ[, . . . , [pδ, (p + 1)δ[, where p = [ 1δ ]. Let k ∈ N

be such that (3.2) holds and put h = 1
4bk+1

. Then proceed as in the proof of
Theorem 3.2, obtaining (3.3). Therefore there exists a constant C > 0 such
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that the oscillation of f in every interval [lδ, (l+ 1)δ], (0 ≤ l ≤ p), is not less
than Chα and we can conclude as in the proof of Theorem 3.2. �

References

[1] Besicovitch, A.S., Ursell, H.D., Sets of fractional dimensions (V): on dimen-
sional numbers of some continuous curves, Journal of the London Math. Soc.,
12(1937), 18-25.

[2] Falconer, K.J., The Geometry of Fractal Sets, Cambridge University Press,
1985.

[3] Falconer, K.J., Fractal Geometry, John Wiley & Sons, 1993.

[4] Mattila, P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge
University Press, 1995.

[5] Przytycki, F., Urbanski, M., On the Hausdorff dimension of some fractal sets,
Studia Math., 93(1989), 155-186.

[6] Zhou, S.P., He, G.L., On a class of Besicovitch functions to have exact box
dimension: a necessary and sufficient condition, Math. Nachr. 278(2005), no.
6, 730-734.

Loredana Biacino
Dipartimento di Matematica e Applicazioni ”R.Caccioppoli”
Via Cinzia, Monte Sant’Angelo, 80126 Napoli
e-mail: loredana.biacino2@unina.it


