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Some new properties of Generalized
Bernstein polynomials

Donatella Occorsio

Abstract. Let Bm(f) be the Bernstein polynomial of degree m. The
Generalized Bernstein polynomials

Bm,λ(f, x) =

∞∑
i=1

(−1)i+1

(
λ

i

)
Bi

m(f ;x), λ ∈ R+

were introduced in [13]. In the present paper some of their properties are
revisited and some applications are presented. Indeed, the stability and
the convergence of a quadrature rule on equally spaced knots is studied
and a class of curves depending on the shape parameter λ, including
both Bézier and Lagrange curves, is introduced.
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1. Introduction

The operator Bm,λ, introduced and studied in [13], is defined as

Bm,λ =
∞∑
i=1

(−1)i+1

(
λ

i

)
Bi

m, λ ∈ R+,

where Bi
m = Bm(Bi−1

m ), and Bm is the Bernstein operator. Bm,λ is a lin-
ear operator, not always positive, that maps bounded functions into poly-
nomials of degree at most m. The sequence {Bm,λ(f)}m has the property
of improving the order of convergence when the smoothness of the function
increases (see [11, 14]). For instance, assuming f ∈ C(2[λ])([0, 1]), λ ≥ 1, we
have |f − Bm,λ(f)| = O

(
1

mλ

)
. In this sense, the sequence {Bm,λ(f)}m pro-

duces a significant enhancement with respect to the behavior of the ordinary
Bernstein sequence.

Moreover the sequence {Bm,λ(f)}m includes both Bernstein polynomi-
als (λ = 1) and, as limit case, the Lagrange interpolating polynomial on
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equally spaced knots (λ → ∞). In spite of these mentioned properties, the
expression derived in [13] in the monomial basis (1, x, . . . , xm) is no easy
for the computation and, in addition, produces instability in the polynomial
evaluation.

In the present paper we first express Bm,λ(f) as the Bernstein polyno-
mial of a function g, suitable related to f. Therefore, the evaluation of Bm(g)
can be performed by de Casteljau scheme, which is a stable algorithm. More-
over, using Bm,λ(f) = Bm(g), we can revisit some proofs, like, for instance,
the property of mapping bounded functions into polynomials. In order to ex-
ploit the above mentioned ”good” properties, we consider two applications.

The first is the approximation of integrals
∫ 1

0
f(x)dx, obtained by replacing

the function f with Bm,λ(f). By this way, it is derived a simple quadrature
rule that we prove to be stable and convergent and whose order of accuracy as
faster decays as smoother is the integrand function f . Such kind of formulas
can be of interest since there are not so many polynomial quadrature rules
involving equally spaced points and having a ”good” behavior of the error.

The second application deals with the employment of {Bm,λ}λ in CAGD
(Computer Aided Geometric Design), by considering a possible generalization
of the well-known Bézier curves. Given a control polygon

P = [P0, . . . ,Pm], Pj ∈ R2,

we call the curves of parametric equations

Bm,λ[P0, . . . ,Pm](t) =
m∑
j=0

p
(λ)
m,j(t)Pj , 0 ≤ t ≤ 1,

Generalized Bézier curves. Curves in this class change continuously their
shape, ”bridging” the Bézier curve Bm[P0, . . . ,Pm] to the Lagrange interpo-
lating curve Lm[P0, . . . ,Pm]. Some generalization in this sense where intro-
duced and studied in [2], [3], [4], [15] (see also [9], [16]).

The outline of this paper is as follows. Section 2 contains the new vector
expression and some properties deducible from this. In Section 3 are stated
the announced applications, equipped with some numerical and graphical
tests. Finally, Section 4 will contain the proofs of the main results.

2. The Bm,λ(f) polynomials

For any continuous function f on the unit interval [0, 1] (f ∈ C0([0, 1])),
let Bm(f) be the m−th Bernstein polynomial

Bm(f ;x) =

m∑
k=0

pm,k(x)f

(
k

m

)
, pm,k(x) =

(
m

k

)
xk(1− x)m−k. (2.1)

Denoting by Bi
m(f) = Bm(Bi−1

m (f)), B0
m(f) = f the i-th iterate of the Bern-

stein polynomial, in [13] (see also [1], [8], [12]) the authors introduced and
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studied the following linear combination of Bi
m(f),

Bm,λ(f, x) =
∞∑
i=1

(−1)i+1

(
λ

i

)
Bi

m(f ;x), λ ∈ R+. (2.2)

For any fixed λ, {Bm,λ(f)}m, will be called sequence of generalized Bernstein
polynomials of parameter λ. For λ = 1, Bm,λ = Bm. The special case λ ∈ N
was studied in [12]. Here we will consider the case λ ≥ 1 . An expression of
the polynomial Bm,λ(f) is

Bm,λ(f ;x) =
m∑
j=0

p
(λ)
m,j(x)f

(
j

m

)
, 0 ≤ x ≤ 1, (2.3)

where

p
(λ)
m,j(x) =

∞∑
i=1

(
λ

i

)
(−1)i−1Bi−1

m (pm,i;x). (2.4)

Since by (2.3) the evaluation of Bm,λ is not feasible, first we derive

a vectorial form of the basis {p(λ)m,k}mk=0, by which for any function f , the

polynomial Bm,λ(f) coincides with the Bernstein polynomial Bm(g), g being
a function related to f .

Theorem 2.1. Assume λ ≥ 1. Setting

p(λ)
m (x) = [p

(λ)
m,0(x), p

(λ)
m,1(x), . . . , p

(λ)
m,m(x)]T ,

and

pm(x) = [pm,0(x), . . . , pm,m(x)]T ,

one has

p(λ)
m (x)T = pm(x)TCm,λ, (2.5)

where

Cm,λ = A−1[I − (I −A)λ] = [I − (I −A)λ]A−1 ∈ R(m+1)×(m+1), (2.6)

(A)i,j = pm,j(ti), i = 0, 1, . . . ,m, j = 1, 2, . . . ,m (2.7)

ti = i/m, i = 0, 1, . . . ,m, and I is the identity matrix of order (m+1). Then,
for any f ∈ C0([0, 1]), setting

fm = [f0, f1, . . . , fm]T , fi = f(ti), (2.8)

the polynomial Bm,λ(f) can be represented in the following form

Bm,λ(f ;x) = pm(x)TCm,λfm. (2.9)

In the case λ = k ∈ N, the matrix Cm,λ is given by

Cm,k = [I + (I −A) + (I −A)2 + . . . (I −A)k−1] (2.10)

= A−1[I − (I −A)k]

and the polynomial Bm,λ(f) is directly computed by using a very simple
algorithm, as the expression in (2.10) suggests. However, when λ is not an
integer, the matrix series in (2.2) can be obtained by an equivalent finite
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process. To do this, we need the following definition of matrix function on
the spectrum (see for instance [10]).

Definition 2.2. Let B a real matrix of order n and suppose that ξ1, ξ2, . . . , ξs
are the distinct eigenvalues of B of algebraic multiplicity n1, n2, . . . , ns, re-
spectively. Let f be defined on the spectrum of B. Then f(B) := Hn(f ;B),
where Hn(f) is the Hermite interpolating polynomial of degree less than n
that satisfies the interpolation conditions

Hn(f
(j); ξi) = f (j)(ξi), j = 0, 1, . . . , ni − 1, i = 1, 2, . . . , s.

Denote by ∆hf(x) = f(x + h) − f(x) the forward difference of the
function f and shift h ∈ R, and let be ∆i

h = ∆i−1
h (∆h). About the eigenvalues

of the matrix A we prove:

Proposition 2.3. The eigenvalues {ξm,i}mi=0 of the matrix A are

ξm,0 = ξm,1 = 1, ξm,i =
i−1∏
j=1

(
1− j

m

)
=

(
m

i

)
∆i

1
m
ei(0), i = 2, . . . ,m,

(2.11)
with ek(x) = xk, k ∈ N. Therefore, denoting by {µi}mi=1 the eigenvalues of
Cm,λ,

µm,0 = µm,1 = 1, µm,i =
1− (1− ξm,i)

λ

ξm,i
, i ≥ 2. (2.12)

For any set of knots x1, x2, . . . , xi, the so-called divided differences of a
given function f are defined recursively by

[x1; f ] = f(x1),

[x1, ..., xk; f ] =
[x2, ..., xk; f ]− [x1, ..., xk−1; f ]

xk − x1
, if xk ̸= xk−1

and, if f (i−1)(x1) exists,

[x1, x2, . . . , xi; f ] =
f (i−1)(x1)

(i− 1)!
, if x1 = x2 = · · · = xi, i ≥ 2.

Then, by using Proposition 2.3 and Definition 2.2, we can deduce

Corollary 2.4. Assume λ ≥ 1. Setting

σ(x) = [1− (1− x)λ]x−1,

we have

Cm,λ = Iσ(ξm,0)+

m∑
j=1

[ξm,0, ξm,1, . . . , ξm,j ;σ]

j−1∏
k=0

(A−ξm,kI) =: ρ(A). (2.13)

Therefore

Bm,λ(f ;x) = pm(x)T ρ(A)fm, (2.14)



Some new properties of Generalized Bernstein polynomials 151

Remark 2.5. By the previous result it follows that Bm,λ(f) can be considered
as the m−th Bernstein polynomial of the function g such that

gk := g(tk) = [ρ(A)fm]k, k = 0, 1, . . . ,m,

i.e.

Bm(g;x) = Bm,λ(f ;x) = pm(x)Tgm,

where

gm := [g0, g1, . . . , gm]T . (2.15)

As a consequence, we can now compute the polynomial Bm,λ(f) by
using the de Casteljau recursive scheme.

Remark 2.6. Let us denote by Lm(f) the Lagrange polynomial interpolating
f at the equally spaced knots tj , j = 0, 1, . . . ,m, i.e.

Lm(f ;x) =
m∑
j=0

lm,j(x)f (tj) = lm(x)T fm,

where

lm,j(x) =

m∏
j ̸=i=1

(x− ti)

(tj − ti)
, lm(x) = [lm,0(x), lm,1(x), . . . , lm,m(x)]T ,

and fm is defined in (2.8). By (2.9) and using pm(x)TA−1 = lm(x)T [15], it
follows

Bm,λ(f ;x) = Lm(h;x) = lm(x)Thm (2.16)

where

hm := [h0, h1, . . . , hm]T = Cm,λfm, hi = h(ti), i = 0, 1, . . . ,m, (2.17)

i.e. Bm,λ(f) is also the Lagrange polynomial interpolating the function h at
the equally spaced knots tj , j = 0, 1, . . . ,m.

As consequence of (2.16), it is very easy to revisit the proof of the next
result obtained in [13]:

For any m,

lim
λ→∞

Bm,λ(f ;x) = Lm(f ;x), ∀f ∈ C0([0, 1]), (2.18)

uniformly in x ∈ [0, 1]. Indeed, it immediately follows by (2.16), (2.17) and

lim
λ→∞

Cm,λ = A−1. (2.19)

Relation (2.18) allows to say that the sequence {Bm,λ}λ links continu-
ously the Bernstein operator to the Lagrange one.

In the next Proposition we derive another representation of Bm,λ(f) by
means of the finite difference of the function f at the point 0. This expression
generalizes the well-known relation

Bm(f ;x) =
m∑

k=0

(
m

k

)
xk∆k

1
m
f(0), (2.20)
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and it is useful to determine the closed expression of Bm,λ(ek), k = 1, 2, . . . ,
being ek(x) = xk, k ∈ N.

Theorem 2.5. Assume λ ≥ 1. Let M be the upper triangular matrix of ele-
ments (M)i,j =

(
m
i

)
∆i

1
m

ej(0), i = 0, 1, . . . ,m, j = 0, 1, . . . , i, and define

Mm,λ = M−1[I − (I −M)λ] = [I − (I −M)λ]M−1 ∈ R(m+1)×(m+1). (2.21)

For any f ∈ C0([0, 1]), setting

dm = [f(0),m∆ 1
m
f(0), . . . ,

(
m

k

)
∆k

1
m
f(0), ...,∆m

1
m
f(0)]T ,

the polynomial Bm,λ(f) can be represented in the following form

Bm,λ(f ;x) = xTMm,λdm. (2.22)

and also

Bm,λ(f ;x) = xT ρ(M)dm, (2.23)

where

ρ(M) = Iσ(ξm,0) +
m∑
j=1

[ξm,0, ξm,1, . . . , ξm,j ;σ]

j−1∏
k=0

(M − ξm,kI). (2.24)

σ(x) = [1− (1− x)λ]x−1 and ξm,i =
(
m
i

)
∆i

1
m

ei(0).

Remark 2.6. In view of (2.23), we derive

Bm,λ(ek;x) = xT ρ̃(A)kd̃k (2.25)

where ρ̃(A)k ∈ R(m+1)×k is the matrix formed by the first k columns of ρ(A)

and d̃k ∈ Rk is the vector formed by the first k components of d.

Remark 2.7. Denoting by Vm := Vm(t0, t1, . . . , tm) the Vandermonde ma-

trix w.r.t the knots t0, t1, . . . , tm, i.e. (Vm)i,j = tji , i = 0, 1, . . . ,m, j =
0, 1, . . . ,m, we get

Mm,λ = V−1
m Cm,λVm (2.26)

which easily follows by combining Vmdm = fm and xT = pT
mVm.

We conclude this section, giving some details about the computation of
polynomials Bm,λ(f). Since the polynomial Bm,λ(f ;x) is also the Bernstein
polynomial of the function g = Cmλf , it can be computed by using the de
Casteljau algorithm w.r.t. g. The algorithm is numerically stable and requires
m2 long operations, for any x ∈ [0, 1]. Since A is a centrosymmetric matrix
(i.e. ai,j = am−i,m−j , i, j = 0, 1, 2, . . . ,m), we deduce that its construction

can be performed in
[
m+1
2

]3
long operations. Let us distinguish between the

case λ integer or not. If λ = k ∈ N, by (2.10), the global cost to construct

Cm,k is (k−1)
[
m+1
2

]3
. A significant reduction is obtained by choosing k = 2p,

whereas, by using

Cm,2p = Cm,2p−1 + (I −A)2
p−1

Cm,2p−1 ,
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the computational effort is almost m3 log2 k. (see [15].)

In the general case λ ∈ R+, we have to use (2.13) and the global cost for
compute Cm,λ increases, requiring almost (m−2)m3/2 ∼ m4/2. Even though
the computation of Cm,λ requires the major computational effort, for fixed
values of m and λ its construction can be performed only once.

3. Two applications

In this section we discuss two different applications.

3.1. A quadrature rule on equally spaced knots

As we have said, quadrature rules involving equally spaced points and
having a ”good” behavior of the error can be of interest. Indeed, the Newton-
Cotes rules present catastrophic instability, since they are based on interpo-
lation processes on equally spaced knots. About the error of composite rules,
like Trapezoidal or Simpson rule, they suffer from saturation phenomena,
and the error decays like O( 1

m2 ) and O( 1
m4 ), respectively. Here we revisit the

following quadrature rule suggested in [12],

∫ 1

0

f(x)dx =

∫ 1

0

Bm,k(f ;x)dx+Rk
m(f) =: Σm(f) +Rk

m(f), (3.1)

where λ = k ∈ N.
Since for any j = 0, 1, . . . ,m∫ 1

0

pm,j(x)dx =
1

m+ 1
,

by (2.9) and (2.10), we derive

Σm(f) =
1

m+ 1

m∑
j=0

(
m∑
i=0

(Cm,k)i,j

)
f(tj) :=

m∑
j=0

D
(k)
j f(tj). (3.2)

Now we prove that the rule is numerically stable and convergent and that
for smooth functions the rate of convergence improves as the parameter k
increases.

Theorem 3.1. With the notation used in (3.1)-(3.2),

sup
m

m∑
j=0

|D(k)
j | < ∞, (3.3)

and for any f ∈ C2k([0, 1]), k ≥ 2, 2k < m

|Rk
m(f)| ≤ C

mk

(
∥f∥∞ + ∥f (2k)∥∞

)
, (3.4)

where C is a positive constant independent of f and m.
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Now we show the performance of the method by some numerical tests.
In the tables for each degree m and for the specified values ok k, we report
the values obtained in computing the quadrature sum (3.2) in 16−digits
precision, comparing also with the results obtained by using the composite
Trapezoidal and Simpson rules. For these rules the value of m represents the
number of function evaluations.

Example 3.2. ∫ 1

0

arctan(x)

(1 + x2)3
dx

In this example the exact value is 0.1713839674246280. Here f ∈ C∞([0, 1]).
The apparent slow convergence depends on the ”fast” increasing values of
the seminorm ∥f (2k)∥∞. For instance ∥f (16)∥∞ ∼ 1.2× 1015.

m k = 5 k = 8 k = 16

4 0.17 0.17 0.17

8 0.171 0.171 0.17138

16 0.17138 0.171383 0.171383

32 0.17138396 0.17138395 0.17138396

64 0.171383967 0.1713839674 0.17138396742

128 0.1713839674 0.171383967424 0.1713839674244628

256 0.171383967424 0.171383967424628

512 0.171383967424628

m Trapezoidal m Simpson

256 0.17138 64 0.173839

512 0.171383 128 0.17383967

4096 0.17138396 256 0.173839674

16384 0.171383967 512 0.1738396742

131072 0.1713839674 1024 0.17383967424

1048576 0.171383967424 2048 0.1713839674246

4194304 0.17138396742462 4096 0.171383967424628

Example 3.3. ∫ 1

0

(1− x)5π

1 + x3
dx

In this example the exact value is 0.0597973223176919. Since the function
f ∈ C15([0, 1]), in view of the Theorem 3.1, the error behaves like O

(
1

m7

)
.

As we can see the machine precision is attained for m = 1024, k = 7,
whereas according to the estimate (3.4) and taking into account the high
value of the seminorm ∥f (14)∥∞ ∼ 1.5 × 1015, we can expect only 5 exact
digits. We remark that the order of convergence improves even though k
exceeds the maximum value assuring estimate (3.4).
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m k = 7 k = 16 k = 32

32 0.059 0.059797 0.0597973

64 0.059797 0.059797322 0.0597973223

128 0.059797322 0.059797322317 0.0597973223176919

256 0.05979732231 0.0597973223176919

512 0.05979732231769

1024 0.0597973223176919

m Trapezoidal m Simpson

256 0.059 64 0.05979

1024 0.05979 128 0.0597973

2048 0.059797 512 0.059797322

16384 0.05979732 1024 0.0597973223

131072 0.0597973223 4096 0.059797322317

2097152 0.171383967424 8192 0.05979732231769

3600000 0.0597973223176 32768 0.059797322317691

As can be observed, the number of function’s evaluation required w.r.t.
Trapezoidal and Simpson rules is drastically reduced. This aspect can justify
the high computational cost needed for the construction of Cm,k in (3.2).

3.2. Generalized Bézier curves

Finally we want to show some properties of the parametric curves based
onBm,λ operator and that in some sense generalize the classical Bézier curves.
Such a kind of curves were introduced and studied in [15] in the special case
λ ∈ N.

The class of Polya curves represent, for instance, a family of polynomial
curves which generalizes Bézier and Lagrange curves (see [2],[3], [4]).

Definition 3.4. Let P = [P0, . . . ,Pm]T ,Pj ∈ R2 be a given control polygon.
Curves of parametric equations

Bm,λ[P0, . . . ,Pm](t) =
m∑
j=0

p
(λ)
m,j(t)Pj , 0 ≤ t ≤ 1, λ ∈ R+, (3.5)

with blending functions p
(λ)
m,j given in (2.4), will be called GB(λ) curves.

In particular the curve of equation (3.5) reduces to Bézier curve for λ = 1

Bm[P0, . . . ,Pm](t) =
m∑
j=0

pm,j(t)Pj , 0 ≤ t ≤ 1, (3.6)

while, for λ → ∞, (3.5) represents the Lagrange curve of the same control
polygon P.

The flexible parameter λ is used in order to model different shapes w.r.t
the same control polygon P, obtaining as extreme cases the Bézier curve and
the Lagrange interpolating curve. In this sense λ is a ”shape parameter”.
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It is known (see [7]) that relevant geometric properties of paramet-
ric curves descend from corresponding properties of the blending functions

{p(λ)m,k}. We now collect some properties satisfied by GB(λ) curves.

• Coordinate system independence
GB(λ) curves will not change if the coordinate system is changed, since

m∑
j=0

p
(λ)
m,j(x) = 1.

Indeed, this is proved taking into account that the sum of the elements
of each row of Cm,λ is equal to 1.

• Smoothness
GB(λ) are polynomial curves.

• Endpoint Interpolation Indeed,

Bm,λ[P0, . . . ,Pm](0) = P0, Bm,λ[P0, . . . ,Pm](1) = Pm,

since Bm,λ(f ; 0) = f(0), Bm,λ(f ; 1) = f(1) [13].
• Symmetry

Curves are symmetric if they do not change under a reverse reordering
of the control points sequence, i.e. if and only if

Bm,λ[P0, . . . ,Pm](t) = Bm,λ[Pm, . . . ,P0](1− t),

which holds taking into account

p
(λ)
m,j(x) = p

(λ)
m,m−j(1− x), j = 0, . . . ,m. (3.7)

• Preservation of points and lines

This is equivalent to
∑m

j=0 p
(λ)
m,j(x) = 1,

∑m
k=0 kp

(λ)
m,k(x) = mx. The

first relation is equivalent to the coordinate system independence, while
the second holds in view of [13]

Bm,λ(e1; t) = e1(t), e1(t) = t.

• Nondegeneracy
The curve cannot collapse to a single point, and this is implied from the

linear independence of the blending functions {p(λ)m,k}.
• Numerical stability

Since GB(λ) are the Bézier curves of the polygon

Tλ := ρ(A)[P0, . . . ,Pm], (3.8)

the rendering algorithm is essentially the de Casteljau recursive scheme
applied to the new control polygon Tλ.

Moreover, GB(λ) curves satisfy all the properties of the Bézier curves
w.r.t. the new control polygon Tλ.

We conclude proposing two graphical examples showed in Figures 1 and
2. Here, for two given control polygons of 5 and 9 vertices, respectively, the
curves GB(λ) are rendered for different shape parameter values.
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Figure 1. λ = 1, 3, 7.1, 11, 19.9

−10 0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

Figure 2. λ = 1, 3, 8.9, 40, 120

4. The proofs

Proof of Proposition 2.3. It is known that [5]

Bm(qi;x) = ξm,iqi(x), m ≥ i, qi ∈ Pi. (4.1)

i.e., ξm,i in (2.11) are the eigenvalues of the operator Bm and qi, i =
0, . . . ,m are the corresponding eigenfunctions. Setting

pm(x) = [pm,0(x), . . . , pm,m(x)]T , qm(x) = [q0(x), . . . , qm(x)]T ,

γi = [qi(0), qi(1/m), . . . , qi(1)]
T ,

Γ = [γ0, γ1, . . . , γm], Ψ = diag[ξm,0, ξm,1, . . . , ξm,m],
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(4.1) can be rewritten as

pm(x)T γi = qi(x)ξm,i, i = 0, . . . ,m,

that is
pm(x)TΓ = qm(x)TΨ,

and evaluating at x = t0, t1, . . . , tm, it follows

AΓ = ΓΨ,

where A is the matrix in (2.7). Since {qi}mi=0 is a basis for the space Pm, Γ is
nonsingular, and by

A = ΓΨΓ−1, (4.2)

the proposition follows. �
In order to prove Theorem 2.1, we need the following

Theorem 4.1. [10, Th. 3, p.328] Let B a real matrix of order n and suppose
that z1, z2, . . . , zs are the distinct eigenvalues of B of algebraic multiplicity
n1, n2, . . . , ns, respectively. Let the function f(z) have a Taylor series about
z0 ∈ R

f(z) =

∞∑
ν=0

αν(z − z0)
ν

with radius of convergence r. Then the function f(B) is defined and is given
by

f(B) =
∞∑
ν=0

αν(B − z0I)
ν

if and only if the distinct eigenvalues of A satisfy one of the following condi-
tions:

1. |zk − z0| < r;
2. |zk − z0| = r and the series for f (nk−1)(z) is convergent at the point

z = zk, 1 ≤ k ≤ s.

Proof of Theorem 2.1. We recall the following representation given in [15]

Bi
m(f ;x) = pT

mAi−1fm. (4.3)

Therefore (2.3) becomes

Bm,λ(f ;x) = pm(x)T
∞∑
i=1

(−1)i+1

(
λ

i

)
Ai−1fm. (4.4)

Denoting by {φm,i := 1 − ξm,i}mi=0 the eigenvalues of I − A, by Proposition
2.3 it follows 0 ≤ φm,i < 1, i = 1, 2, . . . ,m and

∞∑
i=0

(−1)i
(
λ

i

)
Ai = (I −A)λ, λ ≥ 1. (4.5)

The proposition is completely proved combining last relation with (4.4). �
Proof of Theorem 2.5. First we prove

Bi
m(f ;x) = xTM i−1dm. (4.6)
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For i = 1 (4.6) holds, in view of (2.20). Assume that (4.6) holds for i. By
using (2.20)

Bi+1
m (f ;x) = Bm(Bi

m(f);x) =

m∑
l=0

Bm(el;x)

m∑
k=0

M i−1
l,k

(
m

k

)
∆k

1
m
f(0)

=
m∑
l=0

m∑
j=0

xj

(
m

j

)
∆j

1
m

el(0)
m∑

k=0

M i−1
l,k

(
m

k

)
∆k

1
m
f(0)

=

m∑
j=0

xj
m∑

k=0

(
m

k

)
∆k

1
m
f(0)

m∑
l=0

Mi,lM
i−1
l,k = xTM idm.

By induction (4.6) is true for every i. Following the same arguments used in
the proof of Theorem 2.1, under the assumption λ ≥ 1, we get

Bm,λ(f, x) = xT
∞∑
i=1

(−1)i+1

(
λ

i

)
M i−1dm = xTM−1[I − (I −M)λ]dm. �

Proof of Theorem 3.1. In order to prove (3.3), we start from

m∑
j=0

|D(k)
j | = 1

m+ 1

m∑
j=0

∣∣∣∣∣
m∑
i=0

(Cm,k)i,j

∣∣∣∣∣ ≤ max
0≤i≤m

m∑
j=0

|(Cm,k)i,j | = ∥Cm,k∥∞

and by (2.10),

m∑
i=0

|D(k)
j | ≤ ∥Cm,k∥∞ ≤ ∥I∥∞ + ∥I −A∥∞ + ∥I −A∥2∞ + · · ·+ ∥I −A∥k−1

∞

≤ 1 + 2 + · · ·+ 2k−1 = 2k − 1, since ∥A∥∞ = 1.

To prove (3.4), we use [12]

∥f −Bm,k(f)∥∞ ≤ m−k
2k∑
ν=0

bν∥f (ν)∥∞

(see also [17]) where bν are positive constants independent of f . Therefore,
since [6, p.310, Lemma 2.1]

2k∑
ν=0

bν∥f (ν)∥∞ ≤ C(∥f∥∞ + ∥f (2k)∥∞),

(3.4) follows. �
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curve, Math. Meth. in C.A.G.D., Lyche T. and Shumaker L. eds, Academic
Press, 1989, 71–85.

[4] Barry, P.J., Goldman, R.N., Shape parameter deletion for Pólya curves, Nu-
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