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On the nonlocal initial value problem
for first order differential systems

Octavia Nica and Radu Precup

Abstract. The aim of the is to study the existence of solutions of ini-
tial value problems for nonlinear first order differential systems with
nonlocal conditions. The proof will rely on the Perov, Schauder and
Leray-Schauder fixed point principles which are applied to a nonlinear
integral operator splitted into two parts, one of Fredholm type for the
subinterval containing the points involved by the nonlocal condition, and
an another one of Volterra type for the rest of the interval. The novelty
in this paper is that this approach is combined with the technique that
uses convergent to zero matrices and vector norms.
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1. Introduction

In this paper we deal with the nonlocal initial value problem for the
first order differential system

x′ (t) = f (t, x (t) , y(t))

y′ (t) = g (t, x (t) , y(t)) (a.e. on [0, 1])

x (0) +
m∑
k=1

akx(tk) = 0

y (0) +
m∑
k=1

ãky(tk) = 0.

(1.1)

Here f, g : [0, 1]×R2 → R are Carathéodory functions, tk are given points
with 0 ≤ t1 ≤ t2 ≤ ... ≤ tm < 1 and ak, ãk are real numbers with

1 +
m∑
k=1

ak 6= 0 and 1 +
m∑
k=1

ãk 6= 0.
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Notice that the nonhomogeneous nonlocal initial conditions
x (0) +

m∑
k=1

akx(tk) = x0

y (0) +
m∑
k=1

ãky(tk) = y0

can always be reduced to the homogeneous ones (with x0 = y0 = 0) by the
change of variables x1(t) := x(t)− a x0 and y2(t) := y(t)− ã y0, where

a =

(
1 +

m∑
k=1

ak

)−1

and ã =

(
1 +

m∑
k=1

ãk

)−1

.

According to [2], Problem (1.1) is equivalent to the following integral system
in C [0, 1]2 :

x(t) = −a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds

y(t) = −ã
m∑
k=1

ãk

∫ tk

0

g (s, x (s) , y(s)) ds+
∫ t

0

g (s, x (s) , y(s)) ds.

This can be viewed as a fixed point problem in C [0, 1]2 for the completely
continuous operator T = (T1, T2), T : C [0, 1]2 → C [0, 1]2 , where T1 and T2

are given by

T1(x, y)(t) = −a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds,

T2(x, y)(t) = −ã
m∑
k=1

ãk

∫ tk

0

g (s, x (s) , y(s)) ds+
∫ t

0

g (s, x (s) , y(s)) ds.

Operators T1 and T2 appear as sums of two integral operators, one of Fred-
holm type, whose values depend only on the restrictions of functions to
[0, tm], and the other one, a Volterra type operator depending on the re-
strictions to [tm, 1] , as this was pointed out in [3]. Thus, T1 can be rewritten
as T1 = TF1 + TV1 , where

TF1(x, y)(t) =



−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds,

if t < tm

−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ tm

0

f (s, x (s) , y(s)) ds,

if t ≥ tm
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and

TV1(x, y)(t) =


0, if t < tm∫ t

tm

f (s, x (s) , y(s)) ds, if t ≥ tm.

Similarly, T2 = TF2 + TV2 , where

TF2(x, y)(t) =



−ã
m∑
k=1

ãk

∫ tk

0

g (s, x (s) , y(s)) ds+
∫ t

0

g (s, x (s) , y(s)) ds,

if t < tm

−ã
m∑
k=1

ãk

∫ tk

0

g (s, x (s) , y(s)) ds+
∫ tm

0

g (s, x (s) , y(s)) ds,

if t ≥ tm

and

TV2(x, y)(t) =


0, if t < tm∫ t

tm

g (s, x (s) , y(s)) ds, if t ≥ tm.

This allows us to split the growth condition on the nonlinear terms f(t, x, y)
and g(t, x, y) into two parts, one for t ∈ [0, tm] and another one for t ∈
[tm, 1] , in a such way that one reobtains the classical growth when tm = 0,
that is for the local initial condition x(0) = 0. In what follows, the notation
|x|C[a,b] stands for the max-norm on C [a, b]

|x|C[a,b] = maxt∈[a,b] |x(t)| ,

while ‖x‖C[a,b] denotes the Bielecki norm

‖x‖C[a,b] =
∣∣∣x (t) e−θ(t−a)

∣∣∣
C[a,b]

for some suitable θ > 0.
Nonlocal initial value problems were extensively discussed in the lit-

erature by different methods (see for example [2], [3], [5], [6], [8], [10]). The
results in the present paper extend to systems those established for equations
in [3]. The method could be adapted to treat systems of evolution equations
as this was done for equations in [4].

In the next section three different fixed point principles will be used in
order to prove the existence of solutions for the semilinear problem, namely
the fixed point theorems of Perov, Schauder and Leray-Schauder (see [10]).
In all three cases a key role will be played by the so called convergent to
zero matrices. A square matrix M with nonnegative elements is said to be
convergent to zero if

Mk → 0 as k →∞.

It is known that the property of being convergent to zero is equivalent to
each of the following three conditions (for details see [10], [11]):
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(a) I −M is nonsingular and (I −M)−1 = I +M +M2 + ... (where I
stands for the unit matrix of the same order as M);

(b) the eigenvalues of M are located inside the unit disc of the complex
plane;

(c) I −M is nonsingular and (I −M)−1 has nonnegative elements.

The following lemma, whose proof is immediate from characterization
(b) of convergent to zero matrices, will be used in the sequel:

Lemma 1.1. If A is a square matrix that converges to zero and the elements
of an other square matrix B are small enough, then A+B also converges to
zero.

We finish this introductory section by recalling (see [1], [10]) three fun-
damental results which will be used in the next sections. LetX be a nonempty
set. By a vector-valued metric on X we mean a mapping d : X ×X → Rn

+

such that

(i) d(u, v) ≥ 0 for all u, v ∈ X and if d(u, v) = 0 then u = v;
(ii) d(u, v) = d(v, u) for all u, v ∈ X;
(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.

Here, if x, y ∈ Rn, x = (x1, x2, ..., xn), y = (y1, y2, ..., yn), by x ≤ y we mean
xi ≤ yi for i = 1, 2, ..., n. We call the pair (X, d) a generalized metric space.
For such a space convergence and completeness are similar to those in usual
metric spaces.

An operator T : X → X is said to be contractive (with respect to the
vector-valued metric d on X) if there exists a convergent to zero matrix M
such that

d(T (u), T (v)) ≤Md(u, v) for all u, v ∈ X.

Theorem 1.2 (Perov). Let (X, d) be a complete generalized metric space and
T : X → X a contractive operator with Lipschitz matrix M. Then T has a
unique fixed point u∗ and for each u0 ∈ X we have

d(T k(u0), u∗) ≤Mk(I −M)−1d(u0, T (u0)) for all k ∈ N.

Theorem 1.3 (Schauder). Let X be a Banach space, D ⊂ X a nonempty
closed bounded convex set and T : D → D a completely continuous operator
(i.e., T is continuous and T (D) is relatively compact). Then T has at least
one fixed point.

Theorem 1.4 (Leray–Schauder). Let (X, || . ||) be a Banach space, R > 0,
BR(0;X) = {u ∈ X : ‖u‖ ≤ R} and T : BR(0;X) → X a completely
continuous operator. If ||u|| < R for every solution u of the equation u =
λT (u) and any λ ∈ (0, 1), then T has at least one fixed point.

Throughout the paper we shall assume that the following conditions are
satisfied:

(H1) 1 +
m∑
k=1

ak 6= 0 and 1 +
m∑
k=1

ãk 6= 0.
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(H2) f, g : [0, 1]×R2 → R is such that f(., x, y), g(., x, y) are measurable
for each (x, y) ∈ R2 and f(t, ., .), g(t, ., .) are continuous for almost all t ∈
[0, 1].

2. Nonlinearities with the Lipschitz property.
Application of Perov’s fixed point theorem

Here we show that the existence of solutions of problem (1.1) follows
from Perov’s fixed point theorem in case that f, g satisfy Lipschitz conditions
in x and y :

|f(t, x, y)− f(t, x, y)| ≤

{
b1 |x− x|+ b̃1 |y − y| if t ∈ [0, tm]

c1 |x− x|+ c̃1 |y − y| if t ∈ [tm, 1] ,
(2.1)

|g(t, x, y)− g(t, x, y)| ≤

{
B1 |x− x|+ B̃1 |y − y| if t ∈ [0, tm]

C1 |x− x|+ C̃1 |y − y| if t ∈ [tm, 1]
(2.2)

for all x, y, x, y ∈ R.

Theorem 2.1. If f, g satisfy the Lipschitz conditions (2.1), (2.2) and the ma-
trix

M0 :=

[
b1tmA1 b̃1tmA1

B1tmA2 B̃1tmA2

]
(2.3)

converges to zero, then problem (1.1) has a unique solution.

Proof. We shall apply Perov’s fixed point theorem in C [0, 1]2 endowed with
the vector norm ‖.‖ defined by

‖u‖ = (‖x‖ , ‖y‖)

for u = (x, y) , where for z ∈ C [0, 1] , we let

‖z‖ = max
{
|z|C[0,tm] , ‖z‖C[tm,1]

}
.

We have to prove that T is contractive, more exactly that

‖T (u)− T (u)‖ ≤Mθ ‖u− u‖

for all u = (x, y), u = (x, y) ∈ C [0, 1]2 and some matrix Mθ converging to
zero. To this end, let u = (x, y), u = (x, y) be any elements of C [0, 1]2 . For
t ∈ [0, tm] , if we denote

A1 := 1 + |a|
m∑
k=1

|ak| ,
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we have

|T1(x, y)(t)− T1(x, y)(t)|

=

∣∣∣∣∣−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds

+a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds−
∫ t

0

f (s, x (s) , y(s)) ds

∣∣∣∣∣
≤ A1

∫ tm

0

|f (s, x (s) , y(s))− f (s, x (s) , y(s))| ds

≤ b1tmA1 |x− x|C[0,tm] + b̃1tmA1 |y − y|C[0,tm] .

Taking the supremum, we obtain that

|T1(x, y)− T1(x, y)|C[0,tm] ≤ b1tmA1 |x− x|C[0,tm] + b̃1tmA1 |y − y|C[0,tm] .

(2.4)
For t ∈ [tm, 1] and any θ > 0, we have

|T1(x, y)(t)− T1(x, y)(t)|

=

∣∣∣∣∣−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds

+a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds−
∫ t

0

f (s, x (s) , y(s)) ds

∣∣∣∣∣
≤ b1tmA1 |x− x|C[0,tm] + b̃1tmA1 |y − y|C[0,tm]

+
∫ t

tm

(c1 |x(s)x− x(s)|+ c̃1 |y(s)− y(s)| ) ds.

The last integral can be further estimated as follows:∫ t

tm

(c1 |x(s)x− x(s)|+ c̃1 |y(s)− y(s)| ) ds

= c1

∫ t

tm

|x(s)− x(s)| · e−θ(s−tm) · eθ(s−tm)ds

+c̃1
∫ t

tm

|y(s)− y(s)| · e−θ(s−tm) · eθ(s−tm)ds

≤ c1
θ
eθ(t−tm) ‖x− x‖C[tm,1]

+
c̃1
θ
eθ(t−tm) ‖y − y‖C[tm,1]

.

Thus

|T1(x, y)(t)− T1(x, y)(t)|
≤ b1tmA1 |x− x|C[0,tm] + b̃1tmA1 |y − y|C[0,tm]

+
c1
θ
eθ(t−tm) ‖x− x‖C[tm,1]

+
c̃1
θ
eθ(t−tm) ‖y − y‖C[tm,1]

.
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Dividing by eθ(t−tm) and taking the supremum when t ∈ [tm, 1], we obtain

‖T1(x, y)− T1(x, y)‖C[tm,1]
(2.5)

≤ b1tmA1 |x− x|C[0,tm] + b̃1tmA1 |y − y|C[0,tm]

≤ c1
θ
‖x− x‖C[tm,1]

+
c̃1
θ
‖y − y‖C[tm,1]

.

Now (2.4) and (2.5) imply that

‖T1(x, y)− T1(x, y)‖ ≤
(
b1tmA1 +

c1
θ

)
‖x− x‖+

(
b̃1tmA1 +

c̃1
θ

)
‖y − y‖ .

(2.6)
Similarly

‖T2(x, y)− T2(x, y)‖≤
(
B1tmA2 +

C1

θ

)
‖x− x‖+

(
B̃1tmA2 +

C̃1

θ

)
‖y − y‖ ,

(2.7)
where

A2 = 1 + |ã|
m∑
k=1

|ãk| .

Using the vector norm we can put both inequalities (2.6), (2.7) under the
vector inequality

‖T (u)− T (u)‖ ≤Mθ ‖u− u‖ ,
where

Mθ =

[
b1tmA1 + c1

θ b̃1tmA1 + c̃1
θ

B1tmA2 + C1
θ B̃1tmA2 + C̃1

θ

]
. (2.8)

Clearly matrix Mθ can be represented as Mθ = M0 +M1, where

M1 =

[
c1
θ

c̃1
θ

C1
θ

C̃1
θ

]
.

Since M0 is assumed to be convergent to zero, from Lemma 1.1 we have that
Mθ also converges to zero for large enough θ > 0. The result follows now
from Perov’s fixed point theorem. �

3. Nonlinearities with growth at most linear.
Application of Schauder’s fixed point theorem

Here we show that the existence of solutions of problem (1.1) follows
from Schauder’s fixed point theorem in case that f, g satisfy instead of the
Lipschitz condition the more relaxed condition of at most linear growth:

|f(t, x, y)| ≤

{
b1 |x|+ b̃1 |y|+ d1 if t ∈ [0, tm]

c1 |x|+ c̃1 |y|+ d2 if t ∈ [tm, 1] ,
(3.1)
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|g(t, x, y)| ≤

{
B1 |x|+ B̃1 |y|+D1 if t ∈ [0, tm]

C1 |x|+ C̃1 |y|+D2 if t ∈ [tm, 1] .
(3.2)

Theorem 3.1. If f, g satisfy (3.1), (3.2) and the matrix (2.3) converges to
zero, then problem (1.1) has at least one solution.

Proof. In order to apply Schauder’s fixed point theorem, we look for a
nonempty, bounded, closed and convex subset B of C [0, 1]2 so that T (B) ⊂
B. Let x, y be any elements of C [0, 1] .
For t ∈ [0, tm] , we have

|T1(x, y)(t)| =

∣∣∣∣∣−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds

∣∣∣∣∣
≤ A1

∫ tm

0

|f (s, x (s) , y(s))| ds

≤ b1tmA1 |x|C[0,tm] + b̃1tmA1 |y|C[0,tm] + d1tmA1.

Taking the supremum, we obtain that

|T1(x, y)|C[0,tm] ≤ b1tmA1 |x|C[0,tm] + b̃1tmA1 |y|C[0,tm] . (3.3)

For t ∈ [tm, 1] and any θ > 0, we have

|T1(x, y)(t)| =

∣∣∣∣∣−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds

∣∣∣∣∣
≤ b1tmA1 |x|C[0,tm] + b̃1tmA1 |y|C[0,tm] + d1tmA1

+
∫ t

tm

(c1 |x(s)|+ c̃1 |y(s)|+ d2 ) ds

≤ b1tmA1 |x|C[0,tm] + b̃1tmA1 |y|C[0,tm] + d1tmA1 + (1− tm)d2

+ c1

∫ t

tm

|x(s)| · e−θ(s−tm) · eθ(s−tm)ds

+ c̃1

∫ t

tm

|y(s)| · e−θ(s−tm) · eθ(s−tm)ds

≤ b1tmA1 |x|C[0,tm] + b̃1tmA1 |y|C[0,tm] + c0

+
c1
θ
eθ(t−tm) ‖x‖C[tm,1]

+
c̃1
θ
eθ(t−tm) ‖y‖C[tm,1]

,

where c0 = d1tmA1 +(1− tm)d2. Dividing by eθ(t−tm) and taking the supre-
mum, it follows that

‖T1(x, y)‖C[tm,1]
≤ b1tmA1 |x|C[0,tm] + b̃1tmA1 |y|C[0,tm] (3.4)

+
c1
θ
‖x‖C[tm,1]

+
c̃1
θ
‖y‖C[tm,1]

+ c0.
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Clearly (3.3), (3.4) give

‖T1(x, y)‖ ≤
(
b1tmA1 +

c1
θ

)
‖x‖+

(
b̃1tmA1 +

c̃1
θ

)
‖y‖+ c̃0, (3.5)

where c̃0 = max {d1tmA1, c0} . Similarly

‖T2(x, y)‖ ≤
(
B1tmA2 +

C1

θ

)
‖x‖+

(
B̃1tmA2 +

C̃1

θ

)
‖y‖+ C̃0, (3.6)

with C̃0 = max {D1tmA2, C0} . Now (3.5), (3.6) can be put together as[
‖T1(x, y)‖
‖T2(x, y)‖

]
≤Mθ

[
‖x‖
‖y‖

]
+

[
c̃0

C̃0

]
,

where matrix Mθ is given by (2.8) and converges to zero for large enough
θ > 0. Next we look for two positive numbers R1, R2 such that if ‖x‖ ≤
R1, ‖y‖ ≤ R2, then ‖T1(x, y)‖ ≤ R1, ‖T2(x, y)‖ ≤ R2. To this end it is
sufficient that

(
b1tmA1 + c1

θ

)
R1 +

(
b̃1tmA1 + c̃1

θ

)
R2 + c̃0 ≤ R1(

B1tmA2 + C1
θ

)
R1 +

(
B̃1tmA2 + C̃1

θ

)
R2 + C̃0 ≤ R2,

(3.7)

or equivalently

Mθ

[
R1

R2

]
+

[
c̃0

C̃0

]
≤

[
R1

R2

]
,

whence [
R1

R2

]
≥ (I −Mθ)

−1

[
c̃0

C̃0

]
.

Notice that I −Mθ is invertible and its inverse (I −Mθ)
−1 has nonnegative

elements since Mθ converges to zero. Thus, if

B =
{
(x, y) ∈ C[0, 1]2 : ‖x‖ ≤ R1, ‖y‖ ≤ R2

}
,

then T (B) ⊂ B and Schauder’s fixed point theorem can be applied. �

4. More general nonlinearities.
Application of the Leray-Schauder principle

We now consider that nonlinearities f, g satisfy more general growth
conditions, namely:

|f(t, u)| ≤

{
ω1(t, |u|e) if t ∈ [0, tm]

α(t)β1(|u|e), if t ∈ [tm, 1],
(4.1)

|g(t, u)| ≤

{
ω2(t, |u|e) if t ∈ [0, tm]

α(t)β2(|u|e) if t ∈ [tm, 1],
(4.2)
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for all u = (x, y) ∈ R2, where by |u|e we mean the Euclidean norm in R2.
Here ω1, ω2 are Carathéodory functions on [0, tm]×R+, nondecreasing in their
second argument, α ∈ L1 [tm, 1] , while β1, β2 : R+ → R+ are nondecreasing
and 1/β1, 1/β2 ∈ L1

loc(R+).

Theorem 4.1. Assume that conditions (4.1), (4.2) hold. In addition assume
that there exists a positive number R0 such that for ρ = (ρ1, ρ2) ∈ (0,∞)2

1
ρ1

∫ tm

0

ω1(t, |ρ|e)dt ≥
1
A1

1
ρ2

∫ tm

0

ω2(t, |ρ|e)dt ≥
1
A2

implies |ρ|e ≤ R0 (4.3)

and ∫ ∞

R∗

dτ

β1(τ) + β2(τ)
>

∫ 1

tm

α(s)ds, (4.4)

where R∗ =

[(
A1

∫ tm

0

ω1(t, R0)dt
)2

+
(
A2

∫ tm

0

ω2(t, R0)dt
)2
]1/2

.

Then problem (1.1) has at least one solution.

Proof. The result will follow from the Leray-Schauder fixed point theorem
once we have proved the boundedness of the set of all solutions to equations
u = λT (u), for λ ∈ [0, 1]. Let u = (x, y) be such a solution. Then, for
t ∈ [0, tm], we have

|x(t)| = |λT1(x, y)(t)| (4.5)

= λ

∣∣∣∣∣−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds

∣∣∣∣∣
≤

(
1 + |a|

m∑
k=1

|ak|

)∫ tm

0

|f (s, x (s) , y(s))| ds

= A1

∫ tm

0

|f (s, u(s))| ds

≤ A1

∫ tm

0

ω1(s, |u(s)|e)ds.

Similarly

|y(t)| ≤ A2

∫ tm

0

ω2(s, |u(s)|e)ds. (4.6)

Let ρ1 = |x|C[0,tm] , ρ2 = |y|C[0,tm] . Then from (4.5), (4.6), we deduce
ρ1 ≤ A1

∫ tm

0

ω1(t, |ρ|e)dt

ρ1 ≤ A1

∫ tm

0

ω1(t, |ρ|e)dt.
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This by (4.3) guarantees
|ρ|e ≤ R0. (4.7)

Next we let t ∈ [tm, 1]. Then

|x(t)| = |λT1(x, y)(t)|

= λ

∣∣∣∣∣−a
m∑
k=1

ak

∫ tk

0

f (s, x (s) , y(s)) ds+
∫ t

0

f (s, x (s) , y(s)) ds

∣∣∣∣∣
≤ A1

∫ tm

0

ω1(t, R0)dt+
∫ t

tm

|f (s, x (s) , y(s))| ds

≤ A1

∫ tm

0

ω1(t, R0)dt+
∫ t

tm

α(s)β1(|u(s)|e)ds

= : φ1(t)

and similarly

|y(t)| ≤ A1

∫ tm

0

ω2(t, R0)dt+
∫ t

tm

α(s)β2(|u(s)|e)ds

= : φ2(t).

Denote ψ(t) :=
(
φ2

1(t) + φ2
2(t)

)1/2
. Then{

φ
′

1(t) = α(t)β1(|u(t)|e) ≤ α(t)β1(ψ (t))

φ
′

2(t) = α(t)β2(|u(t)|e) ≤ α(t)β2(ψ (t))).
(4.8)

Consequently

ψ
′
(t) =

φ1(t)φ
′

1(t) + φ2(t)φ
′

2(t)
ψ (t)

≤ α(t) · φ1(t)
ψ (t)

· β1(ψ (t)) + α(t) · φ2(t)
ψ (t)

· β2(ψ (t))

≤ α(t) [β1(ψ (t)) + β2(ψ (t))] .

It follows that ∫ t

tm

ψ′ (s)
β1(ψ (s)) + β2(ψ (s))

ds ≤
∫ t

tm

α(s)ds.

Furthermore, also using (4.4) we obtain∫ ψ(t)

ψ(tm)

dτ

β1(τ) + β2(τ))
≤
∫ t

tm

α(s)ds ≤
∫ 1

tm

α(s)ds <
∫ ∞

R∗

dτ

β1(τ) + β2(τ)
.

(4.9)
Note that ψ (tm) = R∗. Then from (4.9) it follows that there exists R1 such
that

ψ(t) ≤ R1

for all t ∈ [tm, 1]. Then |x(t)| ≤ R1 and |y(t)| ≤ R1, for all t ∈ [tm, 1], whence

|x|C[tm,1]
≤ R1, |y|C[tm,1]

≤ R1. (4.10)
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Let R = max{R0, R1}. From (4.7), (4.10) we have |x|C[0,1] ≤ R and |y|C[0,1] ≤
R. �

Remark 4.2. If ω1 (t, τ) = α0 (t)β0 (τ) , then the first inequality in (4.3)
implies that β0 (τ) ≤ cτ + c′ for all τ ∈ R+ and some constants c and c′,
i.e. the growth of β0 is at most linear. However, β1 may have a superlinear
growth. Thus we may say that under the assumptions of Theorem 4.1, the
growth of f (t, u) in u is at most linear for t ∈ [0, tm] and can be superlinear
for t ∈ [tm, 1]. The same can be said about g (t, u) .

In particular, when tm = 0, that is when problem (1.1) becomes the
classical local initial value problem x′ = f (t, x, y)

y′ = g (t, x, y) (a.e. t ∈ [0, 1])
x (0) = y (0) = 0,

(4.11)

our assumptions reduce to the classical conditions (see [7], [9]) and Theorem
4.1 gives the following result:

Corollary 4.3. Assume that

|f(t, u)| ≤ α(t)β1(|u|e),
|g (t, u)| ≤ α (t)β2 (|u|e)

for t ∈ [0, 1] and u ∈ R2, where α ∈ L1 [0, 1] , while β1, β2 : R+ → R+ are
nondecreasing and 1/β1, 1/β2 ∈ L1

loc(R+). In addition assume that∫ ∞

0

dτ

β1(τ) + β2(τ)
>

∫ 1

0

α(s)ds.

Then, problem (4.11) has at least one solution.
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