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Solution of a nonlinear system of second kind
Lagrange’s equations by fixed-point method

Ljubomir Georgiev and Konstantin Kostov

Abstract. The effect of forces acting upon a ferromagnetic rotational
ellipsoid located in a homogeneous rotating magnetic field is consid-
ered. Lagrange’s equations of the second kind connecting the motion
parameters of a particle with torques acting upon it are composed. A
non-homogeneous nonlinear autonomous system of second-order differ-
ential equations is obtained. That system is not solvable by quadrature.
A solution by fixed-point method is proposed in this paper.
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1. Introduction

The principle of rotating magnetic field is applied in designing machines
that intensify some technological processes like milling, emulsifying, mixing,
etc. Ferromagnetic working particles are placed in the so-called active volume
of the machine where they are driven by the field and exert a force-applying
effect upon the treated material. It is characteristic for their motion that
due to frequent collisions these particles are always in transition mode, i. e.
the angle between the field vector and the longitudinal axis of the working
particle changes. It can be assumed that after each collision there emerges a
motion of new initial conditions. Calculating precisely the technological effect
obtained requires good knowledge of the law of motion at arbitrary initial
conditions. Our goal is to establish the existence of unique solution of the
initial value problem for the corresponding system of two nonlinear second-
order differential equations. We take advantage of the fixed point method
to do this. At the end of this paper we present a sequence of successive
analytical approximations of the solution, which belongs to a suitable subset
of the space C([0,∞)).
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2. Physical model

A ferromagnetic rotational ellipsoid, formed by the rotation of an ellipse
of axes 2a and 2b around its long axis of length 2a and located in a homo-

geneous rotating magnetic field of flux-density modulus
→
B0, is considered. In

this case the ellipsoid is homogeneously magnetized, which makes possible
the analytical determination of its electromagnetic torque.

Fig. 1

Fig. 1 shows a layout of the particle, magnetic flux density and respective
torque

→
M . The denotations ([3]) are as follows:

→
a is a vector applied to the

center of the ellipsoid and directed along its axis. It shows the spatial position
of the particle considered (

∣∣∣→a ∣∣∣ is equal to the long (rotational) half-axis a of

the ellipsoid). α is the smaller angle between vectors
→
B0 and

→
a , ω is the

angular velocity of the rotating magnetic field, ωt + θ is the angle between

the axis z and field vector
→
B0, γ is the angle formed between the plane xOz

and vector
→
a ,

→
axz is a vector component of

→
a (its projection onto the plane

xOz), δ is the angle between
→
B0 and

→
axz. Denoted α, γ, ωt + θ and δ are

oriented angles between vectors or between vectors and axes.
The synchronous reactive torque is determined in [3]:

M = −KB0
2 sin 2α = −M0 sin 2α (2.1)

Vector
→
M is perpendicular to the plane defined by 2

→
a and

→
B0 and it

is of the same direction as that of
→
a′ ×

→
B0. Here,

→
a′ is the vector along the

ellipsoid’s long axis, which makes with
→
B0 an angle smaller than

π

2
.

Angles γ and δ are selected as generalized coordinates, defining uniquely
the spatial position of the ellipsoid. An additional axis u lying in the plane



Nonlinear system of second kind Lagrange’s equations 107

xOz and being at a positive angle
π

2
with respect to

→
axz is introduced.

The synchronous torque
→
M is decomposed along the axes y, u and

→
axz,

([5]):
→
M=

→
My +

→
Mu +

→
Ma, where My = −M0 sin 2δ, Mu = Mxzu =

−M0 cos2 δ sin 2γ, and Ma = Mxza = −M0 sin 2δ sin γ are scalar components
of

→
M along the respective axes.

The kinetic energy of the ellipsoid has the form:

T =
1
2
J

(
ω + δ̇

)2

+
1
2
Jγ̇2 +

1
2
Jaϕ̇2, (2.2)

where Ja is the inertia torque of the rotational ellipsoid with respect to the
axis 2a, J is the inertia torque of the rotational ellipsoid with respect to the
axis 2b that goes through its center of gravity and is perpendicular to

→
a ,

ϕ̇ is the angular velocity of the ellipsoid in its rotation around the axis 2a.
Therefore, ϕ is the third generalized coordinate. Let us read ϕ from the line,
which is located further away from the plane xOz and in which the plane
formed by

→
a and

→
axz crosses the ellipsoid at the initial time point t = 0. We

assume the positive direction should be determined by the right-hand screw
rule with axis

→
a .

A torque defined by currents acts on the ellipsoid as well. Its average
value ([5]) is

→
Me= −

→
j Mγ cos3 γδ̇, (2.3)

where Mγ =
πµ2

rσB2
0d4l

256(1 + µrNl)2(1 + k4d4/256)
is the current torque for γ =

0 at δ̇ = 1 rad/s. For a cylinder of determined size and given magnetic
permeability Mγ = const.

The torque Me acts along the axis y and exhibits itself only when there
is a difference between the angular velocities of the field and particle along
the axis y. The negative sign indicates that this torque opposes the change
in the angle δ. Besides the driving torques considered so far, there is also
a hysteresis torque that will be neglected for we consider a particle made of
soft-magnetic material and because of considerations related to its shape ([4]).
There exist resisting torques as well, resulting from the friction forces. Due
to the small size of the ellipsoid the linear velocities are of low values, and we
can consequently assume that frictional torques are proportional to the first
power of the respective angular velocity. Correspondingly, the proportionality
factors for motions along δ and along γ are equal to each other for in both
cases the rotation is realized around the axis 2b of the ellipsoid. Having in
mind that torques Mu, My, and Ma act along the direction of generalized
coordinates γ, δ, and ϕ, respectively, we compose the following system of
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Lagrange’s differential equations of the second order ([6]):∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d

dt

∂T

∂γ̇
− ∂T

∂γ
= Mu − k1γ̇

d

dt

∂T

∂δ̇
− ∂T

∂δ
= My −Mγ δ̇ cos3 γ − k1(ω + δ̇)

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
= Ma − k2ϕ̇.

Here, k1γ̇, k1(ω + δ̇) and k2ϕ̇ are frictional torques in tracing out the
respective angles, and k1 and k2 are proportionality factors. The negative
signs before the frictional torques indicate that they are inversely proportional
to respective angular velocities. We replace with the torques derived above
and obtain ∣∣∣∣∣∣∣∣∣∣

Jγ̈ = −M0 cos2 δ sin 2γ − k1γ̇

J δ̈ = −M0 sin 2δ −Mγ δ̇ cos3 γ − k1δ̇ − k1ω

Jaϕ̈ = −M0 sin 2δ sin γ − k2ϕ̇.

(2.4)

The Lagrange’s equations (2.4) describe the motion of a rotational ellip-
soid placed in general position in a homogeneous magnetic field, rotating with
constant angular velocity, for every time instant. This is a non-homogeneous
nonlinear autonomous system of differential equations of second order. The
system is unsolvable by quadrature. We notice that the first two equations
are independent of the third one. In addition, the latter does not contribute
to solving the formulated problem as rotation around the axis

→
a does not

exert any technological effect.

3. Mathematical model

Let us consider the system composed by the first two equations, assum-
ing that the current torque is much smaller than the synchronous one, which
means we can neglect it. We obtain:∣∣∣∣∣∣

Jγ̈ = −M0 cos2 δ sin 2γ − k1γ̇

J δ̈ = −M0 sin 2δ − k1δ̇ − k1ω.
(3.1)

The system (3.1) is unsolvable by quadrature, too. We seek a solution
by means of contraction mapping principle ([1], [2], [7]) for it.

We denote by M =
M0

J
> 0, k =

k1

J
> 0 and obtain the system{

γ̈ = −M cos2 δ sin 2γ − kγ̇

δ̈ = −M sin 2δ − kδ̇ − kω.
(3.2)
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where γ = γ(t), δ = δ(t), t ∈ [0,∞), with the corresponding initial conditions
at t = 0.

Consider the second equation of the system (3.2).
If δ is a solution of

δ̈ = −M sin 2δ − kδ̇ − kω (3.3)

then (δ̈(s) + kδ̇(s))eks = −(M sin 2δ(s) + kω)eks. After integrating along s

from 0 to τ , we obtain: δ̇(τ) = (ω+ δ̇(0))e−kτ −ω−Me−kτ

∫ τ

0

eks sin 2δ(s)ds

and integrating once again along τ from 0 to t, we obtain:

δ(t) = δ(0) +
ω + δ̇(0)

k
(1− e−kt)− ωt−M

∫ t

0

∫ τ

0

e−k(τ−s) sin 2δ(s)dsdτ =

= δ(0)+
ω + δ̇(0)

k
(1−e−kt)−ωt−M

∫ t

0

(∫ t

s

e−k(τ−s)dτ

)
sin 2δ(s)ds =

= δ(0) +
ω + δ̇(0)

k
(1− e−kt)− ωt− M

k

∫ t

0

(
1− e−k(t−s)

)
sin 2δ(s)ds,

which means that
δ(t) = G(δ)(t), ∀t ≥ 0, (3.4)

where the operator G is defined on a suitable subset B of the space of the
functions continuous in [0,∞):

G(f)(t)=δ(0)+
ω+δ̇(0)

k
(1− e−kt)−ωt−M

k

∫ t

0

(1− e−k(t−s)) sin 2f(s)ds, t ≥ 0.

(3.5)
If δ is a continuous solution of (3.4) then

δ̇ =(ω + δ̇(0))e−kt− ω − M

k
sin 2δ(t)+

M

k

d

dt

(
e−kt

∫ t

0

eks sin 2δ(s)ds
)

=

= (ω + δ̇(0))e−kt − ω −M

∫ t

0

e−k(t−s) sin 2δ(s)ds;

δ̈ = −k(ω + δ̇(0))e−kt + Mk

∫ t

0

e−k(t−s) sin 2δ(s)ds−M sin 2δ(t) =

= −M sin 2δ(t)− kδ̇ − kω.
In other words, δ is a twice-differentiable function satisfying (3.3).

By means of analogous transformations on the first of equations from
(3.2) we reduce the system (3.2) to the following one:{

γ(t) = Fδ(γ)(t), ∀t ≥ 0
δ(t) = G(δ)(t), ∀t ≥ 0 , (3.6)

where G is defined as (3.5) and for any fixed function f ∈ B the operator F
is defined on the same set B as follows: F (g) = Ff (g), and for any t ≥ 0:

Ff (g)(t)=γ(0)+
γ̇(0)
k

(1− e−kt)− M

k

∫ t

0

(1− e−k(t−s)) cos2 f(s) sin 2g(s)ds.

(3.7)
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Remark 3.1. One can try to use various kinds of schemes to find numerical
approximations of the solution of the system (3.1). For example, one can
seek the approximations with some methods such as Runge-Kutta methods
(or Euler’s method, or Newton’s method) for the corresponding system:{

ẋ(t) = F (x(t)), 0 < t < T0

x(0) = x0,

where x(t) = (x1(t), x2(t), x3(t), x4(t))T ,
F (x) = (F1(x), F2(x), F3(x), F4(x))T ; x1 = δ, x2 = γ, x3 = δ̇, x4 = γ̇;
F1 = x3, F2 = x4, F3 = −Msin2x1−kx3−kω, F4 = −Mcos2x1sin2x2−kx4.

But does the last nonlinear system have a solution and whether, if the
system has a solution, it is only one?

We look for global solution of the system (3.6) (resp. of the system
(3.1)).

In what follows we give a proof (by means of fixed point method) that
there exists a unique solution.

Define the set B : B =
{
h ∈ C ([0,∞)) : |h(t)| ≤ Ceλt, ∀t ≥ 0

}
with constants λ > m, m = max

{
3M

k
, ω +

M

k

}
= max

{
3M0

k1
, ω +

M0

k1

}
,

and

C = |δ(0)|+

∣∣∣ω + δ̇(0)
∣∣∣

k
+ |γ(0)|+ |γ̇(0)|

k
+

1
2
.

Norm in B is introduced as follows:

‖f‖B = sup
{
e−λt |f(t)| : t ≥ 0

}
, f ∈ B,

and with the corresponding metrics: d(f, f) =
∥∥f − f

∥∥
B

(
f, f ∈ B

)
the set

B becomes a complete metric space.
Define the product space E = B× B with a norm:

‖(g, f)‖ = ‖g‖B + ‖f‖B .

With the corresponding metrics d
(
(g, f), (g, f)

)
= ‖g − g‖B +

∥∥f − f
∥∥

B
, E

becomes a Banach space.
Define on E the operator T : T ((g, f)) = (Ff (g), G(f)) , (g, f) ∈ E.
It has the following properties: T ((g, f)) ∈ E, ∀(g, f) ∈ E.
Indeed, G(f), Ff (g) are continuous functions in [0,∞);

e−λt |G(f)(t)| ≤ e−λt |a(t)|+ M

k
te−λt ≤ |δ(0)|+

∣∣∣ω + δ̇(0)
∣∣∣

k
+

(
ω +

M

k

)
· 1
λe

,

consequently e−λt |G(f)(t)| ≤ |δ(0)|+

∣∣∣ω + δ̇(0)
∣∣∣

k
+

1
e

< C

(a(t) = δ(0) +
ω + δ̇(0)

k
(1− e−kt)− ωt, t ≥ 0);

e−λt |Ff (g)(t)| ≤ |γ(0)|+ |γ̇(0)|
k

+
M

k
· 1
λe

≤ |γ(0)|+ |γ̇(0)|
k

+
1
e

< C.
Moreover,
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d
(
T ((g, f)), T ((g, f))

)
=

∥∥∥Ff (g)− Ff (g)
∥∥∥

B
+

∥∥G(f)−G(f)
∥∥

B
=

=
M

k
sup
t≥0

{
e−λt

∫ t

0

(1− e−k(t−s))[cos2f(s) sin 2g(s)−cos2f(s) sin 2g(s)]ds

}
+

+
M

k
sup
t≥0

{
e−λt

∫ t

0

(1− e−k(t−s))[sin(2f(s))− sin(2f(s))]ds

}
≤

≤M

k
sup
t≥0

{
e−λt

∫ t

0

∣∣2 sin(g(s)−g(s)) cos2(f(s)) cos(g(s)+g(s))
∣∣ ds

}
+

+
M

k
sup
t≥0

{
e−λt

∫ t

0

∣∣sin(f(s)− f(s)) sin(2g(s)) sin(f(s) + f(s))
∣∣ ds

}
+

+
M

k
sup
t≥0

{
e−λt

∫ t

0

(1− e−k(t−s))
∣∣2 sin(f(s)−f(s)) cos(f(s)+f(s))

∣∣ ds

}
≤

≤ 2M

k
sup
t≥0

{
e−λt

∫ t

0

|g(s)− g(s)| ds

}
+

3M

k
sup
t≥0

{
e−λt

∫ t

0

∣∣f(s)− f(s)
∣∣ ds

}
,

from where we obtain:

d
(
T ((g, f)), T ((g, f))

)
≤

≤ M

k

(
2 ‖g − g‖B + 3

∥∥f − f
∥∥

B

)
sup
t≥0

{
e−λt

∫ t

0

eλsds

}
≤

≤ M

kλ

(
2 ‖g − g‖B + 3

∥∥f − f
∥∥

B

)
.

Therefore d
(
T ((g, f)), T ((g, f))

)
≤ βd

(
(g, f), (g, f)

)
,

i. e. T is a contraction operator on E with Lipschitz constant β =
3M

kλ
< 1.

In view of contraction mapping principle T has a unique fixed point on
E, which allows us making the following conclusion:

4. Conclusion

The system (3.1) has a unique solution (γ, δ) the coordinate functions
of which belong to the set B. The solution can be obtained as the limit (in
B× B) of the sequence of successive approximations {(gn, fn)}∞n=0:

g0(t) = γ(0) +
γ̇(0)
k

(
1− e−kt

)
;

f0(t) = δ(0) +
ω + δ̇(0)

k

(
1− e−kt

)
, ∀t ≥ 0 ((g0, f0) ∈ E) ;

fn(t) = f0(t)− ωt− M

k

∫ t

0

(
1− e−k(t−s)

)
sin[2fn−1(s)]ds, n=1,2,...

gn(t) = g0(t)−
M

k

∫ t

0

(
1− e−k(t−s)

)
cos2[fn−1(s)] sin[2gn−1(s)]ds, n=1,2,...

As we have already shown, the limit of {(gn, fn)}∞n=0 in E is the unique
fixed point of the operator T . In particular, the limit of {fn}∞n=0 in B is the
function δ and therefore, the limit of {gn}∞n=0 in B is the function γ, that
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is the unique fixed point of T is the ordered pair (γ, δ), which is the unique
solution (in E) of the system (5′′), and respectively – of the system (3.1).
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