On a class of pseudo-parallel submanifolds in Kenmotsu space forms

Maria Cîrnu

Abstract

In this article we prove that pseudo-parallel normal antiinvariant submanifolds in Kenmotsu space forms are always semiparallel.

Mathematics Subject Classification (2010): 53C25, 53C42.
Keywords: Kenmotsu and Sasaki space form, pseudo-parallel and semiparallel submanifold, normal anti-invariant submanifold, Legendre submanifold.

1. Introduction

In 2008, [2], F. Dillen, J. Van der Veken and L. Vrancken proved that Lagrange pseudo-parallel submanifolds of complex space forms are always semi-parallel.

In this paper we prove that a n-dimensional pseudo-parallel and normal anti-invariant submanifold M in a $(2 n+1)$-dimensional Kenmotsu space form $\widetilde{M}(c)$ is always semi-parallel. We also prove that this is not generally true for pseudo-parallel Legendre submanifolds in Sasaki space forms.

Now, we remember some necessary useful notions and results for our next considerations.
Let \widetilde{M} be a C^{∞}-differentiable, $(2 n+1)$-dimensional almost contact manifold with the almost contact metric structure (F, ξ, η, g), where F is a $(1,1)$ tensor field, η is a 1-form, g is a Riemannian metric on \widetilde{M}, ξ is the Reeb vector field, all these tensors satisfying the following conditions :

$$
\begin{equation*}
F^{2}=-I+\eta \otimes \xi ; \quad \eta(\xi)=1 ; \quad g(F X, F Y)=g(X, Y)-\eta(X) \eta(Y) \tag{1.1}
\end{equation*}
$$

for all X, Y in $\chi(\widetilde{M})$.
Let M be a submanifold of \widetilde{M}. We consider ∇ the Levi-Civita connection induced by $\widetilde{\nabla}$ on M, ∇^{\perp} the connection in the normal bundle $T^{\perp}(M), h$ the
second fundamental form on M a̧nd $A_{\vec{n}}$ the Weingarten operator. The wellknown Gauss-Weingarten formulas on M are:

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) ; \quad \widetilde{\nabla}_{X} \vec{n}=-A_{\vec{n}} X+\nabla_{X}^{\perp} \vec{n} \tag{1.2}
\end{equation*}
$$

for X, Y in $\chi(M)$ and \vec{n} in $\chi^{\perp}(M)$.
We consider the Sasaki form Ω on \widetilde{M}, given by $\Omega(X, Y)=g(X, F Y)$. Also, denote by N_{F} the Nijenhius tensor of F. It is known that \widetilde{M} is a Sasaki manifold if and only if

$$
d \eta=\Omega ; \quad N^{(1)}=N_{F}+2 d \eta \otimes \xi=0
$$

or equivalently

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} F\right) Y=g(X, Y) \xi-\eta(Y) X \tag{1.3}
\end{equation*}
$$

An almost normal contact manifold \widetilde{M} is a Kenmotsu manifold if and only if

$$
d \eta=0 ; \quad d \Omega=2 \eta \wedge \Omega
$$

It is also known that, similar to the characterization (1.3) of Sasaki manifolds, \widetilde{M} is a Kenmotsu manifold if and only if

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} F\right) Y=-\eta(Y) F X-g(X, F Y) \xi \tag{1.4}
\end{equation*}
$$

for all X, Y in $\chi(\widetilde{M})$.
From [3] and [5], we have the following expressions of the curvature tensor in Sasaki and Kenomotsu space forms :

$$
\begin{align*}
\widetilde{R}(X, Y) Z & =\frac{c+3(-1)^{i+1}}{4}[g(Y, Z) X-g(X, Z) Y]+\frac{c-(-1)^{i+1}}{4}[\eta(X) \eta(Z) Y \\
& -\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi+\Omega(X, Z) F Y \\
& -\Omega(Y, Z) F X+2 \Omega(X, Y) F Z] \tag{1.5}
\end{align*}
$$

where $i=-1$ for Sasakian case and $i=1$ for Kenmotsu case.
In the case of a $(2 n+1)$-dimensional contact manifold \widetilde{M}, the contact distribution $\mathcal{D}=\operatorname{ker} \eta$ is totally non integrabile and the maximal dimension of its integral submanifolds M (called the integral submanifolds of the contact manifold $\widetilde{M})$ is n. A maximal integral submanifold M of a contact manifold \widetilde{M} is a Legendre submanifold. Moreover, it is well known that an integral submanifold M of a contact manifold \widetilde{M} is characterized by any of
(i) $\eta=0, \quad d \eta=0$;
(ii) $F X \in \chi^{\perp}(M)$ for all X in $\chi(M)$.

Another properties valid on these submanifolds in the case of Sasaki manifolds and useful for our considerations are given in [7] by
Proposition 1.1. Let M be an integral submanifold of a $(2 n+1)$-dimensional Sasaki manifold $\widetilde{M}, n \geq 1$. Then:
(i) $A_{\xi}=0$;
(ii) $A_{F X} Y=A_{F Y} X$;
(iii) $A_{F Y} X=-[F h(X, Y)]^{T}$;
(iv) $\nabla_{X}^{\perp}(F Y)=g(X, Y) \xi+F \nabla_{X} Y+[F h(X, Y)]^{\perp}$;
(v) $\nabla \frac{1}{X} \xi=-F X$ for all X, Y in $\chi(M)$.

In the case of Kenmotsu manifolds, N. Papaghiuc, [6], introduced the following

Definition 1.2. A submanifold M of a Kenmotsu manifold \widetilde{M} is a normal semi-invariant submanifold if ξ is normal to M and M has two distributions D and D^{\perp}, called the invariant, respectively, the anti-invariant distribution of M so that
(i) $T_{x} M=D_{x} \oplus D_{x}^{\perp} \oplus<\xi_{x}>$;
(ii) $D_{x}, D_{x}^{\perp},<\xi_{x}>$ are othogonal;
(iii) $F D_{x} \subseteq D_{x} ; F D_{x}^{\perp} \subseteq T_{x}^{\perp}$,
for all $x \in M$.
If $D=0$ then M is a normal anti-invariant submanifold of \widetilde{M} and if $D^{\perp}=0$ then M is a invariant submanifold of \widetilde{M}.

Also, from [6], we have the following result
Proposition 1.3. If M is a normal anti-invariant submanifold of a Kenmotsu manifold \widetilde{M}, then
(i) $A_{F X} Y=A_{F Y} X$, for all $X, Y \in D^{\perp}$;
(ii) $A_{\xi} Z=-Z$ and $\nabla \frac{\perp}{Z} \xi=0$, for all $Z \in \chi(M)$.

2. Pseudo-parallel submanifolds in Kenmotsu and Sasaki space forms

Proposition 2.1. If M is a m-dimensional, normal anti-invariant submanifold of a $(2 n+1)$-dimensional Kenmotsu manifold $\widetilde{M}(c)$, then $m \leq n$.

Proof. For $x \in M$ we have $T_{x} \widetilde{M}=T_{x} M \oplus T_{x}^{\perp} M$ and $\operatorname{dim} F T_{x} M=$ $\operatorname{dim} T_{x} M=m$. Moreover, because M is normal anti-invariant we have $F T_{x} M \subseteq T_{x}^{\perp} M ; F T_{x} M \perp<\xi_{x}>$ and then

$$
\operatorname{dim} T_{x}^{\perp} M \geq \operatorname{dim} F T_{x} M+\operatorname{dim}<\xi_{x}>=m+1
$$

Now,
$2 m \leq m+\operatorname{dim} T_{x}^{\perp} M-1=\operatorname{dim} T_{x} M+\operatorname{dim} T_{x}^{\perp} M-1=\operatorname{dim} T_{x} \widetilde{M}-1=2 n$ and then $m \leq n$.

Recall that a submanifold M of the Riemannian manifold \widetilde{M} is semiparallel if

$$
\begin{equation*}
(\widetilde{R} \cdot h)(X, Y, V, W)=0 \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
(\widetilde{R} \cdot h)(X, Y, V, W) & =R^{\perp}(X, Y) h(V, W)-h(R(X, Y) V, W) \\
& -h(V, R(X, Y) W)
\end{aligned}
$$

for all X, Y, Z, W in $\chi(M)$. Here R is the curvature tensor of M and R^{\perp} is the normal component of the curvature tensor \widetilde{R} of \widetilde{M} on M.
M is pseudo-parallel if

$$
\begin{equation*}
(\widetilde{R} \cdot h)(X, Y, V, W)+\Phi \cdot Q(g, h)(X, Y, V, W)=0 \tag{2.2}
\end{equation*}
$$

where Φ is a differential function on \widetilde{M} and

$$
\begin{aligned}
Q(g, h)(X, Y, V, W)= & h((X \wedge Y) V, W)+h(V,(X \wedge Y) W), \\
& (X \wedge Y) V=g(Y, V) X-g(X, V) Y
\end{aligned}
$$

for all X, Y, V, W in $\chi(M)$.
Let $\widetilde{M}(c)$ be a Kenmotsu space form with $\operatorname{dim} \widetilde{M}(c)=2 n+1$ and M be a n-dimensional normal anti-invariant submanifold. We consider $\left\{X_{1}, \ldots, X_{n}\right\}$ a local orthonormal basis in $\chi(M)$ and $\left\{\xi, F X_{1}, \ldots, F X_{n}\right\}$ a local orthonormal basis in $\chi^{\perp}(M)$.
Because M is normal anti-invariant manifold and taking into account (1.1) and (1.4) we have:

$$
\begin{equation*}
g(F X, F Y)=g(X, Y) ; \widetilde{\nabla}_{X}(F Y)=F \widetilde{\nabla}_{X} Y ; F \widetilde{R}(X, Y) Z=\widetilde{R}(X, Y) F Z \tag{2.3}
\end{equation*}
$$

for all X, Y, Z in $\chi(M)$. Because $F h(X, Y)$ belongs to $\chi(M)$ and taking into account (1.2) and (2.3), we obtain

$$
\begin{equation*}
\nabla_{X}^{\perp}(F Y)=F \nabla_{X} Y ; \quad-A_{F Y} X=F h(X, Y) \tag{2.4}
\end{equation*}
$$

From (1.1) and Proposition 1.3 we have

$$
\begin{equation*}
h(X, Y)=F A_{F Y} X-g(X, Y) \xi=F A_{F X} Y-g(X, Y) \xi \tag{2.5}
\end{equation*}
$$

We define the 3-form $C(X, Y, Z)=g(h(X, Y), F Z)$ for all X, Y, Z in $\chi(M)$. From the symmetry of h and taking into account Proposition 1.3 and (2.5), it follows that C is a totally symmetric 3 -form.

From (1.5), the Codazzi equation and the fact that M is normal and anti-invariant, we have

$$
\begin{equation*}
\widetilde{R}(X, Y) Z=\frac{c-3}{4}[g(Y, Z) X-g(X, Z) Y] \tag{2.6}
\end{equation*}
$$

and

$$
R(X, Y) Z=\frac{c-3}{4}[g(Y, Z) X-g(X, Z) Y]+A_{h(Y, Z)} X-A_{h(X, Z)} Y
$$

But from (2.5) and Proposition 1.3, we obtain

$$
A_{h(X, Z)} Y=A_{F Y} A_{F X} Z+g(X, Z) Y
$$

and then

$$
\begin{equation*}
R(X, Y) Z=\frac{c+1}{4}[g(Y, Z) X-g(X, Z) Y]+\left[A_{F X}, A_{F Y}\right] Z \tag{2.7}
\end{equation*}
$$

Moreover, from (2.4) we have:

$$
\begin{equation*}
R^{\perp}(X, Y) F Z=F R(X, Y) Z \tag{2.8}
\end{equation*}
$$

for all X, Y, Z in $\chi(M)$.

Now, we give the main result of this article.
Theorem 2.2. Any n-dimensional pseudo-parallel normal anti-invariant submanifold M of a $(2 n+1)$-dimensional Kenmotsu space form $\widetilde{M}(c)$, with $n \geq 1$, is semi-parallel.

Proof. We have

$$
\begin{aligned}
g((\widetilde{R} \cdot h)(X, Y, V, W), F Z) & =g\left(R^{\perp}(X, Y) h(V, W), F Z\right) \\
& -g(h(R(X, Y) V, W), F Z) \\
& -g(h(V, R(X, Y) W), F Z)
\end{aligned}
$$

for X, Y, V, W in $\chi(M)$. Denote by

$$
\begin{gathered}
T_{1}=g\left(R^{\perp}(X, Y) h(V, W), F Z\right) \quad T_{2}=g(h(R(X, Y) V, W), F Z) \\
T_{3}=g(h(V, R(X, Y) W), F Z)
\end{gathered}
$$

Because the 3 -form C is totally symmetric, it follows that T_{2} is symmetric in Z and W. From (2.5), Proposition 1.3, (2.7), (1.1) and (2.8), we obtain:

$$
\begin{aligned}
T_{1} & =g\left(R^{\perp}(X, Y) h(V, W), F Z\right)=g\left(R^{\perp}(X, Y) F A_{F V} W, F Z\right) \\
& =\frac{c+1}{4}[g(X, Y) g(h(Y, W), F V)-g(Y, Z) g(h(X, W), F V)] \\
& +g\left(\left[A_{F X}, A_{F Y}\right] A_{F V} W, Z\right), \\
T_{3} & =g(h(V, R(X, Y) W), F Z)=g(h(V, Z), F R(X, Y) W) \\
& =\frac{c+1}{4}[g(Y, W) g(h(X, Z), F V)-g(h(Y, Z), F V) g(X, W)] \\
& +g\left(A_{F V} Z,\left[A_{F X}, A_{F Y}\right] W\right) .
\end{aligned}
$$

Also,

$$
T_{1}-T_{3}=T_{4}+T_{5}
$$

where

$$
\begin{aligned}
T_{4} & =\frac{c+1}{4}[g(h(Y, W), F V) g(X, Y)-g(h(X, W), F V) g(Y, Z) \\
& -g(h(X, Z), F V) g(Y, W)+g(h(Y, Z), F V) g(X, W)]
\end{aligned}
$$

is symmetric in W and Z and

$$
T_{5}=g\left(\left[A_{F X}, A_{F Y}\right] A_{F V} W, Z\right)-g\left(A_{F V} Z,\left[A_{F X}, A_{F Y}\right] W\right)
$$

On the other hand, from the symmetry of h we have

$$
g\left(A_{F V} Z,\left[A_{F X}, A_{F Y}\right] W\right)=-g\left(\left[A_{F X}, A_{F Y}\right] A_{F V} Z, W\right)
$$

From this we deduce that

$$
\left.T_{5}=g\left(\left[A_{F X}, A_{F Y}\right] A_{F V} Z, W\right)\right)+g\left(\left[A_{F X}, A_{F Y}\right] A_{F V} W, Z\right)
$$

is symmetric in W and Z and $g((\widetilde{R} \cdot h)(X, Y, V, W), F Z)$ is symmetric in W and Z. Because M is pseudo-parallel it follows that $g(Q(g, h)(X, Y, V, W), F Z)$ is symmetric in W and Z or equivalently

$$
\begin{aligned}
& g(Y, W) g(h(V, X), F Z)-g(X, W) g(h(V, Y), F Z) \\
= & g(Y, Z) g(h(V, X), F W)-g(X, Z) g(h(V, Y), F W) .
\end{aligned}
$$

Taking $X=W=V, Z, Y \perp X$ in this relation, we obtain

$$
\begin{equation*}
-g(X, X) g(h(Y, Z), F X)=g(Y, Z) g(h(X, X), F X) \tag{2.9}
\end{equation*}
$$

Let x be in M and $S=\left\{V \in T_{p} M \mid g(V, V)=1\right\}$ - the unit sphere and $f: S \rightarrow \mathcal{F}(M)$, where $f(V)=g(h(V, V), F V)$ for all V in S. Because f is a continue function on S, it results that f attains its maximum in a vector field X_{0}, tangent to the submanifold in x.

Let $\left\{e_{1}, \ldots, e_{n-1}, X_{0}\right\}$ be a local orthonormal basis in $\chi(M)$. Taking $Y=Z=X_{0}$ and $X=e_{i}$ in (2.9), we have:

$$
g\left(h\left(X_{0}, X_{0}\right), F e_{i}\right)=-f\left(e_{i}\right), \quad i=1, \ldots, n-1
$$

and for $Y=Z=e_{i}$ and $X=X_{0}$

$$
g\left(h\left(e_{i}, e_{i}\right), F X_{0}\right)=-f\left(X_{0}\right), \quad i=1, \ldots, n-1
$$

$\left\{\xi, F e_{1}, \ldots, F e_{n-1}, F X_{0}\right\}$ is a local orthonormal basis in $\chi^{\perp}(M)$ and

$$
\begin{aligned}
& h\left(e_{i}, e_{i}\right)=-f\left(X_{0}\right) F X_{0}-\xi-\sum_{j=1}^{n-1} f\left(e_{j}\right) F e_{j} \\
& h\left(X_{0}, X_{0}\right)=f\left(X_{0}\right) F X_{0}-\xi-\sum_{j=1}^{n-1} f\left(e_{j}\right) F e_{j}
\end{aligned}
$$

From these last two equalities we obtain

$$
\begin{equation*}
h\left(e_{i}, e_{i}\right)=h\left(X_{0}, X_{0}\right)-2 f\left(X_{0}\right) F X_{0}, \quad h\left(X_{0}, X_{0}\right)=f\left(X_{0}\right) F X_{0}-\xi \tag{2.10}
\end{equation*}
$$

and $f\left(e_{i}\right)=0$ for $i=1 \ldots n-1$. From (2.10) we have $g\left(h\left(X_{0}, X_{0}\right), F V\right)=0$ for all $V \perp X_{0}, V$ in S. Moreover, (2.10) and (2.5) implies that

$$
F A_{F X_{0}} X_{0}=f\left(X_{0}\right) F X_{0} \quad \text { or } \quad-A_{F X_{0}} X_{0}=-f\left(X_{0}\right) X_{0}
$$

and then

$$
\begin{equation*}
A_{F X_{0}} X_{0}=\lambda_{1} X_{0} ; \quad \lambda_{1}=f\left(X_{0}\right) \tag{2.11}
\end{equation*}
$$

Putting $X=X_{0}$ and $Y \perp X_{0}$ in (2.9), we obtain

$$
-g\left(X_{0}, X_{0}\right) g\left(h(Y, Z), F X_{0}\right)=g(Y, Z) g\left(h\left(X_{0}, X_{0}\right), F X_{0}\right)
$$

and then

$$
\begin{equation*}
A_{F X_{0}} Y=-\lambda_{1} Y \tag{2.12}
\end{equation*}
$$

For $Y \perp X_{0}, X=Y, Y=Z=X_{0}$ in (2.9) we have:

$$
-g(Y, Y) g\left(h\left(X_{0}, X_{0}\right), F Y\right)=g\left(X_{0}, X_{0}\right) g(h(Y, Y), F Y)
$$

or

$$
g(h(Y, Y), F Y)=0
$$

Using the totally symmetry of the 3 -form C and the last equality, we have

$$
g(h(Y, Z), F W)=0
$$

for all $Y, Z, W \perp X_{0}, Y, Z, W$ in $\chi(M)$. From (2.11) and (2.12) we have

$$
\begin{equation*}
h\left(X_{0}, X_{0}\right)=\lambda_{1} F X_{0}+\xi, \quad h\left(X_{0}, Y\right)=-\lambda_{1} F Y \tag{2.13}
\end{equation*}
$$

for $Y \perp X_{0}$. Taking $X=X_{0}$ and $Z, Y \perp X_{0}$ in (2.9) we have:

$$
\begin{equation*}
h(Y, Z)=-\lambda_{1} g(Y, Z) F X_{0} . \tag{2.14}
\end{equation*}
$$

Taking $Z=Y, Z \perp X_{0}$ and Z an unitary vector field in (2.14), we obtain

$$
\begin{equation*}
A_{F Y} Y=-\lambda_{1} X_{0} \tag{2.15}
\end{equation*}
$$

If $\lambda_{1}=0$ then h vanishes at x. We suppose that $\lambda_{1} \neq 0$. For $n>2$, we consider two othonormal vector fields Y and Z, so that $Y, Z \perp X_{0}$. Then

$$
R\left(X_{0}, Y\right) Y=\left(\frac{c+1}{4}-2 \lambda_{1}^{2}\right) X_{0}
$$

and

$$
R(Y, Z) Z=\left(\frac{c+1}{4}+\lambda_{1}^{2}\right) Y .
$$

Because M is a pseudo-parallel manifold, we have

$$
(\widetilde{R} \cdot h)\left(X_{0}, Y, Y, Y\right)+\Phi(x) Q(g, h)\left(X_{0}, Y, Y, Y\right)=0
$$

where

$$
\begin{gathered}
(\widetilde{R} \cdot h)\left(X_{0}, Y, Y, Y\right)=3 \lambda_{1}\left(\frac{c+1}{4}-2 \lambda_{1}^{2}\right) F Y, \\
(Q \cdot h)\left(X_{0}, Y, Y, Y\right)=-2 \lambda_{1} F Y .
\end{gathered}
$$

From these last three equalities we have:

$$
\begin{equation*}
\Phi(x)=\frac{3\left(\frac{c+1}{4}-2 \lambda_{1}^{2}\right)}{2} \tag{2.16}
\end{equation*}
$$

Also, we have:

$$
(\widetilde{R} \cdot h)\left(X_{0}, Y, Y, Z\right)+\Phi(x) Q(g, h)\left(X_{0}, Y, Y, Z\right)=0 .
$$

But

$$
\begin{gathered}
(\widetilde{R} \cdot h)\left(X_{0}, Y, Y, Z\right)=\lambda_{1}\left(\frac{c+1}{4}-2 \lambda_{1}^{2}\right) F Z \\
Q(g, h)\left(X_{0}, Y, Y, Z\right)=-\lambda_{1} F Z
\end{gathered}
$$

From these last three equalities we deduce

$$
\begin{equation*}
\Phi(x)=\frac{c+1}{4}-2 \lambda_{1}^{2} . \tag{2.17}
\end{equation*}
$$

From (2.17) and (2.16) we obtain $\Phi(x)=0$, that is M is semi-parallel.

Now, let M be a Legendre submanifold in a Sasaki space form $\widetilde{M}(c)$. Taking into account (1.3) and the fact that M is a Legendre submanifold, we have

$$
\begin{gathered}
F \widetilde{\nabla}_{X} Y=\widetilde{\nabla}_{X}(F Y)-g(X, Y) \xi \\
F \widetilde{R}(X, Y) Z=\widetilde{R}(X, Y) F Z+g(Y, Z) F X-g(X, Z) F Y
\end{gathered}
$$

for all X, Y, Z in $\chi(M)$.
Because M is a Legendre submanifold, using (1.2) and (1.3) we obtain:

$$
\begin{equation*}
h(X, Y)=F A_{F Y} X ; \quad \nabla_{X}^{\perp} F Y=F \nabla_{X} Y+g(X, Y) \xi \tag{2.18}
\end{equation*}
$$

for X, Y, Z in $\chi(M)$. We also obtain that the 3-form C is totally symmetric for Legendre pseudo-parallel submanifolds in Sasaki space forms. Moreover, from (1.5) we have

$$
\widetilde{R}(X, Y) Z=\frac{c+3}{4}[g(Y, Z) X-g(X, Z) Y]
$$

and

$$
R^{\perp}(X, Y) F Z=F R(X, Y) Z-g(Y, Z) F X+g(X, Z) F Y
$$

for all X, Y, Z in $\chi(M)$.
We define the tensor field

$$
\theta(X, Y, Z, V, W)=g(h(X, V), F Z) g(Y, W)-g(h(Y, V), F Z) g(X, W)(2.19)
$$

for X, Y, Z, W in $\chi(M)$. Then θ is anti-symmetric in X and Y.
The submanifold M has axial semi-symmetry if θ is symmetric in Z and W.

Proposition 2.3. Let M be a Legendre pseudo-parallel submanifold in the Sasaki space form $\widetilde{M}(c)$ so that M has axial semi-symmetry. Then, for each $x \in M$, there is $X_{0} \in T_{p} M, X_{0}$ a unit vector field and $\lambda_{1} \in \mathcal{F}(M)$ so that:

$$
A_{F X_{0}} X_{0}=\lambda_{1} X_{0} ; \quad c=1+8 \lambda_{1}^{2}
$$

From Proposition 2.3, we observe that the Sasaki space form $\widetilde{M}(c)$ has Legendre pseudo-parallel submanifolds only if the λ_{1} is constant.

References

[1] Blair, D.E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., Spring-Verlag, 509(1976).
[2] Dillen, F., Van der Veken, J., Vranken, L., Pseudo-parallel submanifolds are semi-parallel, The SAO/Nasa Astrophysics Data System, Math. DC, 2008.
[3] Kenmotsu, K., A class of almost contact Riemannian manifolds, Tôhoku Math. J., 24(1976), 93-103.
[4] Kobayashi, S., Nomizu, K., Foundations of differential geometry, Interscience Publ., I(1963), II(1969).
[5] Ogiue, K., On almost contact manifolds admitting axiom of planes or axiom of free mobility, Kodai Math. Sem. Rep., 16(1964), 223-232.
[6] Papaghiuc, N., Semi-invariant submanifolds in a Kenmotsu manifold, Rend. di. Math., 4(1983), 607-622.
[7] Pitis, Gh., On parallel submanifolds of a Sasakian space form, Rendinconti di Mathematica, VII(1989), 103-111.
[8] Pitiş, Gh., Geometry on Kenmotsu manifolds, Editura Transilvania Braşov, 2007.
[9] Sular, S., Ozgur, C., Pseodoparallel Submanifolds of Kenmotsu Manifolds, Workshop on CR and Sasakian Geometry, 2009, Luxembourg.
[10] Yildiz, A., Murathan, C., Arslan, K., Ezentaş, R., Totally real pseudo-parallel submanifolds of Sasakian space forms, Monatsh. Math. 151(2007), 247-256.

Maria Cîrnu
Negru-Vodă College
50, Stadionului Street
905800, Negru-Vodă
Constanţa, Romania
e-mail: maria.cirnu@yahoo.com

