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1. Introduction

In 2008, [2], F. Dillen, J. Van der Veken and L. Vrancken proved that
Lagrange pseudo-parallel submanifolds of complex space forms are always
semi-parallel.

In this paper we prove that a n-dimensional pseudo-parallel and normal
anti-invariant submanifold M in a (2n+1)-dimensional Kenmotsu space form
M̃(c) is always semi-parallel. We also prove that this is not generally true for
pseudo-parallel Legendre submanifolds in Sasaki space forms.

Now, we remember some necessary useful notions and results for our
next considerations.
Let M̃ be a C∞–differentiable, (2n+1)–dimensional almost contact manifold
with the almost contact metric structure (F, ξ, η, g), where F is a (1, 1) tensor
field, η is a 1-form, g is a Riemannian metric on M̃ , ξ is the Reeb vector field,
all these tensors satisfying the following conditions :

F 2 = −I + η ⊗ ξ; η(ξ) = 1; g(FX, FY ) = g(X, Y )− η(X)η(Y ) (1.1)

for all X, Y in χ(M̃).
Let M be a submanifold of M̃ . We consider∇ the Levi-Civita connection

induced by ∇̃ on M , ∇⊥ the connection in the normal bundle T⊥(M), h the
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second fundamental form on M a̧nd A~n the Weingarten operator. The well-
known Gauss–Weingarten formulas on M are:

∇̃XY = ∇XY + h(X, Y ); ∇̃X~n = −A~nX +∇⊥X~n (1.2)

for X, Y in χ(M) and ~n in χ⊥(M).
We consider the Sasaki form Ω on M̃ , given by Ω(X, Y ) = g(X, FY ).

Also, denote by NF the Nijenhius tensor of F . It is known that M̃ is a Sasaki
manifold if and only if

dη = Ω; N (1) = NF + 2dη ⊗ ξ = 0

or equivalently
(∇̃XF )Y = g(X, Y )ξ − η(Y )X. (1.3)

An almost normal contact manifold M̃ is a Kenmotsu manifold if and
only if

dη = 0; dΩ = 2η ∧ Ω.

It is also known that, similar to the characterization (1.3) of Sasaki
manifolds, M̃ is a Kenmotsu manifold if and only if

(∇̃XF )Y = −η(Y )FX − g(X, FY )ξ (1.4)

for all X, Y in χ(M̃).
From [3] and [5], we have the following expressions of the curvature

tensor in Sasaki and Kenomotsu space forms :

R̃(X, Y )Z =
c + 3(−1)i+1

4
[g(Y, Z)X − g(X, Z)Y ]+

c− (−1)i+1

4
[η(X)η(Z)Y

− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ + Ω(X, Z)FY

− Ω(Y, Z)FX + 2Ω(X, Y )FZ], (1.5)

where i = −1 for Sasakian case and i = 1 for Kenmotsu case.
In the case of a (2n + 1)-dimensional contact manifold M̃ , the contact

distribution D = ker η is totally non integrabile and the maximal dimension
of its integral submanifolds M (called the integral submanifolds of the contact

manifold M̃) is n. A maximal integral submanifold M of a contact manifold
M̃ is a Legendre submanifold. Moreover, it is well known that an integral
submanifold M of a contact manifold M̃ is characterized by any of

(i) η = 0, dη = 0;
(ii) FX ∈ χ⊥(M) for all X in χ(M).

Another properties valid on these submanifolds in the case of Sasaki
manifolds and useful for our considerations are given in [7] by

Proposition 1.1. Let M be an integral submanifold of a (2n + 1)-dimensional
Sasaki manifold M̃ , n ≥ 1. Then:

(i) Aξ = 0;
(ii) AFXY = AFY X;
(iii) AFY X = −[Fh(X, Y )]T ;
(iv) ∇⊥X(FY ) = g(X, Y )ξ + F∇XY + [Fh(X, Y )]⊥;
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(v) ∇⊥Xξ = −FX for all X, Y in χ(M).

In the case of Kenmotsu manifolds, N. Papaghiuc, [6], introduced the
following

Definition 1.2. A submanifold M of a Kenmotsu manifold M̃ is a normal
semi-invariant submanifold if ξ is normal to M and M has two distributions
D and D⊥, called the invariant, respectively, the anti-invariant distribution
of M so that

(i) TxM = Dx ⊕D⊥x ⊕ < ξx >;
(ii) Dx, D⊥x , < ξx > are othogonal;
(iii) FDx ⊆ Dx; FD⊥x ⊆ T⊥x ,
for all x ∈ M .
If D = 0 then M is a normal anti-invariant submanifold of M̃ and if D⊥ = 0
then M is a invariant submanifold of M̃ .

Also, from [6], we have the following result

Proposition 1.3. If M is a normal anti-invariant submanifold of a Kenmotsu
manifold M̃ , then

(i) AFXY = AFY X, for all X, Y ∈ D⊥;
(ii) AξZ = −Z and ∇⊥Zξ = 0, for all Z ∈ χ(M).

2. Pseudo-parallel submanifolds in Kenmotsu and Sasaki space
forms

Proposition 2.1. If M is a m-dimensional, normal anti-invariant submanifold
of a (2n + 1)-dimensional Kenmotsu manifold M̃(c), then m ≤ n.

Proof. For x ∈ M we have TxM̃ = TxM ⊕ T⊥x M and dim FTxM =
dim TxM = m. Moreover, because M is normal anti-invariant we have
FTxM ⊆ T⊥x M ; FTxM⊥ < ξx > and then

dim T⊥x M ≥ dim FTxM + dim < ξx >= m + 1.

Now,

2m ≤ m + dim T⊥x M − 1 = dimTxM + dim T⊥x M − 1 = dim TxM̃ − 1 = 2n

and then m ≤ n. �

Recall that a submanifold M of the Riemannian manifold M̃ is semi-
parallel if

(R̃ · h)(X, Y, V, W ) = 0 (2.1)

where

(R̃ · h)(X, Y, V, W ) = R⊥(X, Y )h(V,W )− h(R(X, Y )V,W )
− h(V,R(X, Y )W )
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for all X, Y, Z,W in χ(M). Here R is the curvature tensor of M and R⊥ is
the normal component of the curvature tensor R̃ of M̃ on M .
M is pseudo-parallel if

(R̃ · h)(X, Y, V, W ) + Φ ·Q(g, h)(X, Y, V, W ) = 0, (2.2)

where Φ is a differential function on M̃ and

Q(g, h)(X, Y, V, W ) = h((X ∧ Y )V,W ) + h(V, (X ∧ Y )W ),
(X ∧ Y )V = g(Y, V )X − g(X, V )Y

for all X, Y, V, W in χ(M).
Let M̃(c) be a Kenmotsu space form with dim M̃(c) = 2n+1 and M be

a n-dimensional normal anti-invariant submanifold. We consider {X1, ..., Xn}
a local orthonormal basis in χ(M) and {ξ, FX1, ..., FXn} a local orthonormal
basis in χ⊥(M).
Because M is normal anti-invariant manifold and taking into account (1.1)
and (1.4) we have:

g(FX, FY ) = g(X, Y ); ∇̃X(FY ) = F ∇̃XY ; FR̃(X, Y )Z = R̃(X, Y )FZ
(2.3)

for all X, Y, Z in χ(M). Because Fh(X, Y ) belongs to χ(M) and taking into
account (1.2) and (2.3), we obtain

∇⊥X(FY ) = F∇XY ; −AFY X = Fh(X, Y ). (2.4)

From (1.1) and Proposition 1.3 we have

h(X, Y ) = FAFY X − g(X, Y )ξ = FAFXY − g(X, Y )ξ. (2.5)
We define the 3-form C(X, Y, Z) = g(h(X, Y ), FZ) for all X, Y, Z in χ(M).
From the symmetry of h and taking into account Proposition 1.3 and (2.5),
it follows that C is a totally symmetric 3-form.

From (1.5), the Codazzi equation and the fact that M is normal and
anti-invariant, we have

R̃(X, Y )Z =
c− 3

4
[g(Y, Z)X − g(X, Z)Y ] (2.6)

and

R(X, Y )Z =
c− 3

4
[g(Y, Z)X − g(X, Z)Y ] + Ah(Y,Z)X −Ah(X,Z)Y.

But from (2.5) and Proposition 1.3, we obtain

Ah(X,Z)Y = AFY AFXZ + g(X, Z)Y

and then

R(X, Y )Z =
c + 1

4
[g(Y, Z)X − g(X, Z)Y ] + [AFX , AFY ]Z. (2.7)

Moreover, from (2.4) we have:

R⊥(X, Y )FZ = FR(X, Y )Z (2.8)

for all X, Y, Z in χ(M).
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Now, we give the main result of this article.

Theorem 2.2. Any n-dimensional pseudo-parallel normal anti-invariant sub-
manifold M of a (2n + 1)-dimensional Kenmotsu space form M̃(c), with
n ≥ 1, is semi-parallel.

Proof. We have

g((R̃ · h)(X, Y, V, W ), FZ) = g(R⊥(X, Y )h(V,W ), FZ)
− g(h(R(X, Y )V,W ), FZ)
− g(h(V,R(X, Y )W ), FZ)

for X, Y, V, W in χ(M). Denote by

T1 = g(R⊥(X, Y )h(V,W ), FZ) T2 = g(h(R(X, Y )V,W ), FZ)

T3 = g(h(V,R(X, Y )W ), FZ).

Because the 3-form C is totally symmetric, it follows that T2 is sym-
metric in Z and W . From (2.5), Proposition 1.3, (2.7), (1.1) and (2.8), we
obtain:

T1 = g(R⊥(X, Y )h(V,W ), FZ) = g(R⊥(X, Y )FAFV W,FZ)

=
c + 1

4
[g(X, Y )g(h(Y, W ), FV )− g(Y,Z)g(h(X, W ), FV )]

+ g([AFX , AFY ]AFV W,Z),

T3 = g(h(V,R(X, Y )W ), FZ) = g(h(V,Z), FR(X, Y )W )

=
c + 1

4
[g(Y, W )g(h(X, Z), FV )− g(h(Y, Z), FV )g(X, W )]

+ g(AFV Z, [AFX , AFY ]W ).

Also,

T1 − T3 = T4 + T5

where

T4 =
c + 1

4
[g(h(Y, W ), FV )g(X, Y )− g(h(X, W ), FV )g(Y,Z)

− g(h(X, Z), FV )g(Y, W ) + g(h(Y, Z), FV )g(X, W )]

is symmetric in W and Z and

T5 = g([AFX , AFY ]AFV W,Z)− g(AFV Z, [AFX , AFY ]W ).

On the other hand, from the symmetry of h we have

g(AFV Z, [AFX , AFY ]W ) = −g([AFX , AFY ]AFV Z,W ).

From this we deduce that

T5 = g([AFX , AFY ]AFV Z,W )) + g([AFX , AFY ]AFV W,Z)



90 Maria Ĉırnu

is symmetric in W and Z and g((R̃ · h)(X, Y, V, W ), FZ) is sym-
metric in W and Z. Because M is pseudo-parallel it follows that
g(Q(g, h)(X, Y, V, W ), FZ) is symmetric in W and Z or equivalently

g(Y, W )g(h(V,X), FZ)− g(X, W )g(h(V, Y ), FZ)

= g(Y, Z)g(h(V,X), FW )− g(X, Z)g(h(V, Y ), FW ).
Taking X = W = V , Z, Y⊥X in this relation, we obtain

−g(X, X)g(h(Y, Z), FX) = g(Y, Z)g(h(X, X), FX). (2.9)

Let x be in M and S = {V ∈ TpM |g(V, V ) = 1} – the unit sphere and
f : S → F(M), where f(V ) = g(h(V, V ), FV ) for all V in S. Because f is
a continue function on S, it results that f attains its maximum in a vector
field X0, tangent to the submanifold in x.

Let {e1, ..., en−1, X0} be a local orthonormal basis in χ(M). Taking
Y = Z = X0 and X = ei in (2.9), we have:

g(h(X0, X0), F ei) = −f(ei), i = 1, ..., n− 1.

and for Y = Z = ei and X = X0

g(h(ei, ei), FX0) = −f(X0), i = 1, ..., n− 1.

{ξ, Fe1, ..., F en−1, FX0} is a local orthonormal basis in χ⊥(M) and

h(ei, ei) = −f(X0)FX0 − ξ −
n−1∑
j=1

f(ej)Fej

h(X0, X0) = f(X0)FX0 − ξ −
n−1∑
j=1

f(ej)Fej .

From these last two equalities we obtain

h(ei, ei) = h(X0, X0)− 2f(X0)FX0, h(X0, X0) = f(X0)FX0 − ξ. (2.10)

and f(ei) = 0 for i = 1...n − 1. From (2.10) we have g(h(X0, X0), FV ) = 0
for all V⊥X0, V in S. Moreover, (2.10) and (2.5) implies that

FAFX0X0 = f(X0)FX0 or −AFX0X0 = −f(X0)X0

and then
AFX0X0 = λ1X0; λ1 = f(X0). (2.11)

Putting X = X0 and Y⊥X0 in (2.9), we obtain

−g(X0, X0)g(h(Y, Z), FX0) = g(Y,Z)g(h(X0, X0), FX0)

and then
AFX0Y = −λ1Y. (2.12)

For Y⊥X0, X = Y , Y = Z = X0 in (2.9) we have:

−g(Y, Y )g(h(X0, X0), FY ) = g(X0, X0)g(h(Y, Y ), FY )

or
g(h(Y, Y ), FY ) = 0.
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Using the totally symmetry of the 3-form C and the last equality, we have

g(h(Y,Z), FW ) = 0

for all Y,Z,W⊥X0, Y,Z,W in χ(M). From (2.11) and (2.12) we have

h(X0, X0) = λ1FX0 + ξ, h(X0, Y ) = −λ1FY (2.13)

for Y⊥X0. Taking X = X0 and Z, Y⊥X0 in (2.9) we have:

h(Y, Z) = −λ1g(Y, Z)FX0. (2.14)

Taking Z = Y , Z⊥X0 and Z an unitary vector field in (2.14), we obtain

AFY Y = −λ1X0. (2.15)

If λ1 = 0 then h vanishes at x. We suppose that λ1 6= 0. For n > 2, we
consider two othonormal vector fields Y and Z, so that Y, Z⊥X0. Then

R(X0, Y )Y = (
c + 1

4
− 2λ2

1)X0,

and

R(Y, Z)Z = (
c + 1

4
+ λ2

1)Y.

Because M is a pseudo-parallel manifold, we have

(R̃ · h)(X0, Y, Y, Y ) + Φ(x)Q(g, h)(X0, Y, Y, Y ) = 0.

where

(R̃ · h)(X0, Y, Y, Y ) = 3λ1(
c + 1

4
− 2λ2

1)FY,

(Q · h)(X0, Y, Y, Y ) = −2λ1FY.

From these last three equalities we have:

Φ(x) =
3( c+1

4 − 2λ2
1)

2
. (2.16)

Also, we have:

(R̃ · h)(X0, Y, Y, Z) + Φ(x)Q(g, h)(X0, Y, Y, Z) = 0.

But

(R̃ · h)(X0, Y, Y, Z) = λ1(
c + 1

4
− 2λ2

1)FZ

Q(g, h)(X0, Y, Y, Z) = −λ1FZ.

From these last three equalities we deduce

Φ(x) =
c + 1

4
− 2λ2

1. (2.17)

From (2.17) and (2.16) we obtain Φ(x) = 0, that is M is semi-parallel. �
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Now, let M be a Legendre submanifold in a Sasaki space form M̃(c).
Taking into account (1.3) and the fact that M is a Legendre submanifold, we
have

F ∇̃XY = ∇̃X(FY )− g(X, Y )ξ

F R̃(X, Y )Z = R̃(X, Y )FZ + g(Y, Z)FX − g(X, Z)FY

for all X, Y, Z in χ(M).
Because M is a Legendre submanifold, using (1.2) and (1.3) we obtain:

h(X, Y ) = FAFY X; ∇⊥XFY = F∇XY + g(X, Y )ξ (2.18)

for X, Y, Z in χ(M). We also obtain that the 3-form C is totally symmetric
for Legendre pseudo-parallel submanifolds in Sasaki space forms. Moreover,
from (1.5) we have

R̃(X, Y )Z =
c + 3

4
[g(Y,Z)X − g(X, Z)Y ]

and

R⊥(X, Y )FZ = FR(X, Y )Z − g(Y,Z)FX + g(X, Z)FY

for all X, Y, Z in χ(M).
We define the tensor field

θ(X, Y, Z, V, W ) = g(h(X, V ), FZ)g(Y, W )− g(h(Y, V ), FZ)g(X, W ) (2.19)

for X, Y, Z,W in χ(M). Then θ is anti-symmetric in X and Y .
The submanifold M has axial semi-symmetry if θ is symmetric in Z and

W .

Proposition 2.3. Let M be a Legendre pseudo-parallel submanifold in the
Sasaki space form M̃(c) so that M has axial semi-symmetry. Then, for each
x ∈ M , there is X0 ∈ TpM , X0 a unit vector field and λ1 ∈ F(M) so that:

AFX0X0 = λ1X0; c = 1 + 8λ2
1.

From Proposition 2.3, we observe that the Sasaki space form M̃(c) has
Legendre pseudo-parallel submanifolds only if the λ1 is constant.
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J., 24(1976), 93-103.

[4] Kobayashi, S., Nomizu, K., Foundations of differential geometry, Interscience
Publ., I(1963), II(1969).

[5] Ogiue, K., On almost contact manifolds admitting axiom of planes or axiom of
free mobility, Kodai Math. Sem. Rep., 16(1964), 223–232.



On a class of pseudo-parallel submanifolds 93

[6] Papaghiuc, N., Semi-invariant submanifolds in a Kenmotsu manifold, Rend.
di. Math., 4(1983), 607-622.
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Constanţa, Romania
e-mail: maria.cirnu@yahoo.com


