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invariant submanifolds in Kenmotsu space forms are always semi-
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1. Introduction

In 2008, [2], F. Dillen, J. Van der Veken and L. Vrancken proved that
Lagrange pseudo-parallel submanifolds of complex space forms are always
semi-parallel.

In this paper we prove that a n-dimensional pseudo-parallel and normal
anti-invariant submanifold M in a (2n+1)-dimensional Kenmotsu space form
M (¢) is always semi-parallel. We also prove that this is not generally true for
pseudo-parallel Legendre submanifolds in Sasaki space forms.

Now, we remember some necessary useful notions and results for our

next considerations.
Let M be a C*>—differentiable, (2n+ 1)-dimensional almost contact manifold
with the almost contact metric structure (F,§,n,g), where F'is a (1,1) tensor
field, n is a 1-form, g is a Riemannian metric on M , € is the Reeb vector field,
all these tensors satisfying the following conditions :

FP=-T+n2& nE) =1 gFX,FY)=g(X,Y)-nX)n() (11)

for all X,Y in x(M).
Let M be a submanifold of M. We consider V the Levi-Civita connection
induced by V on M, V+ the connection in the normal bundle 7+ (M), h the
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second fundamental form on M and Aj; the Weingarten operator. The well-
known Gauss—Weingarten formulas on M are:

VxY =VxY +h(X,Y); Vit = —AzX + Vil (1.2)
for X, Y in x(M) and 7 in x*(M).

We consider the Sasaki form €2 on M, given by Q(X,Y) = g(X, FY).
Also, denote by N the Nijenhius tensor of F. It is known that M is a Sasaki
manifold if and only if

dp=Q; NY =Np4+2dpe£t=0
or equivalently N
(VxF)Y =g(X,Y)§ —n(Y)X. (1.3)

An almost normal contact manifold M is a Kenmotsu manifold if and

only if
dn=0; dQ=2nAQ.

It is also known that, similar to the characterization (1.3) of Sasaki

manifolds, M is a Kenmotsu manifold if and only if
(VxF)Y = =n(Y)FX — g(X,FY)¢ (1.4)

for all X,Y in x(M).
From [3] and [5], we have the following expressions of the curvature
tensor in Sasaki and Kenomotsu space forms :

~ 3(—1)it+1 — (—1)i*1

R vz = 0T iy zx - g(x 2y N onzyy
—n(Y)In(2)X + g(X, Z)n(Y)E — g(Y, Z)n(X)E + QX, Z)FY
—Q(Y, Z)FX + 2Q(X,Y)FZ], (1.5)

where ¢ = —1 for Sasakian case and 7 = 1 for Kenmotsu case.

In the case of a (2n + 1)-dimensional contact manifold M, the contact
distribution D = ker 7 is totally non integrabile and the maximal dimension
of its integral submanifolds M (called the integral submanifolds of the contact
manifold M ) is n. A maximal integral submanifold M of a contact manifold
M is a Legendre submanifold. Moreover, it is well known that an integral
submanifold M of a contact manifold M is characterized by any of

(i) =0, dn=0;
(ii) FX € x+(M) for all X in x(M).

Another properties valid on these submanifolds in the case of Sasaki
manifolds and useful for our considerations are given in [7] by

Proposition 1.1. Let M be an integral submanifold of a (2n + 1)-dimensional
Sasaki manifold M, n > 1. Then:
(i) Ag =0;
(11) AFXy = AFyX,‘
(iii) Apy X = —[Fh(X,Y)]T;
(iv) V% (FY) =g(X,Y)é+ FVxY + [Fh(X,Y)]*;
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(v) V&= —FX for all X,Y in x(M).

In the case of Kenmotsu manifolds, N. Papaghiuc, [6], introduced the
following

Definition 1.2. A submanifold M of a Kenmotsu manifold M is a normal
semi-invariant submanifold if £ is normal to M and M has two distributions
D and D™, called the invariant, respectively, the anti-invariant distribution

of M so that
(i) TuM = D, ® D& < & >;
(ii) D., DL , < & > are othogonal;
(iii) FD, C D,; FDy C Ty,
for all x € M. .
If D = 0 then M is a normal anti-invariant submanifold of M and if D+ =0
then M is a invariant submanifold of M.

Also, from [6], we have the following result
Proposition 1.3. If M is a normal anti-invariant submanifold of a Kenmotsu

manifold M, then

(1) ApxY = AFyX, fO?" all X,Y € DL;
(i) AeZ = —Z and V£ =0, for all Z € x(M).

2. Pseudo-parallel submanifolds in Kenmotsu and Sasaki space
forms

Proposition 2.1. If M is a m-dimensional, normal anti-invariant submanifold
of a (2n + 1)-dimensional Kenmotsu manifold M(c), then m < n.

Proof. For x € M we have TIM = T,M & T}M and dim FT,M =
dimT,M = m. Moreover, because M is normal anti-invariant we have
FT,M C TjM; FT.M1 <&, > and then

dim T+ M > dim FT, M + dim < &, >=m + 1.

Now

o2m <m+dmTiM —1=dmT,M +dmT, "M — 1 =dimT,M — 1 =2n

and then m < n. O

Recall that a submanifold M of the Riemannian manifold M is semi-
parallel if
(R-h)(X,Y,V,W)=0 (2.1)
where
(R-h)(X,Y,V,W) = R~X,Y)h(V,W)—h(R(X,Y)V, W)
BV, R(X,Y)W)
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for all X,Y,Z,W in x(M). Here R is the curvature tensor of M and R+ is
the normal component of the curvature tensor R of M on M.
M is pseudo-parallel if

(B h)(X.Y.V,W) +@-Q(g,h)(X, Y.V, W) =0, (22)
where @ is a differential function on M and
Qlg, (X, Y, VW) = h((X ANY)V, W) + h(V, (X AY)W),
(XAY)V =g(Y, V)X —g(X,V)Y
for all X, Y, V,W in x(M).
Let M(c) be a Kenmotsu space form with dim M (¢) = 2n+1 and M be
a n-dimensional normal anti-invariant submanifold. We consider { X7, ..., X,, }
a local orthonormal basis in x(M) and {¢, F X1, ..., FX,} alocal orthonormal
basis in x(M).
Because M is normal anti-invariant manifold and taking into account (1.1)
and (1.4) we have:

g(FX,FY)=g(X,Y); Vx(FY)=FVxY; FR(X,Y)Z = R(X,Y)FZ
(2.3)
for all X|Y, Z in x(M). Because Fh(X,Y) belongs to x(M) and taking into
account (1.2) and (2.3), we obtain

V% (FY) = FVxY; —Apy X = Fh(X,Y). (2.4)

From (1.1) and Proposition 1.3 we have

MX,Y)=FApy X — g(X,Y){ = FArpxY — g(X,Y)¢. (2.5)
We define the 3-form C(X,Y,Z) = g(h(X,Y),FZ) for all X,Y,Z in x(M).
From the symmetry of h and taking into account Proposition 1.3 and (2.5),
it follows that C' is a totally symmetric 3-form.
From (1.5), the Codazzi equation and the fact that M is normal and
anti-invariant, we have

Rix,v)z = =3

9(Y,2)X — 9(X,2)Y] (2.6)
and

RX,Y)Z = =3

GV, 2)X — g(X, Z2)Y]+ Any,. )X — Anx, ) Y-

But from (2.5) and Proposition 1.3, we obtain
Apx,2)Y = ApryArxZ + g(X, Z)Y

and then

RXY)Z = oV, 2)X — (X, 2)Y] + [Arx, Arv]Z. (27)

Moreover, from (2.4) we have:
RY(X,Y)FZ = FR(X,Y)Z (2.8)
for all X,Y,Z in x(M).
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Now, we give the main result of this article.

Theorem 2.2. Any n-dimensional pseudo-parallel normal anti-invariant sub-
manifold M of a (2n + 1)-dimensional Kenmotsu space form M(c), with
n > 1, is semi-parallel.

Proof. We have
g(R-h)(X,Y,V,W),FZ) = g(R*(X,Y)h(V,W),F2)
g(h(R(X,Y)V,W),FZ)
- g(h(V,R(X, )W), FZ)
for X, Y, V,W in x(M). Denote by
= g(RY (X, Y)W(V.W),FZ) Ty =g(h(R(X,Y)V,W),FZ)
T3 =g(h(V,R(X,Y)W),FZ).

Because the 3-form C' is totally symmetric, it follows that T5 is sym-
metric in Z and W. From (2.5), Proposition 1.3, (2.7), (1.1) and (2.8), we
obtain:

T = g(RY(X,Y)MV,W),FZ) = g(R*(X,Y)FApyW,FZ)

= X V)g(h(Y, W), FV) — g(Y, 2)g(h(X, W), FV)

+ 9([Arx,Apy|ArvW, 2),

T3 = gh(V,R(X, YYW),FZ)=g(h(V,Z), FR(X,Y)W)

= CZ L9V W) g(h(X, 2), FV) — g(h(Y, Z), FV)g(X,W)]
+ 9(ApvZ,[Apx, Apy|W).
Also,
T —T3=T4+T5
where
o= S, W), FV)g(X,Y) — g(h(X, W), FV)g(Y, 2)

— 9(h(X,2), FV)g(Y, W)+ g(h(Y, Z), FV)g(X, W)]
is symmetric in W and Z and
T5 = 9([Arx, Ary]|ArvW, Z) — g(Arv Z, [Arx, Ary]W).
On the other hand, from the symmetry of h we have
9(ArvZ,[Arx, Ary]W) = —g([Arx, Ary|ArvZ,W).

From this we deduce that

Ts = 9([Arx, Ary)ArvZ, W) + 9([Arx, Ary|Apv W, Z)



90 Maria Cirnu

is symmetric in W and Z and g¢((R - h)(X,Y,V,W),FZ) is sym-
metric in W and Z. Because M is pseudo-parallel it follows that
9(Q(g,h)(X,Y,V, W), FZ) is symmetric in W and Z or equivalently

g(}/v W)g(h(v7 X)7 FZ) - g(X7 W)g(h(va Y)’ FZ)
=g(Y, 2)g(h(V, X), FW) — (X, Z)g(h(V.Y ), FW).
Taking X =W =V, Z, Y 1 X in this relation, we obtain
—9(X, X)g(h(Y, Z), FX) = g(Y, Z)g(h(X, X), FX). (2.9)

Let o be in M and S = {V € T,M|g(V,V) = 1} — the unit sphere and
f:8 — F(M), where f(V) = g(h(V,V),FV) for all V in S. Because f is
a continue function on S, it results that f attains its maximum in a vector
field X, tangent to the submanifold in x.

Let {e1,...,en—1,X0} be a local orthonormal basis in x(M). Taking
Y =7=X,and X =e¢; in (2.9), we have:

g(h(Xo, Xo), Fe;) =—f(e;), i=1,....,n—1.
and for Y = Z =¢; and X = X,

g(h(ei,e;), FXo) = —f(Xo), i=1,...,n—1.
{¢,Fey,...,Fe,_1,F Xy} is a local orthonormal basis in x* (M) and

n—1

hei ei) = —f(Xo)FXo — &= f(ej)Fe;
j=1
n—1

h(Xo, Xo) = f(Xo)FXo—€— > f(ej)Fe;.
j=1

From these last two equalities we obtain
h(ei,e;) = h(Xo, Xo) — 2f(Xo)F'Xo, h(Xo,Xo) = f(Xo)FXo—¢& (2.10)

and f(e;) =0 for ¢ = 1..n — 1. From (2.10) we have g(h(Xo, Xo), FV) =0
for all V1 Xy, V in S. Moreover, (2.10) and (2.5) implies that

FApx,Xo = f(Xo)FXo or —Apx,Xo=—f(X0)Xo
and then
Arx,Xo = MXo; M= f(Xo). (2.11)
Putting X = X and Y L X, in (2.9), we obtain
—9(Xo, Xo0)g(n(Y, Z), FXo) = g(Y, Z)g(h(Xo, Xo), F Xo)
and then
Apx,Y = —\Y. (2.12)
For Y1Xo5, X=Y,Y =7 =X, in (2.9) we have:
—9(Y,Y)g(h(Xo, Xo), FY) = g(Xo, Xo)g(h(Y,Y), FY)

or

g(h(Y,Y),FY) = 0.
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Using the totally symmetry of the 3-form C' and the last equality, we have
g(h(Y,Z),FW) =0
forall Y, Z,W_1X,,Y,Z, W in x(M). From (2.11) and (2.12) we have
h(Xo, Xo) = MFXo + &, h(Xo,Y)=-MFY (2.13)
for Y L X,. Taking X = Xy and Z,Y L X in (2.9) we have:
WY, Z) = —\ig(Y, Z)F X,. (2.14)
Taking Z =Y, Z1 X and Z an unitary vector field in (2.14), we obtain
ApyY = =\ Xo. (2.15)

If Ay = 0 then h vanishes at x. We suppose that A\; # 0. For n > 2, we
consider two othonormal vector fields Y and Z, so that Y, Z1 X,. Then

c+1

R(X07Y)Y = ( - 2)\%)){07

and
c+1
4

Because M is a pseudo-parallel manifold, we have

R(Y,2)Z = ( +A})Y.
(R-h)(Xo,Y,Y,Y) + ®(x)Q(g,h)(X0,Y,Y,Y) = 0.

where
c+1

(R-1h)(X0,Y,Y,Y) = 3X( —2)\})FY,

(Q - 1)(Xo,Y,Y,Y) = 2\ FY.
From these last three equalities we have:

3(C+1 _ QA%)

O(z) = —4 5 (2.16)

Also, we have:
(R-h)(X0,Y.Y, Z) + 2(2)Q(g,h)(Xo,Y.Y, Z) = 0.
But
~ 1
(R 1)(X0,Y,Y, Z) = M(F= — 2X)FZ
From these last three equalities we deduce
1
®(z) = Cz — 222, (2.17)

From (2.17) and (2.16) we obtain ®(z) = 0, that is M is semi-parallel. O
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Now, let M be a Legendre submanifold in a Sasaki space form M (c).
Taking into account (1.3) and the fact that M is a Legendre submanifold, we
have

FVXY =Vx(FY) - g(X,Y)¢

FR(X,Y)Z = R(X,Y)FZ +g(Y,Z)FX — g(X,Z)FY
for all X,Y, Z in x(M).
Because M is a Legendre submanifold, using (1.2) and (1.3) we obtain:
h(X,Y)=FApyX; Vx%FY =FVxY +g(X,Y)¢ (2.18)

for X,Y,Z in x(M). We also obtain that the 3-form C' is totally symmetric
for Legendre pseudo-parallel submanifolds in Sasaki space forms. Moreover,
from (1.5) we have

~ c+3

RXY)Z = 200V, 2)X — g(X, 2)Y)

and
RL(X, YNFZ =FR(X,Y)Z —g(Y,Z)FX + g(X,Z)FY
for all X,Y, Z in x(M).
We define the tensor field

for XY, Z,W in x(M). Then 6 is anti-symmetric in X and Y.
The submanifold M has azial semi-symmetry if 6 is symmetric in Z and

w.

Proposition 2.3. Let M be a Legendre pseudo-parallel submanifold in the

Sasaki space form M(c) so that M has axial semi-symmetry. Then, for each
x € M, there is Xog € T,M, Xo a unit vector field and \y € F(M) so that:

AFXOXO :)\1X0; Cc= 1+8>\%

From Proposition 2.3, we observe that the Sasaki space form M (¢) has
Legendre pseudo-parallel submanifolds only if the A; is constant.
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