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Subclasses of analytic functions involving
a family of integral operators

Zhi-Gang Wang, Feng-Hua Wen and Qing-Guo Li

Abstract. In the present paper, we introduce and investigate some new
subclasses of analytic functions associated with a family of generalized
Srivastava-Attiya operator. Such results as subordination and superordi-
nation properties, inclusion relationships, integral-preserving properties
and convolution properties are proved. Several sandwich-type results are
also derived.
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1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akzk, (1.1)

which are analytic in the open unit disk

U := {z : z ∈ C and |z| < 1}.

LetH(U) be the linear space of all analytic functions in U. For a positive
integer number n and a ∈ C, we let

H[a, n] :=
{
f ∈ H(U) : f(z) = a + anzn + an+1z

n+1 + · · ·
}

.

Let f, g ∈ A, where f is given by (1.1) and g is defined by

g(z) = z +
∞∑

k=2

bkzk.
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Then the Hadamard product (or convolution) f ∗ g of the functions f and g
is defined by

(f ∗ g)(z) := zp +
∞∑

k=2

akbkzk =: (g ∗ f)(z).

For two functions f and g, analytic in U, we say that the function f is
subordinate to g in U, and write

f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U)

such that
f(z) = g

(
ω(z)

)
(z ∈ U).

Indeed, it is known that

f(z) ≺ g(z) (z ∈ U) =⇒ f(0) = g(0) and f(U) ⊂ g(U).

Furthermore, if the function g is univalent in U, then we have the following
equivalence:

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

In the following we recall a general Hurwitz-Lerch Zeta function
Φ(z, s, a) defined by (cf., e.g., [18, p. 121 et sep.])

Φ(z, s, a) :=
∞∑

k=0

zk

(k + a)s

(a ∈ C \ Z−0 ; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1),
where, as usual,

Z−0 := Z \ N (Z := {0,±1,±2, . . .}; N := {1, 2, 3, . . .}).

Several interesting properties and characteristics of the Hurwitz-Lerch Zeta
function Φ(z, s, a) can be found in the recent investigations by (for example)
Choi and Srivastava [3], Ferreira and López [5], Garg et al. [6], Lin et al. [7],
Luo and Srivastava [10], Wen and Liu [19], Wen and Yang [20] and others.

Recently, Srivastava and Attiya [17] (see also Rǎducanu and Srivastava
[14], Liu [9], Prajapat and Goyal [13]) introduced and investigated the linear
operator:

Js, b(f) : A −→ A
defined, in terms of the Hadamard product (or convolution), by

Js, bf(z) := Gs, b(z) ∗ f(z) (z ∈ U; b ∈ C \ Z−0 ; s ∈ C; f ∈ A), (1.2)

where, for convenience,

Gs, b(z) := (1 + b)s[Φ(z, s, b)− b−s] (z ∈ U). (1.3)

It is easy to observe from (1.2) and (1.3) that
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Js, bf(z) = z +
∞∑

k=2

(
1 + b

k + b

)s

akzk.

Motivated essentially by the above-mentioned Srivastava-Attiya opera-
tor, Al-Shaqsi and Darus [1] (see also Darus and Al-Shaqsi [4]) introduced
and investigated the following integral operator:

J λ, µ
s, b f(z) = z +

∞∑
k=2

(
1 + b

k + b

)s
λ!(k + µ− 2)!

(µ− 2)!(k + λ− 1)!
akzk (z ∈ U), (1.4)

where (and throughout this paper unless otherwise mentioned) the parame-
ters s, b, λ and µ are constrained as follows:

s ∈ C; b ∈ C \ Z−0 λ > −1 and µ > 0.

We note that J 1,2
s,b is the Srivastava-Attiya operator, J λ,µ

0,b is the well-
known Choi-Saigo- Srivastava operator (see [2]).

It is easily verified from (1.4) that

z
(
J λ, µ

s, b f
)′

(z) = µJ λ, µ+1
s, b f(z)− (µ− 1)J λ, µ

s, b f(z), (1.5)

z
(
J λ+1, µ

s, b f
)′

(z) = (λ + 1)J λ, µ
s, b f(z)− λJ λ+1, µ

s, b f(z), (1.6)

and

z
(
J λ, µ

s+1, bf
)′

(z) = (b + 1)J λ, µ
s, b f(z)− bJ λ, µ

s+1, bf(z). (1.7)

By making use of the subordination between analytic functions and
the operator J λ, µ

s, b , we now introduce the following subclasses of analytic
functions.

Definition 1.1. A function f ∈ A is said to be in the class Fλ, µ
s, b (α;φ) if it

satisfies the subordination condition

(1− α)
J λ, µ

s, b f(z)
z

+ α
J λ, µ+1

s, b f(z)
z

≺ φ(z) (z ∈ U; α ∈ C ; φ ∈ P). (1.8)

Definition 1.2. A function f ∈ A is said to be in the class Gλ, µ
s, b (α;φ) if it

satisfies the subordination condition

(1− α)
J λ+1, µ

s, b f(z)
z

+ α
J λ, µ

s, b f(z)
z

≺ φ(z) (z ∈ U; α ∈ C ; φ ∈ P). (1.9)

Definition 1.3. A function f ∈ A is said to be in the class Hλ, µ
s, b (α;φ) if it

satisfies the subordination condition

(1− α)
J λ, µ

s+1, bf(z)
z

+ α
J λ, µ

s, b f(z)
z

≺ φ(z) (z ∈ U; α ∈ C ; φ ∈ P). (1.10)

In the present paper, we aim at proving some subordination and su-
perordination properties, inclusion relationships, integral-preserving proper-
ties and convolution properties associated with the operator J λ, µ

s, b . Several
sandwich-type results involving this operator are also derived.
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2. Preliminary results

In order to prove our main results, we need the following lemmas.

Lemma 2.1. ([11]) Let the function Ω be analytic and convex (univalent) in
U with Ω(0) = 1. Suppose also that the function Θ given by

Θ(z) = 1 + cnzn + cn+1z
n+1 + · · ·

is analytic in U. If

Θ(z) +
zΘ ′(z)

ζ
≺ Ω(z) (<(ζ) > 0; ζ 6= 0; z ∈ U), (2.1)

then

Θ(z) ≺ χ(z) =
ζ

n
z−

ζ
n

∫ z

0

t
ζ
n−1h(t)dt ≺ Ω(z) (z ∈ U),

and χ is the best dominant of (2.1).

Denote by Q the set of all functions f that are analytic and injective
on U− E(f), where

E(f) =
{

ε ∈ ∂U : lim
z→ε

f(z) = ∞
}

,

and such that f ′(ε) 6= 0 for ε ∈ ∂U− E(f).

Lemma 2.2. ([12]) Let q be convex univalent in U and κ ∈ C. Further assume
that <(κ) > 0. If

p ∈ H[q(0), 1] ∩Q,

and p + κzp′ is univalent in U, then

q(z) + κzq′(z) ≺ p (z) + κzp′(z)

implies q ≺ p, and q is the best subdominant.

Lemma 2.3. ([15]) Let q be a convex univalent function in U and let σ, η ∈ C
with

<
(

1 +
zq′′(z)
q′(z)

)
> max

{
0, −<

(
σ

η

)}
.

If p is analytic in U and

σp (z) + ηzp′(z) ≺ σq(z) + ηzq′(z),

then p ≺ q, and q is the best dominant.

Lemma 2.4. ([16]) Let the function Υ be analytic in U with

Υ(0) = 1 and < (Υ(z)) >
1
2

(z ∈ U).

Then, for any function Ψ analytic in U, (Υ∗Ψ)(U) is contained in the convex
hull of Ψ(U).
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3. Properties of the function class Fλ, µ
s, b (α; φ)

We begin by proving our first subordination property given by Theorem
3.1 below.

Theorem 3.1. Let f ∈ Fλ, µ
s, b (α;φ) with <(α) > 0. Then

J λ, µ
s, b f(z)

z
≺ µ

α
z−

µ
α

∫ z

0

t
µ
α−1φ(t)dt ≺ φ(z) (z ∈ U). (3.1)

Proof. Let f ∈ Fλ, µ
s, b (α;φ) and suppose that

h(z) :=
J λ, µ

s, b f(z)
z

(z ∈ U). (3.2)

Then h is analytic in U. Combining (1.5), (1.8) and (3.2), we easily find that

h(z)+
α

µ
zh′(z) = (1−α)

J λ, µ
s, b f(z)

z
+α

J λ, µ+1
s, b f(z)

z
≺ φ(z) (z ∈ U). (3.3)

Therefore, an application of Lemma 2.1 for n = 1 to (3.3) yields the assertion
of Theorem 3.1. �

By virtue of Theorem 3.1, we easily get the following inclusion relation-
ship.

Corollary 3.2. Let <(α) > 0. Then Fλ, µ
s, b (α;φ) ⊂ Fλ, µ

s, b (0;φ).

Theorem 3.3. Let α2 > α1 = 0. Then Fλ, µ
s, b (α2;φ) ⊂ Fλ, µ

s, b (α1;φ).

Proof. Suppose that f ∈ Fλ, µ
s, b (α2;φ). It follows that

(1− α2)
J λ, µ

s, b

z
+ α2

J λ, µ+1
s, b

z
≺ φ(z) (z ∈ U). (3.4)

Since
0 5

α1

α2
< 1

and the function φ is convex and univalent in U, we deduce from (3.1) and
(3.4) that

(1−α1)
J λ, µ

s, b f(z)
z

+ α1

J λ, µ+1
s, b f(z)

z

=
α1

α2

[
(1− α1)

J λ, µ
s, b f(z)

z
+ α1

J λ, µ+1
s, b f(z)

z

]
+

(
1− α1

α2

) J λ, µ
s, b f(z)

z

≺ φ(z) (z ∈ U),

which implies that f ∈ Fλ, µ
s, b (α1;φ). The proof of Theorem 3.3 is evidently

completed. �
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Theorem 3.4. Let f ∈ Fλ, µ
s, b (α;φ). If the integral operator F is defined by

F (z) :=
ν + 1
zν

∫ z

0

tν−1f(t)dt (z ∈ U; ν > −1), (3.5)

then

J λ, µ
s, b F (z)

z
≺ φ(z) (z ∈ U). (3.6)

Proof. Let f ∈ Fλ, µ
s, b (α; φ). Suppose also that

G(z) :=
J λ, µ

s, b F (z)
z

(z ∈ U). (3.7)

From (3.5), we deduce that

z
(
J λ, µ

s, b F
)′

(z) + νJ λ, µ
s, b F (z) = (ν + 1)J λ, µ

s, b f(z). (3.8)

Combining (3.1), (3.7) and (3.8), we easily get

G(z) +
1

ν + 1
zG′(z) =

J λ, µ
s, b f(z)

z
≺ φ(z) (z ∈ U). (3.9)

Thus, by Lemma 2.1 and (3.9), we conclude that the assertion (3.6) of The-
orem 3.4 holds. �

Theorem 3.5. Let f ∈ Fλ, µ
s, b (α;φ) and g ∈ A with <

(
g(z)

z

)
> 1

2 . Then

(f ∗ g)(z) ∈ Fλ, µ
s, b (α;φ).

Proof. Let f ∈ Fλ, µ
s, b (η;φ) and g ∈ A with <

(
g(z)

z

)
> 1

2 . Suppose also that

H(z) := (1− α)
J λ, µ

s, b f(z)
z

+ α
J λ, µ+1

s, b f(z)
z

≺ φ(z) (z ∈ U). (3.10)

It follows from (3.10) that

(1−α)
J λ, µ

s, b (f ∗ g)(z)
z

+α
J λ, µ+1

s, b (f ∗ g)(z)
z

= H(z)∗ g(z)
z

(z ∈ U). (3.11)

Since the function φ is convex and univalent in U, by virtue of (3.10), (3.11)
and Lemma 2.2, we conclude that

(1− α)
J λ, µ

s, b (f ∗ g)(z)
z

+ α
J λ, µ+1

s, b (f ∗ g)(z)
z

≺ φ(z) (z ∈ U), (3.12)

which implies that the assertion of Theorem 3.5 holds. �

Theorem 3.6. Let q1 be univalent in U and <(α) > 0. Suppose also that q1

satisfies

<
(

1 +
zq′′1 (z)
q′1(z)

)
> max

{
0,−<

(µ

α

)}
. (3.13)
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If f ∈ A satisfies the subordination

(1− α)
J λ, µ

s, b f(z)
z

+ α
J λ, µ+1

s, b f(z)
z

≺ q1(z) +
α

µ
zq′1(z), (3.14)

then
J λ, µ

s, b f(z)
z

≺ q′1(z),

and q1 is the best dominant.

Proof. Let the function h be defined by (3.2). We know that (3.3) holds.
Combining (3.3) and (3.14), we find that

h(z) +
α

µ
zh′(z) ≺ q1(z) +

α

µ
zq′1(z). (3.15)

By Lemma 2.3 and (3.15), we readily get the assertion of Theorem 3.6. �

If f is subordinate to F , then F is superordinate to f . We now derive
the following superordination result for the class Fλ, µ

s, b (α;φ).

Theorem 3.7. Let q2 be convex univalent in U, α ∈ C with <(α) > 0. Also let

J λ, µ
s, b f(z)

z
∈ H[q2(0), 1] ∩Q

and

(1− α)
J λ, µ

s, b f(z)
z

+ α
J λ, µ+1

s, b f(z)
z

be univalent in U. If

q2(z) +
α

µ
zq′2(z) ≺ (1− α)

J λ, µ
s, b f(z)

z
+ α

J λ, µ+1
s, b f(z)

z
,

then

q2(z) ≺
J λ, µ

s, b f(z)
z

,

and q2 is the best subdominant.

Proof. Let the function h be defined by (3.2). Then

q2(z) +
α

µ
zq′2(z) ≺ (1− α)

J λ, µ
s, b f(z)

z
+ α

J λ, µ+1
s, b f(z)

z
= h(z) +

α

µ
zh′(z).

An application of Lemma 2.4 yields the desired assertion of Theorem 3.7. �

Combining the above results of subordination and superordination, we
easily get the following “sandwich-type result”.

Theorem 3.8. Let q3 be convex univalent and q4 be univalent in U, α ∈ C
with <(α) > 0. Suppose also that q4 satisfies

<
(

1 +
zq′′4 (z)
q′4(z)

)
> max

{
0,−<

(µ

α

)}
.
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If

0 6=
J λ, µ

s, b f(z)
z

∈ H[q3(0), 1] ∩Q,

and

(1− α)
J λ, µ

s, b f(z)
z

+ α
J λ, µ+1

s, b f(z)
z

is univalent in U, also

q3(z) +
α

µ
zq′3(z) ≺ (1− α)

J λ, µ
s, b f(z)

z
+ α

J λ, µ+1
s, b f(z)

z
≺ q4(z) +

α

µ
zq′4(z),

then

q3(z) ≺
J λ, µ

s, b f(z)
z

≺ q4(z),

and q3 and q4 are, respectively, the best subordinant and the best dominant.

4. Properties of the function classes Gλ, µ
s, b (α; φ) and Hλ, µ

s, b (α; φ)

By means of (1.6) and (1.7), and by similarly applying the methods used
in the proofs of Theorems 3.1–3.8, respectively, we easily get the following
properties for the function classes Gλ, µ

s, b (α;φ) andHλ, µ
s, b (α;φ). Here we choose

to omit the details involved.

Corollary 4.1. Let f ∈ Gλ, µ
s, b (α;φ) with <(α) > 0. Then

J λ+1, µ
s, b f(z)

z
≺ λ + 1

α
z−

λ+1
α

∫ z

0

t
λ+1

α −1φ(t)dt ≺ φ(z) (z ∈ U).

Corollary 4.2. Let α2 > α1 = 0. Then Gλ, µ
s, b (α2;φ) ⊂ Gλ, µ

s, b (α1;φ).

Corollary 4.3. Let f ∈ Gλ, µ
s, b (α;φ). If the integral operator F is defined by

(3.5), then
J λ+1, µ

s, b F (z)
z

≺ φ(z) (z ∈ U).

Corollary 4.4. Let f ∈ Gλ, µ
s, b (α;φ) and g ∈ A with <

(
g(z)

z

)
> 1

2 . Then

(f ∗ g)(z) ∈ Gλ, µ
s, b (α;φ).

Corollary 4.5. Let q5 be univalent in U and <(α) > 0. Suppose also that q5

satisfies

<
(

1 +
zq′′5 (z)
q′5(z)

)
> max

{
0,−<

(
λ + 1

α

)}
.

If f ∈ A satisfies the subordination

(1− α)
J λ+1, µ

s, b f(z)
z

+ α
J λ, µ

s, b f(z)
z

≺ q5(z) +
α

λ + 1
zq′5(z),
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then
J λ+1, µ

s, b f(z)
z

≺ q′5(z),

and q5 is the best dominant.

Corollary 4.6. Let q6 be convex univalent in U, α ∈ C with <(α) > 0. Also
let

J λ+1, µ
s, b f(z)

z
∈ H[q6(0), 1] ∩Q

and

(1− α)
J λ+1, µ

s, b f(z)
z

+ α
J λ, µ

s, b f(z)
z

be univalent in U. If

q6(z) +
α

λ + 1
zq′6(z) ≺ (1− α)

J λ+1, µ
s, b f(z)

z
+ α

J λ, µ
s, b f(z)

z
,

then

q6(z) ≺
J λ+1, µ

s, b f(z)
z

,

and q6 is the best subdominant.

Corollary 4.7. Let q7 be convex univalent and q8 be univalent in U, α ∈ C
with <(α) > 0. Suppose also that q8 satisfies

<
(

1 +
zq′′8 (z)
q′8(z)

)
> max

{
0,−<

(
λ + 1

α

)}
.

If

0 6=
J λ+1, µ

s, b f(z)
z

∈ H[q7(0), 1] ∩Q,

and

(1− α)
J λ+1, µ

s, b f(z)
z

+ α
J λ, µ

s, b f(z)
z

is univalent in U, also

q7(z)+
α

λ + 1
zq′7(z)≺ (1−α)

J λ+1, µ
s, b f(z)

z
+α

J λ, µ
s, b f(z)

z
≺ q8(z)+

α

λ + 1
zq′8(z),

then

q7(z) ≺
J λ+1, µ

s, b f(z)
z

≺ q8(z),

and q7 and q8 are, respectively, the best subordinant and the best dominant.

Corollary 4.8. Let f ∈ Hλ, µ
s, b (α;φ) with <(α) > 0. Then

J λ, µ
s+1, bf(z)

z
≺ b + 1

α
z−

b+1
α

∫ z

0

t
b+1

α −1φ(t)dt ≺ φ(z) (z ∈ U).

Corollary 4.9. Let α2 > α1 = 0. Then Hλ, µ
s, b (α2;φ) ⊂ Hλ, µ

s, b (α1;φ).
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Corollary 4.10. Let f ∈ Hλ, µ
s, b (α;φ). If the integral operator F is defined by

(3.5), then
J λ, µ

s+1, bF (z)
z

≺ φ(z) (z ∈ U).

Corollary 4.11. Let f ∈ Hλ, µ
s, b (α;φ) and g ∈ A with <

(
g(z)

z

)
> 1

2 . Then

(f ∗ g)(z) ∈ Hλ, µ
s, b (α;φ).

Corollary 4.12. Let q9 be univalent in U and <(α) > 0. Suppose also that q9

satisfies

<
(

1 +
zq′′9 (z)
q′9(z)

)
> max

{
0,−<

(
b + 1

α

)}
.

If f ∈ A satisfies the subordination

(1− α)
J λ, µ

s+1, bf(z)
z

+ α
J λ, µ

s, b f(z)
z

≺ q9(z) +
α

b + 1
zq′9(z),

then
J λ, µ

s+1, bf(z)
z

≺ q′9(z),

and q9 is the best dominant.

Corollary 4.13. Let q10 be convex univalent in U, α ∈ C with <(α) > 0. Also
let

J λ, µ
s+1, bf(z)

z
∈ H[q10(0), 1] ∩Q

and

(1− α)
J λ, µ

s+1, bf(z)
z

+ α
J λ, µ

s, b f(z)
z

be univalent in U. If

q10(z) +
α

b + 1
zq′10(z) ≺ (1− α)

J λ, µ
s+1, bf(z)

z
+ α

J λ, µ
s, b f(z)

z
,

then

q10(z) ≺
J λ, µ

s+1, bf(z)
z

,

and q10 is the best subdominant.

Corollary 4.14. Let q11 be convex univalent and q12 be univalent in U, α ∈ C
with <(α) > 0. Suppose also that q12 satisfies

<
(

1 +
zq′′12(z)
q′12(z)

)
> max

{
0,−<

(
b + 1

α

)}
.

If

0 6=
J λ, µ

s+1, bf(z)
z

∈ H[q11(0), 1] ∩Q,
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and

(1− α)
J λ, µ

s+1, bf(z)
z

+ α
J λ, µ

s, b f(z)
z

is univalent in U, also

q11(z) +
α

b + 1
zq′11(z) ≺ (1− α)

J λ, µ
s+1, bf(z)

z
+ α

J λ, µ
s, b f(z)

z

≺ q12(z) +
α

b + 1
zq′12(z),

then

q11(z) ≺
J λ, µ

s+1, bf(z)
z

≺ q12(z),

and q11 and q12 are, respectively, the best subordinant and the best dominant.
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