Differential subordinations obtained by using Al-Oboudi and Ruscheweyh operators

Oana Crişan

Abstract

We introduce the operator $\mathcal{D}_{\lambda \delta}^{n} f$ using the Al-Oboudi and Ruscheweyh operators and we investigate several differential subordinations that generalize previous results.

Mathematics Subject Classification (2010): 30C45.
Keywords: Analytic function, differential operator, subordination, convex function.

1. Introduction

Let $\mathcal{H}(U)$ denote the class of analytic functions in the unit disc

$$
U=\{z \in \mathbb{C}:|z|<1\} .
$$

For $a \in \mathbb{C}$ and $m \in \mathbb{N}=\{1,2, \ldots\}$, let

$$
\mathcal{H}[a, m]=\left\{f \in \mathcal{H}(U): f(z)=a+a_{m} z^{m}+\cdots, z \in U\right\}
$$

and

$$
\mathcal{A}_{m}=\left\{f \in \mathcal{H}(U): f(z)=z+a_{m+1} z^{m+1}+\cdots, z \in U\right\},
$$

with $\mathcal{A}_{1}=\mathcal{A}$.
Let f and g be members of $\mathcal{H}(U)$. The function f is said to be subordinate to g if there exists a function w analytic in U, with $w(0)=0$ and $|w(z)|<1, z \in U$, such that $f(z)=g(w(z)), z \in U$. In this case, we write $f \prec g$ or $f(z) \prec g(z), z \in U$. If the function g is univalent in U, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subseteq g(U)$.

Let $\Psi: \mathbb{C}^{3} \times U \rightarrow \mathbb{C}$ and let h be univalent in U. If p is analytic in U and satisfies the second-order differential subordination

$$
\begin{equation*}
\Psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \prec h(z), \quad z \in U \tag{1.1}
\end{equation*}
$$

then p is called a solution of the differential subordination. A univalent function q is called a dominant of the solution of the differential subordination, or more simply a dominant, if $p \prec q$ for all p satisfying (1.1). A dominant \tilde{q} that
satisfies $\tilde{q} \prec q$ for all dominants q of (1.1) is said to be the best dominant of (1.1).

In order to prove our main results we shall need the following lemmas.
Lemma 1.1 ([2, p. 71]). Let h be a convex function with $h(0)=a$ and let $\gamma \in \mathbb{C}^{*}$ be a complex number such that Re $\gamma \geq 0$. If $p \in \mathcal{H}[a, n]$ and

$$
p(z)+\frac{1}{\gamma} z p^{\prime}(z) \prec h(z), \quad z \in U
$$

then

$$
p(z) \prec q(z) \prec h(z), \quad z \in U,
$$

where

$$
q(z)=\frac{\gamma}{n z^{\gamma / n}} \int_{0}^{z} h(t) t^{\gamma / n-1} d t, \quad z \in U
$$

The function q is convex and the best dominant.
Lemma 1.2 ([3, p. 419]). Let r be a convex function in U and let

$$
h(z)=r(z)+n \alpha z r^{\prime}(z), \quad z \in U,
$$

where $\alpha>0$ and $n \in \mathbb{N}$. If

$$
p(z)=r(0)+p_{n} z^{n}+p_{n+1} z^{n+1}+\cdots, \quad z \in U
$$

is holomorphic in U and

$$
p(z)+\alpha z p^{\prime}(z) \prec h(z), \quad z \in U,
$$

then

$$
p(z) \prec r(z), \quad z \in U,
$$

and this result is sharp.
Definition 1.3 ([1, p. 1429]). For a function $f \in \mathcal{A}, \delta \geq 0$ and $n \in \mathbb{N} \cup\{0\}$, the Al-Oboudi differential operator $D_{\delta}^{n} f$ is defined by

$$
\begin{gather*}
D^{0} f(z)=f(z) \\
D_{\delta}^{1} f(z)=(1-\delta) f(z)+\delta z f^{\prime}(z)=D_{\delta} f(z) \\
D_{\delta}^{n} f(z)=D_{\delta}\left(D_{\delta}^{n-1} f(z)\right), \quad z \in U \tag{1.2}
\end{gather*}
$$

Remark 1.4. D_{δ}^{n} is a linear operator and for $f \in \mathcal{A}$,

$$
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}
$$

we have

$$
\begin{equation*}
D_{\delta}^{n} f(z)=z+\sum_{j=2}^{\infty}[1+(j-1) \delta]^{n} a_{j} z^{j}, \quad z \in U \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(D_{\delta}^{n+1} f(z)\right)^{\prime}=\left(D_{\delta}^{n} f(z)\right)^{\prime}+\delta z\left(D_{\delta}^{n} f(z)\right)^{\prime \prime}, \quad z \in U \tag{1.4}
\end{equation*}
$$

Also, when $\delta=1$, we obtain the Sălăgean differential operator ([6, p. 363]).

Definition 1.5 ([5, p. 110]). For a function $f \in \mathcal{A}$ and $n \in \mathbb{N} \cup\{0\}$, the Ruscheweyh differential operator $R^{n} f$ is defined by

$$
\begin{equation*}
R^{n} f(z)=\frac{z}{(1-z)^{n+1}} * f(z)=\frac{z}{n!}\left[z^{n-1} f(z)\right]^{(n)}, \quad z \in U \tag{1.5}
\end{equation*}
$$

where * stands for the Hadamard product or convolution.
Remark 1.6. If $f \in \mathcal{A}$,

$$
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}
$$

we have

$$
\begin{gather*}
R^{0} f(z)=f(z) \\
R^{1} f(z)=z f^{\prime}(z) \\
(n+1) R^{n+1} f(z)=n R^{n} f(z)+z\left(R^{n} f(z)\right)^{\prime}, \tag{1.6}\\
R^{n} f(z)=z+\sum_{j=2}^{\infty} C_{n+j-1}^{n} a_{j} z^{j}, \quad z \in U . \tag{1.7}
\end{gather*}
$$

Definition 1.7. Let $n \in \mathbb{N} \cup\{0\}, \delta \geq 0$ and $\lambda \geq 0$ with $\delta \neq(\lambda-1) / \lambda$. For $f \in \mathcal{A}$, let $\mathcal{D}_{\lambda \delta}^{n} f$ denote the operator defined by $\mathcal{D}_{\lambda \delta}^{n}: \mathcal{A} \rightarrow \mathcal{A}$,

$$
\begin{equation*}
\mathcal{D}_{\lambda \delta}^{n} f(z)=\frac{1}{1-\lambda+\lambda \delta}\left[(1-\lambda) D_{\delta}^{n} f(z)+\lambda \delta R^{n} f(z)\right], \quad z \in U \tag{1.8}
\end{equation*}
$$

where the operators $D_{\delta}^{n} f$ and $R^{n} f$ are given by Definition 1.3 and Definition 1.5 , respectively.

Remark 1.8. When $\lambda=0$ in (1.8), we get the Al-Oboudi differential operator, and when $\lambda=1$ we obtain the Ruscheweyh differential operator.

Also, for $n=0$, we have

$$
\mathcal{D}_{\lambda \delta}^{0} f(z)=\frac{1}{1-\lambda+\lambda \delta}\left[(1-\lambda) D_{\delta}^{0} f(z)+\lambda \delta R^{0} f(z)\right]=f(z), \quad z \in U
$$

Remark 1.9. $\mathcal{D}_{\lambda \delta}^{n}$ is a linear operator and for $f \in \mathcal{A}$,

$$
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}
$$

by using (1.3) and (1.7), we have

$$
\begin{equation*}
\mathcal{D}_{\lambda \delta}^{n} f(z)=z+\frac{1}{1-\lambda+\lambda \delta} \sum_{j=2}^{\infty}\left[(1-\lambda)(1+(j-1) \delta)^{n}+\lambda \delta C_{n+j-1}^{n}\right] a_{j} z^{j} \tag{1.9}
\end{equation*}
$$

2. Main results

Theorem 2.1. If $0 \leq \alpha<1, f \in \mathcal{A}_{m}$ and

$$
\begin{equation*}
\operatorname{Re}\left[\left(\mathcal{D}_{\lambda \delta}^{n+1} f(z)\right)^{\prime}+\frac{\lambda \delta z(\delta n+\delta-1)\left(R^{n} f(z)\right)^{\prime \prime}}{(1-\lambda+\lambda \delta)(n+1)}\right]>\alpha, \quad z \in U \tag{2.1}
\end{equation*}
$$

then

$$
\operatorname{Re}\left(\mathcal{D}_{\lambda \delta}^{n} f(z)\right)^{\prime}>\gamma, \quad z \in U
$$

where

$$
\gamma=\gamma(\alpha)=2 \alpha-1+\frac{2(1-\alpha)}{\delta m} \beta\left(\frac{1}{\delta m}\right)
$$

and

$$
\beta(x)=\int_{0}^{1} \frac{t^{x-1}}{1+t} d t
$$

Proof. Let $f \in \mathcal{A}_{m}$,

$$
f(z)=z+\sum_{j=m+1}^{\infty} a_{j} z^{j}, \quad z \in U
$$

If

$$
h(z)=\frac{1+(2 \alpha-1) z}{1+z}, \quad z \in U
$$

then (2.1) is equivalent to

$$
\begin{equation*}
\left(\mathcal{D}_{\lambda \delta}^{n+1} f(z)\right)^{\prime}+\frac{\lambda \delta z(\delta n+\delta-1)\left(R^{n} f(z)\right)^{\prime \prime}}{(1-\lambda+\lambda \delta)(n+1)} \prec h(z), \quad z \in U . \tag{2.2}
\end{equation*}
$$

Using the properties of $\mathcal{D}_{\lambda \delta}^{n} f, D_{\delta}^{n} f$ and $R^{n} f$, we obtain

$$
\begin{aligned}
& \left(\mathcal{D}_{\lambda \delta}^{n+1} f(z)\right)^{\prime}+\frac{\lambda \delta z(\delta n+\delta-1)\left(R^{n} f(z)\right)^{\prime \prime}}{(1-\lambda+\lambda \delta)(n+1)} \\
= & \frac{\left[(1-\lambda) D_{\delta}^{n+1} f(z)+\lambda \delta R^{n+1} f(z)\right]^{\prime}}{1-\lambda+\lambda \delta}+\frac{\lambda \delta z(\delta n+\delta-1)\left(R^{n} f(z)\right)^{\prime \prime}}{(1-\lambda+\lambda \delta)(n+1)} \\
= & \frac{1-\lambda}{1-\lambda+\lambda \delta}\left[\left(D_{\delta}^{n} f(z)\right)^{\prime}+\delta z\left(D_{\delta}^{n} f(z)\right)^{\prime \prime}\right] \\
& +\frac{\lambda \delta}{1-\lambda+\lambda \delta}\left[\frac{\left.z\left(R^{n} f(z)\right)^{\prime}+n R^{n} f(z)\right]^{\prime}}{n+1}+\frac{\lambda \delta z(\delta n+\delta-1)\left(R^{n} f(z)\right)^{\prime \prime}}{(1-\lambda+\lambda \delta)(n+1)}\right. \\
= & \frac{1-\lambda}{1-\lambda+\lambda \delta}\left(D_{\delta}^{n} f(z)\right)^{\prime}+\frac{(1-\lambda) \delta}{1-\lambda+\lambda \delta} z\left(D_{\delta}^{n} f(z)\right)^{\prime \prime} \\
& +\frac{\delta \lambda\left[\left(R^{n} f(z)\right)^{\prime}+z\left(R^{n} f(z)\right)^{\prime \prime}+n\left(R^{n} f(z)\right)^{\prime}\right]}{(1-\lambda+\lambda \delta)(n+1)}
\end{aligned}
$$

$$
\begin{align*}
& +\frac{\lambda \delta z(\delta n+\delta-1)\left(R^{n} f(z)\right)^{\prime \prime}}{(1-\lambda+\lambda \delta)(n+1)} \\
= & \frac{1}{1-\lambda+\lambda \delta}\left[(1-\lambda)\left(D_{\delta}^{n} f(z)\right)^{\prime}+\lambda \delta\left(R^{n} f(z)\right)^{\prime}\right] \\
& +\delta z \frac{1}{1-\lambda+\lambda \delta}\left[(1-\lambda)\left(D_{\delta}^{n} f(z)\right)^{\prime \prime}+\lambda \delta\left(R^{n} f(z)\right)^{\prime \prime}\right] \\
= & \left(\mathcal{D}_{\lambda \delta}^{n} f(z)\right)^{\prime}+\delta z\left(\mathcal{D}_{\lambda \delta}^{n} f(z)\right)^{\prime \prime}, \quad z \in U . \tag{2.3}
\end{align*}
$$

Then, from (2.2) and (2.3), we have

$$
\begin{equation*}
\left(\mathcal{D}_{\lambda \delta}^{n} f(z)\right)^{\prime}+\delta z\left(\mathcal{D}_{\lambda \delta}^{n} f(z)\right)^{\prime \prime} \prec h(z), \quad z \in U . \tag{2.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(z)=\left(\mathcal{D}_{\lambda \delta}^{n} f(z)\right)^{\prime}, \quad z \in U \tag{2.5}
\end{equation*}
$$

In view of (1.9), we get

$$
\begin{aligned}
p(z) & =1+\frac{1}{1-\lambda+\lambda \delta} \sum_{j=m+1}^{\infty}\left[(1-\lambda)(1+(j-1) \delta)^{n}+\lambda \delta C_{n+j-1}^{n}\right] j a_{j} z^{j-1} \\
& =1+b_{m} z^{m}+b_{m+1} z^{m+1}+\ldots, \quad z \in U .
\end{aligned}
$$

and from (2.4), we obtain

$$
\begin{equation*}
p(z)+\delta z p^{\prime}(z) \prec h(z), \quad z \in U . \tag{2.6}
\end{equation*}
$$

By applying now Lemma 1.1, we have

$$
p(z) \prec q(z) \prec h(z), \quad z \in U,
$$

where

$$
\begin{aligned}
q(z) & =\frac{1}{\delta m z^{1 / \delta m}} \int_{0}^{z} h(t) t^{\frac{1}{\delta m}}-1 d t \\
& =\frac{1}{\delta m z^{1 / \delta m}} \int_{0}^{z}\left[2 \alpha-1+2(1-\alpha) \frac{1}{1+t}\right] t^{\frac{1}{\delta m}-1} d t \\
& =\frac{2 \alpha-1}{\delta m z^{1 / \delta m}} \int_{0}^{z} t^{\frac{1}{\delta m}-1} d t+\frac{2(1-\alpha)}{\delta m z^{1 / \delta m}} \int_{0}^{z} \frac{t^{\frac{1}{\delta m}-1}}{1+t} d t \\
& =2 \alpha-1+\frac{2(1-\alpha)}{\delta m z^{1 / \delta m}} \int_{0}^{z} \frac{t^{\frac{1}{\delta m}}-1}{1+t} d t, \quad z \in U .
\end{aligned}
$$

The function q is convex, it is the best dominant and because $q(U)$ is symmetric with respect to the real axis, we get

$$
\operatorname{Re}\left(\mathcal{D}_{\lambda \delta}^{n} f(z)\right)^{\prime}=\operatorname{Re} p(z)>\operatorname{Re} q(1)=\gamma(\alpha)=2 \alpha-1+\frac{2(1-\alpha)}{\delta m} \beta\left(\frac{1}{\delta m}\right)
$$

Example 2.2. If $f \in \mathcal{A}, n=1, \lambda=1 / 2, \delta=1$ and $\alpha=1 / 2$, then $\gamma(\alpha)=\ln 2$ and the inequality

$$
\operatorname{Re}\left[f^{\prime}(z)+3 z f^{\prime \prime}(z)+z^{2} f^{\prime \prime \prime}(z)\right]>\frac{1}{2}, \quad z \in U
$$

implies that

$$
\operatorname{Re}\left[f^{\prime}(z)+z f^{\prime \prime}(z)\right]>\ln 2, \quad z \in U
$$

Theorem 2.3. Let $m \in \mathbb{N}, \delta>0$ and let r be a convex function with $r(0)=1$ and h a function such that

$$
h(z)=r(z)+m \delta z r^{\prime}(z), \quad z \in U
$$

If $f \in \mathcal{A}_{m}$, then the following subordination

$$
\begin{equation*}
\left(\mathcal{D}_{\lambda \delta}^{n+1} f(z)\right)^{\prime}+\frac{\lambda \delta z(\delta n+\delta-1)\left(R^{n} f(z)\right)^{\prime \prime}}{(1-\lambda+\lambda \delta)(n+1)} \prec h(z)=r(z)+m \delta z r^{\prime}(z), \quad z \in U \tag{2.7}
\end{equation*}
$$

implies that

$$
\left(\mathcal{D}_{\lambda \delta}^{n} f(z)\right)^{\prime} \prec r(z), \quad z \in U
$$

and the result is sharp.
Proof. By using (2.3) and (2.5), the subordination (2.7) is equivalent to

$$
p(z)+\delta z p^{\prime}(z) \prec h(z)=r(z)+m \delta z r^{\prime}(z), \quad z \in U .
$$

Hence, from Lemma 1.2, we conclude that

$$
p(z) \prec r(z), \quad z \in U,
$$

that is,

$$
\left(\mathcal{D}_{\lambda \delta}^{n} f(z)\right)^{\prime} \prec r(z), \quad z \in U
$$

and the result is sharp.
Theorem 2.4. Let $m \in \mathbb{N}$ and let r be a convex function with $r(0)=1$ and h a function such that

$$
h(z)=r(z)+m z r^{\prime}(z), \quad z \in U .
$$

If $f \in \mathcal{A}_{m}$, then the following subordination

$$
\begin{equation*}
\left(\mathcal{D}_{\lambda \delta}^{n} f(z)\right)^{\prime} \prec h(z)=r(z)+m z r^{\prime}(z), \quad z \in U \tag{2.8}
\end{equation*}
$$

implies that

$$
\frac{\mathcal{D}_{\lambda \delta}^{n} f(z)}{z} \prec r(z), \quad z \in U
$$

and the result is sharp.
Proof. Let

$$
\begin{equation*}
p(z)=\frac{\mathcal{D}_{\lambda \delta}^{n} f(z)}{z}, \quad z \in U \tag{2.9}
\end{equation*}
$$

Differentiating (2.9), we have

$$
\left(\mathcal{D}_{\lambda \delta}^{n} f(z)\right)^{\prime}=p(z)+z p^{\prime}(z), \quad z \in U
$$

and consequently, (2.8) becomes

$$
p(z)+z p^{\prime}(z) \prec h(z)=r(z)+m z r^{\prime}(z), \quad z \in U .
$$

Hence, by applying Lemma 1.2, we conclude that

$$
p(z) \prec r(z), \quad z \in U,
$$

that is,

$$
\frac{\mathcal{D}_{\lambda \delta}^{n} f(z)}{z} \prec r(z), \quad z \in U,
$$

and the result is sharp.
Remark 2.5. For $m=1$ and $\delta=1$, the above theorems were obtained by G. I. Oros and G. Oros in [4].

References

[1] Al-Oboudi, F.M., On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci., 27(2004), 1429-1436.
[2] Miller, S.S., Mocanu, P.T., Differential subordinations: Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.
[3] Mocanu, P.T., Bulboacă, T., Sălăgean, G.Ş., Geometric Theory of Univalent Functions, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2006 (in Romanian).
[4] Oros, G.I., Oros, G., Differential subordinations obtained by using generalized Sălăgean and Ruscheweyh operators, Acta Univ. Apul., 14(2007), 129-140.
[5] Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
[6] Sălăgean, G.Ş., Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013(1983), 362-372.

Oana Crişan
"Babeş-Bolyai" University
Faculty of Mathematics and Computer Sciences
1, Kogălniceanu Street
400084 Cluj-Napoca, Romania
e-mail: oanacrisan310@yahoo.com

