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Periodic solutions in totally nonlinear
difference equations with functional delay

Abdelouaheb Ardjouni and Ahcene Djoudi

Abstract. We use the modification of Krasnoselskii’s fixed point theorem
due to T. A. Burton ( [1] Theorem 3) to show that the totally nonlinear
difference equation with functional delay

Ax(t)=—a(t)z® (t+1)+G (t,2° (t),2° (t —g(t))), Vt € Z,

has periodic solutions. We invert this equation to construct a sum of
a compact map and a large contraction which is suitable for applying
Krasnoselskii-Burton theorem. Finally, an example is given to illustrate
our result.
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1. Introduction

In this paper, we are interested in the analysis of qualitative theory of
periodic solutions of difference equation. Motivated by the papers [3], [5]-
[7] and the references therein, we consider the following totally nonlinear
difference equation with functional delay

Az (t)=—a(t)z® (t+1)+ G (t,2° (t),2° (t—g (1)), Vt€Z,  (11)

where

G:ZxRxR—R,

with Z is the set of integers and R is the set of real numbers. Throughout this
paper A denotes the forward difference operator Az (¢t) = x (¢ + 1) —z (¢) for
any sequence {x (), ¢t € Z} . For more on the calculus of difference equations,
we refer the reader to [4]. The equation (1.1) is totally nonlinear and we have
to add a linear term to both sides of the equation. Although the added term
destroys a contraction already present but it will be replaced it with the so
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called large contraction which is suitable in the fixed point theory. Our pur-
pose here is to use a modification of Krasnoselskii’s fixed point theorem due
T. A. Burton (see [1] Theorem 3) to show the existence of periodic solutions
for equation (1.1). To apply this variant of Krasnoselskii’s fixed point theo-
rem we have to invert equation (1.1) to construct two mappings; one is large
contraction and the other is compact. For details on Krasnoselskii’s theorem
we refer the reader to [8]. In Section 2, we present the inversion of difference
equations (1.1) and the modification of Krasnoselskii’s fixed point theorem.
We present our main results on periodicity in Section 3 and at the end we
provide an example to illustrate this work.

2. Inversion of the equation
Let T be an integer such that T" > 1. Define
Cr={peC(ZR): ot +T) = ()}

where C (Z,R) is the space of all real valued functions. Then (Cr, ||.|) is a
Banach space with the maximum norm

= t)].
el max o (8)]

In this paper we assume the periodicity conditions
at+T)=a®), gt+T)=9g(t), g(t)>g* >0, (2.1)
for some constant g*. Also, we assume that
a(t) > 0. (2.2)
We also require that G (¢, x,y) is periodic in ¢ and Lipschitz continuous in x
and y. That is
Gt+T,x,y) =G (tx,y), (2.3)
and there are positive constants k1, ks such that
|G (t,z,y) — G (t, z,w)| < ky|x — 2|+ kaly —w|, for z,y,z,w € R. (2.4)

Lemma 2.1. Suppose (2.1) and (2.3) hold. If x € Cr, then x is a solution of
equation (1.1) if and only if

t—1 -1
z(t) = (1_ 11 (1+a(s))—1> (2.5)

s=t—T
x[ 3 a(r)(x(r+1)—x3(r+1))1:[(1+a(s))*1

+ G (ra®(r),® (r—g () [Tt +a(s)™

r=t—T s=r



Totally nonlinear difference equations 9

Proof. Let x € Cp be a solution of (1.1). First we write this equation as
Ar(t)+a®)zt+D)=a®)zt+1)—at)z®(t+1)
+G(t,2®(t),2° (t—g(t)).

t—1
Multiplying both sides of the above equation by [] (1 4 a (s)) and then sum-
s=0
ming from ¢t — T to t — 1 to obtain
Z A [H 1+a(s))m(r)]
-T s=0
t—1
Z ){a:(r+1)—ac3(r+1)}
r=t—T
+G(T,x (r),z? H (I+a(s
As a consequence, we arrive at
t—1 t—T—1
[[a+a(s - I] a+a(s)z@-1)
s=0 s=0
t—1
= Z la(r){z(r+1)—2®(r+1)}
r=t—T
r—1
+G (r,2® (r),2* (r—g ()] [T (1 +a(s)).
s=0

Now, the lemma follows by dividing both sides of the above equation by
t—1
[T (1 +a(s)) and using the fact that « (t) =z (t —T). O
s=0

In the analysis, we employ a fixed point theorem in which the notion of
a large contraction is required as one of the sufficient conditions. First, we
give the following definition which can be found in [1] or [2].

Definition 2.2. (Large Contraction) Let (M,d) be a metric space and B :
M — M. B is said to be a large contraction if ¢, € M, with ¢ # ¢ then
d(B¢,Byp) < d(¢,¢) and if for all € > 0, there exists a § < 1 such that

(9,0 € M,d(¢,p) > €] = d (B¢, Bp) < dd (¢, ).

The next theorem, which constitutes a basis for our main result, is
a reformulated version of Krasnoselskii’s fixed point theorem due to T. A.
Burton (see [1], [2]).

Theorem 2.3. (Krasnoselskii-Burton) Let M be a bounded convex nonempty
subset of a Banach space (B, ||.||) . Suppose that A and B map M into B such
that

i. x,y € M, implies Ax + By € M;
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ii. A is continuous and AM is contained in a compact subset of M;
itt. B is a large contraction mapping.
Then there exists z € M with z = Az + Bz.

We will use this theorem to prove the existence of periodic solutions for
equation (1.1). We begin with the following proposition.

Proposition 2.4. If ||.|| is the mazimum norm,
M={peC@EZR): |l < V3/3},

and (By) (t) = o (t + 1) — o> (t + 1), then B is a large contraction of the set
M.

Proof. For each t € Z we have for the real functions ¢, 1
|(By) (t) — (Bv) ()]
=lp(t+1) = (t+1)]
x 1= (@®t+1D)+et+Dyt+1)+¢°(t+1))].
On the other hand,
lpt+1D) = (E+D)P =t +1) =20+ D (E+1)+0?(E+1)
<2(*(t+ 1)+ 4% (t+1)).
Using 2 (t + 1) + 92 (t + 1) < 1 we have
[(By) (t) — (Bv) (t)]
Sle@+1)—v(t+1)]
x[1=(P*E+1)+* (t+1) +]pt+1)v(t+1)]
Sle+1)—v(t+1)

x 1—(<p2(t+1)+w2(t+1))+‘p2(t+1);w2(t+1)}

wQ(t+1)+w2(t+1)}

Sle(t+1) =9 E+1)]1-

<lle—vll.

Consequently we get

2

B — B[l < llo — |-
Thus B is a large pointwise contraction. But B is still a large contraction for
the maximum norm. To show this, let € € (0,1) be given and let v, € M
with [l — v > e
a) Suppose that for some ¢t we have

e/2<|p(t+1)—v(t+1).
Then
(€2 <lo(t+1) -+ <2(* ¢+ 1)+ (t+1)),
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that is
O (t+1)+? (t+1) > /8.
For all such ¢ we have

I(Be) () — (Bi) (8)] < [ (£ 4+ 1) — 5 (¢ + 1) [1 _ 16]

< [1- %]t v

b) Suppose that for some ¢ we have
lp(+1) = (t+ 1) <e/2,
then

[(By) () = (BY) ()] < @ (t+1) =9 (¢ + )] < (1/2) lp — .

So, for all ¢ we have

(B0) (6 = (50) (0] < mox {121 - } o vl
2
16
1B — Byl < 5l — vl

Hence, for each € > 0, if § = max {1/2 1- } < 1, then

3. Existence of periodic solutions

To apply Theorem 2.3, we need to define a Banach space B, a bounded

11

convex subset M of B and construct two mappings, one is a large con-

traction and the other is compact. So, we let (B,|.]]) = (Cr,|.||) and
M ={peB]||p| <L}, where L = v/3/3. We express equation (2.5) as

@ (t) = (Be) (t) + (Ap) (t) := (Hep) (1),
where A, B : M — B are defined by

t—1

(Ap) (t) = (1 II (1+a(8))_1>

=t—T
t—1

t—1
< 3 G (). r—g(m) [[a+als) ™,

r=t—T s=r

and

t—1 -1
(By) ( (1 H (1+a( )
s=t—T

X Z a(r) ((p(r—l—l)—903(7“—1—1))1:[(1—&—@(5))_1.

(3.1)

(3.2)
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We suppose an additional condition, there is J > 3 with
J (k1 + ko) L? + |G (£,0,0)|) < La(t), Vt € Z. (3.3)
We shall prove that the mapping H has a fixed point which solves (1.1).

Lemma 3.1. For A defined in (3.1), suppose that (2.1)—(2.4) and (3.3) hold.
Then A : M — M is continuous in the maximum norm and maps M into a
compact subset of M.

Proof. We first show that A: M — M.
Let ¢ € M. Evaluate (3.1) at t +T.

t+T—1 -1
(A(p)(t—i—T):(l— 11 (1+a(s))_1>
t+T—1 . t+T—1
x > G (), (r—g@)) J] Q+a(s)™".

Let j =r — T, then

t+T—1

(Ap) (t+T) = (1— 11 (1+a(s))_1>

s=t

t—1

x Y GUHTSG+T), @ (G+T—g(+1))
j=t—T
t+T—-1

x [T a+a@s)™.

s=j+T

Now let kK = s — ¢, then

(Ago)(t—i—T):(l— f[ (1+a(k))1>
k=t—-T
< S GGG G- () [ +alk)
j=t—T k=j
= (Ap) ().

That is, A: Cr — Cr.
In view of (2.4) we arrive at
|G (8 2,y)| = |G (¢ 2,y) — G(,0,0) + G (¢,0,0)]
< |G(t,(£,y) - G(t,0,0)| + |G(t,0,0)|
<k [l + k2 llyll +1G (2,0,0)]-
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t—1
Note that from (2.2), we have 1— [] (1+a(s))"" > 0. So, for any ¢ € M,

s=t—T
we have
t—1 -1
[(Ap) ()] < (1— (1+a(s)) 1)
s=t—T
x y |G (r, ¢ (r) 903(ng(¢)))|1:[(1+@(3)) !
< (1 [ (1+a(s)) 1)
L s=t—T .
« S (k1 + k) 241G (1,0,0)) J[ (1 +a(s) ™
r=t—T s—1
e R La(r) i
S(l— (1—|—a(5))1> 3 S I1¢ (1+a(s) "
s=t—T r=t—T s=r
L
- j < L.
Thus Ap € M.

Consequently, we have A : M — M.
We show that A is continuous in the maximum norm. Let ¢, € M,

and let »
= <1 H (1+a(s))1> .

t—1

Note that from (2.2), we have [IH%X | [T (1+a(s))”" <1. So,
ret—="T,t—1| sg—=r

t—1 -1
[(Ap) (t) — (A) ()] < (1— 11 (1+a(8))_1>
s=t—T
< 3G (et (). =g ()
r=t—T

—G (r,¢* (1), ¢* (r —g M) | [[ 1 +a(s) ™

< (k1 + ko) [ = 7|

-1 -1 41 1
x(l— 11 (1+a(3))_1> > I[a+as)™

r=t—T s=r

s=t—T
< 3 (k1 + ko) TaL? || — || .
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Let € > 0 be arbitrary. Define = ¢/K with K = 3 (k; + k2) TaL?, where k;
and ko are given by (2.4). Then, for ||¢ — || < 1 we obtain

[Ap — Ap|| < K [lo — [l <e.

This proves that A is continuous.

Next, we show that A maps bounded subsets into compact sets. As M is
bounded and A is continuous, then AM is a subset of R” which is bounded.
Thus AM is contained in a compact subset of M. Therefore A is continuous
in M and AM is contained in a compact subset of M. O

Lemma 3.2. Let B be defined by (3.2) and suppose that (2.1)—(2.2) hold.
Then B: M — M 1is a large contraction.

Proof. We first show that B: M — M.
Let ¢ € M. Evaluate (3.2) at t + T.

t+T—1 -1
(Bo) (t+T) = (1— 11 (1+a(s))1>
t+T—1 = t+T—1
x Y am(pr+1) - r+1) J[ +als)™".
Let j =r — T, then
t+T—1 -1
(Bp) (t+T) = (1_ H (1+a(s))_1>
X Z G+T) (G +T+1) =@ (G +T+1)
j=t=T
t+T—1
< J[ A+a(s)™.
s=j+T

Now let kK = s — ¢, then

(Bw)(HT)(l 11 <1+a<k>>‘1>
k=t—-T

That is, B : C7 — Cr.
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t—1
Note that from (2.2), we have 1— [] (1+a(s))"" > 0. So, for any ¢ € M,

s=t—T
we have
t—1 -1
[(By) ()] < <1 H (I4+af(s )
s=t—T
t—1
X Z a |<p +1) ’H (I1+a(s -1
r=t—T
t—1 -1
<<L—IIO+aU)Q
s=t—T

S 0o — P T +a(s)™

r=t—T
=llo=4"1-

Since [l¢| < L, we have ||¢ — 3| < (2v/3) /9 < L. So, for any ¢ € M, we
have

|Bel| < L.
Thus By € M. Consequently, we have B : M — M.

It remains to show that B is large contraction in the maximum norm.
From the proof of Proposition 2.4 we have for ¢,v € M, with ¢ # ¢

KBw)@)—(Bw)@N<1<1— IT (1+a($)1>

z:a ) le = wa

r=t—T
= [l =9

Then ||By — Byl < |[¢ — ¢||. Thus B is a large pointwise contraction. But
B is still a large contraction for the maximum norm. To show this, let ¢ €
(0,1) be given and let p,v € M with || — 1| > €. From the proof of the
Proposition 2.4 we have found ¢ < 1 such that

(Be) (1) — (Bo) (¢ ( ﬁ1+a )

< Y al)sllo- ¢||H1+a ()"

r=t—T
=dlle—vl.
Then ||By — By|| < 9§ |j¢ — ||. Consequently, B is a large contraction. [
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Theorem 3.3. Let (Cr,||.|) be the Banach space of T-periodic real val-
ued functions and M = {p € Cr | ||| < L}, where L = /3/3. Suppose
(2.1)—(2.4) and (3.3) hold. Then equation (1.1) has a T-periodic solution ¢
in the subset M.

Proof. By Lemma 3.1, A : M — M is continuous and AM is contained in
a compact set. Also, from Lemma 3.2, the mapping B : M — M is a large
contraction. Moreover, if ¢, € M, we see that

|Ap + Byl < 1 Ag] + | By < L/ + (2V3) /9 < L.

Thus Ap + By € M.

Clearly, all the hypotheses of Krasnoselskii-Burton Theorem 2.3 are satisfied.
Thus there exists a fixed point ¢ € M such that ¢ = Ap + By. Hence the
equation (1.1) has a T-periodic solution which lies in M. O

Example 3.4. We consider the totally nonlinear difference equation with func-
tional delay

Az (t) = —82% (t+ 1) +sin (2° (t)) +cos (2® (t —g (1)), t€Z, (3.4)
where
gt+T)=g(t).
So, we have
a(t)=8, G(t,2°(t),2° (t—g(t))) = sin (z° (t)) + cos (z* (t — g (1)) .
Clearly, G (t,x,y) is periodic in ¢ Lipschitz continuous in  and y. That is
Gt+T,xz,y) =Gt x,y),
and
|G (t,z,y) — G (t, z,w)| = |sin (z) — sin (z) + cos (y) — cos (w)]
< |sin (z) — sin (2)| + |cos (y) — cos (w)]
<o —zl+ |y —wl.
Note that if J = 3 we have
T (k1 + ko) LP + |G (£,0,0)]) = 3 (2 (\/3/3)3 + 1)
< (\/§/3) 8
=La(t), Vt € Z.

Define M = {¢ € Cr | |||l < L}, where L = v/3/3. Then the difference (3.4)
has a T-periodic solution in M, by Theorem 2.
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