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Periodic solutions in totally nonlinear
difference equations with functional delay

Abdelouaheb Ardjouni and Ahcene Djoudi

Abstract. We use the modification of Krasnoselskii’s fixed point theorem
due to T. A. Burton ( [1] Theorem 3) to show that the totally nonlinear
difference equation with functional delay

4x (t) = −a (t) x3 (t + 1) + G
(
t, x3 (t) , x3 (t− g (t))

)
, ∀t ∈ Z,

has periodic solutions. We invert this equation to construct a sum of
a compact map and a large contraction which is suitable for applying
Krasnoselskii-Burton theorem. Finally, an example is given to illustrate
our result.
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1. Introduction

In this paper, we are interested in the analysis of qualitative theory of
periodic solutions of difference equation. Motivated by the papers [3], [5]-
[7] and the references therein, we consider the following totally nonlinear
difference equation with functional delay

4x (t) = −a (t)x3 (t+ 1) +G
(
t, x3 (t) , x3 (t− g (t))

)
, ∀t ∈ Z, (1.1)

where

G : Z× R× R → R,
with Z is the set of integers and R is the set of real numbers. Throughout this
paper 4 denotes the forward difference operator 4x (t) = x (t+ 1)−x (t) for
any sequence {x (t) , t ∈ Z} . For more on the calculus of difference equations,
we refer the reader to [4]. The equation (1.1) is totally nonlinear and we have
to add a linear term to both sides of the equation. Although the added term
destroys a contraction already present but it will be replaced it with the so
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called large contraction which is suitable in the fixed point theory. Our pur-
pose here is to use a modification of Krasnoselskii’s fixed point theorem due
T. A. Burton (see [1] Theorem 3) to show the existence of periodic solutions
for equation (1.1). To apply this variant of Krasnoselskii’s fixed point theo-
rem we have to invert equation (1.1) to construct two mappings; one is large
contraction and the other is compact. For details on Krasnoselskii’s theorem
we refer the reader to [8]. In Section 2, we present the inversion of difference
equations (1.1) and the modification of Krasnoselskii’s fixed point theorem.
We present our main results on periodicity in Section 3 and at the end we
provide an example to illustrate this work.

2. Inversion of the equation

Let T be an integer such that T ≥ 1. Define

CT = {ϕ ∈ C (Z,R) : ϕ(t+ T ) = ϕ (t)}

where C (Z,R) is the space of all real valued functions. Then (CT , ‖.‖) is a
Banach space with the maximum norm

‖ϕ‖ = max
t∈[0,T−1]

|ϕ (t)| .

In this paper we assume the periodicity conditions

a (t+ T ) = a (t) , g (t+ T ) = g (t) , g (t) ≥ g∗ > 0, (2.1)

for some constant g∗. Also, we assume that

a (t) > 0. (2.2)

We also require that G (t, x, y) is periodic in t and Lipschitz continuous in x
and y. That is

G (t+ T, x, y) = G (t, x, y) , (2.3)

and there are positive constants k1, k2 such that

|G (t, x, y)−G (t, z, w)| ≤ k1 |x− z|+ k2 |y − w| , for x, y, z, w ∈ R. (2.4)

Lemma 2.1. Suppose (2.1) and (2.3) hold. If x ∈ CT , then x is a solution of
equation (1.1) if and only if

x (t) =

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

(2.5)

×

[
t−1∑

r=t−T

a (r)
(
x (r + 1)− x3 (r + 1)

) t−1∏
s=r

(1 + a (s))−1

+
t−1∑

r=t−T

G
(
r, x3 (r) , x3 (r − g (r))

) t−1∏
s=r

(1 + a (s))−1

]
.
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Proof. Let x ∈ CT be a solution of (1.1). First we write this equation as

4x (t) + a (t)x (t+ 1) = a (t)x (t+ 1)− a (t)x3 (t+ 1)

+G
(
t, x3 (t) , x3 (t− g (t))

)
.

Multiplying both sides of the above equation by
t−1∏
s=0

(1 + a (s)) and then sum-

ming from t− T to t− 1 to obtain
t−1∑

r=t−T

4

[
r−1∏
s=0

(1 + a (s))x (r)

]

=
t−1∑

r=t−T

[
a (r)

{
x (r + 1)− x3 (r + 1)

}
+G

(
r, x3 (r) , x3 (r − g (r))

)] r−1∏
s=0

(1 + a (s)) .

As a consequence, we arrive at
t−1∏
s=0

(1 + a (s))x (t)−
t−T−1∏

s=0

(1 + a (s))x (t− T )

=
t−1∑

r=t−T

[
a (r)

{
x (r + 1)− x3 (r + 1)

}
+G

(
r, x3 (r) , x3 (r − g (r))

)] r−1∏
s=0

(1 + a (s)) .

Now, the lemma follows by dividing both sides of the above equation by
t−1∏
s=0

(1 + a (s)) and using the fact that x (t) = x (t− T ) . �

In the analysis, we employ a fixed point theorem in which the notion of
a large contraction is required as one of the sufficient conditions. First, we
give the following definition which can be found in [1] or [2].

Definition 2.2. (Large Contraction) Let (M,d) be a metric space and B :
M → M. B is said to be a large contraction if φ, ϕ ∈ M, with φ 6= ϕ then
d (Bφ,Bϕ) ≤ d (φ, ϕ) and if for all ε > 0, there exists a δ < 1 such that

[φ, ϕ ∈M,d (φ, ϕ) ≥ ε] ⇒ d (Bφ,Bϕ) ≤ δd (φ, ϕ) .

The next theorem, which constitutes a basis for our main result, is
a reformulated version of Krasnoselskii’s fixed point theorem due to T. A.
Burton (see [1], [2]).

Theorem 2.3. (Krasnoselskii-Burton) Let M be a bounded convex nonempty
subset of a Banach space (B, ‖.‖) . Suppose that A and B map M into B such
that

i. x, y ∈M, implies Ax+By ∈M ;
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ii. A is continuous and AM is contained in a compact subset of M ;
iii. B is a large contraction mapping.
Then there exists z ∈M with z = Az +Bz.

We will use this theorem to prove the existence of periodic solutions for
equation (1.1). We begin with the following proposition.

Proposition 2.4. If ‖.‖ is the maximum norm,

M =
{
ϕ ∈ C (Z,R) : ‖ϕ‖ ≤

√
3/3
}
,

and (Bϕ) (t) = ϕ (t+ 1)−ϕ3 (t+ 1) , then B is a large contraction of the set
M.

Proof. For each t ∈ Z we have for the real functions ϕ,ψ

|(Bϕ) (t)− (Bψ) (t)|
= |ϕ (t+ 1)− ψ (t+ 1)|
×
∣∣1− (ϕ2 (t+ 1) + ϕ (t+ 1)ψ (t+ 1) + ψ2 (t+ 1)

)∣∣ .
On the other hand,

|ϕ (t+ 1)− ψ (t+ 1)|2 = ϕ2 (t+ 1)− 2ϕ (t+ 1)ψ (t+ 1) + ψ2 (t+ 1)

≤ 2
(
ϕ2 (t+ 1) + ψ2 (t+ 1)

)
.

Using ϕ2 (t+ 1) + ψ2 (t+ 1) < 1 we have

|(Bϕ) (t)− (Bψ) (t)|
≤ |ϕ (t+ 1)− ψ (t+ 1)|
×
[
1−

(
ϕ2 (t+ 1) + ψ2 (t+ 1)

)
+ |ϕ (t+ 1)ψ (t+ 1)|

]
≤ |ϕ (t+ 1)− ψ (t+ 1)|

×
[
1−

(
ϕ2 (t+ 1) + ψ2 (t+ 1)

)
+
ϕ2 (t+ 1) + ψ2 (t+ 1)

2

]
≤ |ϕ (t+ 1)− ψ (t+ 1)|

[
1− ϕ2 (t+ 1) + ψ2 (t+ 1)

2

]
≤ ‖ϕ− ψ‖ .

Consequently we get
‖Bϕ−Bψ‖ ≤ ‖ϕ− ψ‖ .

Thus B is a large pointwise contraction. But B is still a large contraction for
the maximum norm. To show this, let ε ∈ (0, 1) be given and let ϕ,ψ ∈ M
with ‖ϕ− ψ‖ ≥ ε.

a) Suppose that for some t we have

ε/2 ≤ |ϕ (t+ 1)− ψ (t+ 1)| .

Then

(ε/2)2 ≤ |ϕ (t+ 1)− ψ (t+ 1)|2 ≤ 2
(
ϕ2 (t+ 1) + ψ2 (t+ 1)

)
,
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that is
ϕ2 (t+ 1) + ψ2 (t+ 1) ≥ ε2/8.

For all such t we have

|(Bϕ) (t)− (Bψ) (t)| ≤ |ϕ (t+ 1)− ψ (t+ 1)|
[
1− ε2

16

]
≤
[
1− ε2

16

]
‖ϕ− ψ‖ .

b) Suppose that for some t we have

|ϕ (t+ 1)− ψ (t+ 1)| ≤ ε/2,

then

|(Bϕ) (t)− (Bψ) (t)| ≤ |ϕ (t+ 1)− ψ (t+ 1)| ≤ (1/2) ‖ϕ− ψ‖ .
So, for all t we have

|(Bϕ) (t)− (Bψ) (t)| ≤ max
{

1/2, 1− ε2

16

}
‖ϕ− ψ‖ .

Hence, for each ε > 0, if δ = max
{

1/2, 1− ε2

16

}
< 1, then

‖Bϕ−Bψ‖ ≤ δ ‖ϕ− ψ‖ . �

3. Existence of periodic solutions

To apply Theorem 2.3, we need to define a Banach space B, a bounded
convex subset M of B and construct two mappings, one is a large con-
traction and the other is compact. So, we let (B, ‖.‖) = (CT , ‖.‖) and
M = {ϕ ∈ B | ‖ϕ‖ ≤ L} , where L =

√
3/3. We express equation (2.5) as

ϕ (t) = (Bϕ) (t) + (Aϕ) (t) := (Hϕ) (t) ,

where A,B : M → B are defined by

(Aϕ) (t) =

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

(3.1)

×
t−1∑

r=t−T

G
(
r, ϕ3 (r) , ϕ3 (r − g (r))

) t−1∏
s=r

(1 + a (s))−1
,

and

(Bϕ) (t) =

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

(3.2)

×
t−1∑

r=t−T

a (r)
(
ϕ (r + 1)− ϕ3 (r + 1)

) t−1∏
s=r

(1 + a (s))−1
.
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We suppose an additional condition, there is J ≥ 3 with

J
(
(k1 + k2)L3 + |G (t, 0, 0)|

)
≤ La (t) , ∀t ∈ Z. (3.3)

We shall prove that the mapping H has a fixed point which solves (1.1).

Lemma 3.1. For A defined in (3.1), suppose that (2.1)−(2.4) and (3.3) hold.
Then A : M → M is continuous in the maximum norm and maps M into a
compact subset of M.

Proof. We first show that A : M →M .
Let ϕ ∈M. Evaluate (3.1) at t+ T.

(Aϕ) (t+ T ) =

(
1−

t+T−1∏
s=t

(1 + a (s))−1

)−1

×
t+T−1∑

r=t

G
(
r, ϕ3 (r) , ϕ3 (r − g (r))

) t+T−1∏
s=r

(1 + a (s))−1
.

Let j = r − T, then

(Aϕ) (t+ T ) =

(
1−

t+T−1∏
s=t

(1 + a (s))−1

)−1

×
t−1∑

j=t−T

G
(
j + T, ϕ3 (j + T ) , ϕ3 (j + T − g (j + T ))

)
×

t+T−1∏
s=j+T

(1 + a (s))−1
.

Now let k = s− t, then

(Aϕ) (t+ T ) =

(
1−

t−1∏
k=t−T

(1 + a (k))−1

)−1

×
t−1∑

j=t−T

G
(
j, ϕ3 (j) , ϕ3 (j − g (j))

) t−1∏
k=j

(1 + a (k))−1

= (Aϕ) (t) .

That is, A : CT → CT .

In view of (2.4) we arrive at

|G (t, x, y)| = |G (t, x, y)−G (t, 0, 0) +G (t, 0, 0)|
≤ |G (t, x, y)−G (t, 0, 0)|+ |G (t, 0, 0)|
≤ k1 ‖x‖+ k2 ‖y‖+ |G (t, 0, 0)| .
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Note that from (2.2), we have 1−
t−1∏

s=t−T

(1 + a (s))−1
> 0. So, for any ϕ ∈M,

we have

|(Aϕ) (t)| ≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

×
t−1∑

r=t−T

∣∣G (r, ϕ3 (r) , ϕ3 (r − g (r))
)∣∣ t−1∏

s=r

(1 + a (s))−1

≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

×
t−1∑

r=t−T

(
(k1 + k2)L3 + |G (r, 0, 0)|

) t−1∏
s=r

(1 + a (s))−1

≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1 t−1∑
r=t−T

La (r)
J

t−1∏
s=r

(1 + a (s))−1

=
L

J
< L.

Thus Aϕ ∈M.
Consequently, we have A : M →M.

We show that A is continuous in the maximum norm. Let ϕ,ψ ∈ M,
and let

α =

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

.

Note that from (2.2), we have max
r∈[t−T,t−1]

t−1∏
s=r

(1 + a (s))−1 ≤ 1. So,

|(Aϕ) (t)− (Aψ) (t)| ≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

×
t−1∑

r=t−T

∣∣G (r, ϕ3 (r) , ϕ3 (r − g (r))
)

−G
(
r, ϕ3 (r) , ϕ3 (r − g (r))

)∣∣ t−1∏
s=r

(1 + a (s))−1

≤ (k1 + k2)
∥∥ϕ3 − ψ3

∥∥
×

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1 t−1∑
r=t−T

t−1∏
s=r

(1 + a (s))−1

≤ 3 (k1 + k2)TαL2 ‖ϕ− ψ‖ .
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Let ε > 0 be arbitrary. Define η = ε/K with K = 3 (k1 + k2)TαL2, where k1

and k2 are given by (2.4). Then, for ‖ϕ− ψ‖ < η we obtain

‖Aϕ−Aψ‖ ≤ K ‖ϕ− ψ‖ < ε.

This proves that A is continuous.
Next, we show that A maps bounded subsets into compact sets. As M is

bounded and A is continuous, then AM is a subset of RT which is bounded.
Thus AM is contained in a compact subset of M . Therefore A is continuous
in M and AM is contained in a compact subset of M. �

Lemma 3.2. Let B be defined by (3.2) and suppose that (2.1)−(2.2) hold.
Then B : M →M is a large contraction.

Proof. We first show that B : M →M .
Let ϕ ∈M. Evaluate (3.2) at t+ T.

(Bϕ) (t+ T ) =

(
1−

t+T−1∏
s=t

(1 + a (s))−1

)−1

×
t+T−1∑

r=t

a (r)
(
ϕ (r + 1)− ϕ3 (r + 1)

) t+T−1∏
s=r

(1 + a (s))−1
.

Let j = r − T, then

(Bϕ) (t+ T ) =

(
1−

t+T−1∏
s=t

(1 + a (s))−1

)−1

×
t−1∑

j=t−T

a (j + T )
(
ϕ (j + T + 1)− ϕ3 (j + T + 1)

)
×

t+T−1∏
s=j+T

(1 + a (s))−1
.

Now let k = s− t, then

(Bϕ) (t+ T ) =

(
1−

t−1∏
k=t−T

(1 + a (k))−1

)−1

×
t−1∑

j=t−T

a (j)
(
ϕ (j + 1)− ϕ3 (j + 1)

) t−1∏
k=j

(1 + a (k))−1

= (Bϕ) (t) .

That is, B : CT → CT .
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Note that from (2.2), we have 1−
t−1∏

s=t−T

(1 + a (s))−1
> 0. So, for any ϕ ∈M,

we have

|(Bϕ) (t)| ≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

×
t−1∑

r=t−T

a (r)
∣∣ϕ (r + 1)− ϕ3 (r + 1)

∣∣ t−1∏
s=r

(1 + a (s))−1

≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

×
t−1∑

r=t−T

a (r)
∥∥ϕ− ϕ3

∥∥ t−1∏
s=r

(1 + a (s))−1

=
∥∥ϕ− ϕ3

∥∥ .
Since ‖ϕ‖ ≤ L, we have

∥∥ϕ− ϕ3
∥∥ ≤ (2√3

)
/9 < L. So, for any ϕ ∈ M, we

have
‖Bϕ‖ < L.

Thus Bϕ ∈M . Consequently, we have B : M →M.

It remains to show that B is large contraction in the maximum norm.
From the proof of Proposition 2.4 we have for ϕ,ψ ∈M, with ϕ 6= ψ

|(Bϕ) (t)− (Bψ) (t)| ≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

×
t−1∑

r=t−T

a (r) ‖ϕ− ψ‖
t−1∏
s=r

(1 + a (s))−1

= ‖ϕ− ψ‖ .

Then ‖Bϕ−Bψ‖ ≤ ‖ϕ− ψ‖. Thus B is a large pointwise contraction. But
B is still a large contraction for the maximum norm. To show this, let ε ∈
(0, 1) be given and let ϕ,ψ ∈ M with ‖ϕ− ψ‖ ≥ ε. From the proof of the
Proposition 2.4 we have found δ < 1 such that

|(Bϕ) (t)− (Bψ) (t)| ≤

(
1−

t−1∏
s=t−T

(1 + a (s))−1

)−1

×
t−1∑

r=t−T

a (r) δ ‖ϕ− ψ‖
t−1∏
s=r

(1 + a (s))−1

= δ ‖ϕ− ψ‖ .

Then ‖Bϕ−Bψ‖ ≤ δ ‖ϕ− ψ‖. Consequently, B is a large contraction. �



16 Abdelouaheb Ardjouni and Ahcene Djoudi

Theorem 3.3. Let (CT , ‖.‖) be the Banach space of T -periodic real val-
ued functions and M = {ϕ ∈ CT | ‖ϕ‖ ≤ L} , where L =

√
3/3. Suppose

(2.1)−(2.4) and (3.3) hold. Then equation (1.1) has a T -periodic solution ϕ
in the subset M .

Proof. By Lemma 3.1, A : M → M is continuous and AM is contained in
a compact set. Also, from Lemma 3.2, the mapping B : M → M is a large
contraction. Moreover, if ϕ,ψ ∈M, we see that

‖Aϕ+Bψ‖ ≤ ‖Aϕ‖+ ‖Bψ‖ ≤ L/J +
(
2
√

3
)
/9 ≤ L.

Thus Aϕ+Bψ ∈M.
Clearly, all the hypotheses of Krasnoselskii-Burton Theorem 2.3 are satisfied.
Thus there exists a fixed point ϕ ∈ M such that ϕ = Aϕ + Bϕ. Hence the
equation (1.1) has a T -periodic solution which lies in M . �

Example 3.4. We consider the totally nonlinear difference equation with func-
tional delay

4x (t) = −8x3 (t+ 1) + sin
(
x3 (t)

)
+ cos

(
x3 (t− g (t))

)
, t ∈ Z, (3.4)

where
g (t+ T ) = g (t) .

So, we have

a (t) = 8, G
(
t, x3 (t) , x3 (t− g (t))

)
= sin

(
x3 (t)

)
+ cos

(
x3 (t− g (t))

)
.

Clearly, G (t, x, y) is periodic in t Lipschitz continuous in x and y. That is

G (t+ T, x, y) = G (t, x, y) ,

and

|G (t, x, y)−G (t, z, w)| = |sin (x)− sin (z) + cos (y)− cos (w)|
≤ |sin (x)− sin (z)|+ |cos (y)− cos (w)|
≤ |x− z|+ |y − w| .

Note that if J = 3 we have

J
(
(k1 + k2)L3 + |G (t, 0, 0)|

)
= 3

(
2
(√

3/3
)3

+ 1
)

≤
(√

3/3
)

8

= La (t) , ∀t ∈ Z.

Define M = {ϕ ∈ CT | ‖ϕ‖ ≤ L} , where L =
√

3/3. Then the difference (3.4)
has a T -periodic solution in M , by Theorem 2.
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