On the approximation of the constant of Napier

Andrei Vernescu

Abstract

Starting from some older ideas of [12] and [6], we show new facts concerning the approximation of the constant of Napier. Mathematics Subject Classification (2010): 26A09, 26D07,40A30, 41A10. Keywords: The constant of Napier, exponential function, approximation, speed of convergence.

1. Introduction

Consider the two equivalent classical definitions of the real exponential function

$$
\begin{equation*}
\mathrm{e}^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots \frac{x^{n}}{n!}+\ldots \tag{1.1}
\end{equation*}
$$

respectively

$$
\begin{equation*}
\mathrm{e}^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \tag{1.2}
\end{equation*}
$$

both convergences being uniform on compact subsets of \mathbb{R}.
Their speed of convergence is different. Concerning the Taylor-Maclaurin approximation (1.1) of the exponential, see D. S. Mitrinovic [3], pp. 268-269. For the approximation given by (1.2), also in this classical book are given the following inequalities

$$
\begin{aligned}
& 0 \leq \mathrm{e}^{x}-\left(1+\frac{x}{n}\right)^{n} \leq \frac{x^{2} \mathrm{e}^{x}}{n}, \quad \text { for }|x|<n \text { and } n \in \mathbb{N}^{*} \\
& 0 \leq \mathrm{e}^{-x}-\left(1-\frac{x}{n}\right)^{n} \leq \frac{x^{2}(1+x) \mathrm{e}^{-x}}{2 n}, \quad \text { for } 0 \leq x<n, n \in \mathbb{N}, n \geq 2 \\
& 0 \leq \mathrm{e}^{-x}-\left(1-\frac{x}{n}\right)^{n} \leq \frac{x^{2}}{2 n}, \quad \text { for } 0 \leq x \leq n \text { and } n \in \mathbb{N}^{*}
\end{aligned}
$$

(see [4], [5], [13], [14], [15]).
In [7] we gave some stronger inequalities, namely
i) If $x>0, t>0$ and $t>\frac{1-x}{2}$ then

$$
\begin{equation*}
\frac{x^{2} \mathrm{e}^{x}}{2 t+x+\max \left\{x, x^{2}\right\}}<\mathrm{e}^{x}-\left(1+\frac{x}{t}\right)^{t}<\frac{x^{2} \mathrm{e}^{x}}{2 t+x} \tag{1.3}
\end{equation*}
$$

ii) If $x>0, t>0$ and $t>\frac{x-1}{2}$ then

$$
\begin{equation*}
\frac{x^{2} \mathrm{e}^{-x}}{2 t-x+x^{2}}<\mathrm{e}^{-x}-\left(1-\frac{x}{t}\right)^{t}<\frac{x^{2} \mathrm{e}^{-x}}{2 t-2 x+\min \left\{x, x^{2}\right\}} \tag{1.4}
\end{equation*}
$$

and we detailed the proof of (1.3) (for the proof of (1.4) see[12], pp. 258-260).
Also, note en passant, that the previous inequalities give by the simple particularization $x=1$, the characterizations of the "speed" of convergence of four standard sequences related to the numbers e and $\frac{1}{e}$, namely ${ }^{1)}$

$$
\begin{aligned}
& \frac{\mathrm{e}}{2 n+2}<\mathrm{e}-\left(1+\frac{1}{n}\right)^{n}<\frac{\mathrm{e}}{2 n+1} \quad([8], \text { pag. } 38,[11]) \\
& \frac{\mathrm{e}}{2 n+1}<\left(1+\frac{1}{n}\right)^{n+1}-\mathrm{e}<\frac{\mathrm{e}}{2 n} \quad([10]) \\
& \frac{1}{2 n \mathrm{e}}<\frac{1}{\mathrm{e}}-\left(1-\frac{1}{n}\right)^{n}<\frac{1}{(2 n-1) \mathrm{e}} \quad([6],[7]) \\
& \frac{1}{(2 n-1) \mathrm{e}}<\left(1-\frac{1}{n}\right)^{n-1}-\frac{1}{\mathrm{e}}<\frac{1}{(2 n-2) \mathrm{e}} \quad([6],[7]) .
\end{aligned}
$$

2. The main result

Now we will establish the best approximation of e by the family of sequences of general term $\left(1+\frac{1}{n}\right)^{n+p}$, where p is a real parameter; this may suggest the best approximation of $\mathrm{e}^{x}, x>0$, by some algebraic functions.

Consider the known limited expansion

$$
\begin{equation*}
(1+x)^{\frac{1}{x}}=\mathrm{e}\left(1-\frac{1}{2} x+\frac{11}{24} x^{2}-\frac{7}{16} x^{3}\right)+O\left(x^{4}\right) \tag{2.1}
\end{equation*}
$$

and also the limited binomial one

$$
\begin{equation*}
(1+x)^{p}=1+\frac{p}{1!} x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+O\left(x^{4}\right) . \tag{2.2}
\end{equation*}
$$

[^0]Remark. The formula (2.1) is can be obtained in a classical way, using the well-known limited expansions $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+O\left(x^{5}\right)$ and $\exp y=1+\frac{y}{1!}+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+O\left(y^{5}\right)$. Then

$$
\begin{gathered}
\frac{1}{e}(1+x)^{\frac{1}{x}}=\frac{1}{e} \exp \left(\frac{1}{x} \ln (1+x)\right)= \\
=\exp \left(\frac{1}{x} \ln (1+x)-1\right)=\exp \left(-\frac{x}{2}+\frac{x^{2}}{2}-\frac{x^{3}}{4}+O\left(x^{4}\right)\right)= \\
=\left(\sum_{k=0}^{3} \frac{1}{k!}\left(-\frac{x}{2}+\frac{x^{2}}{2}-\frac{x^{3}}{4}+O\left(x^{4}\right)\right)^{k}\right)+O\left(x^{4}\right)
\end{gathered}
$$

and some standard calculations give (2.1).
Multiplying (2.1) and (2.2), part by part, performing the usual calculations and replacing x by $\frac{1}{n}(n=1,2,3, \ldots)$, we obtain

$$
\begin{gather*}
\left(1+\frac{1}{n}\right)^{n+p}=\mathrm{e}+\left(p-\frac{1}{2}\right) \frac{\mathrm{e}}{n}+\frac{12 p^{2}-24 p+11}{24} \cdot \frac{\mathrm{e}}{n^{2}}+ \\
+\frac{8 p^{4}-36 p^{2}+50 p-21}{48} \cdot \frac{\mathrm{e}}{n^{3}}+O\left(\frac{1}{n^{4}}\right) . \tag{2.3}
\end{gather*}
$$

From (2.3), we see that

$$
\lim _{n \rightarrow \infty} n\left(\left(1+\frac{1}{n}\right)^{n+p}-\mathrm{e}\right)=\left\{\begin{array}{cl}
0, & \text { for } \quad p=\frac{1}{2} \tag{2.4}\\
\left(p-\frac{1}{2}\right) \mathrm{e} & \text { for } \quad p \neq \frac{1}{2}
\end{array} .\right.
$$

For $p=\frac{1}{2}$ it results that the term in $\frac{1}{n}$ of (2.3) vanishes and we have

$$
\left(1+\frac{1}{n}\right)^{n+1 / 2}=\mathrm{e}+\frac{\mathrm{e}}{12 n^{2}}-\frac{\mathrm{e}}{12 n^{3}}+O\left(\frac{1}{n^{4}}\right)
$$

and so

$$
n^{2}\left(\left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}-\mathrm{e}\right)=\frac{\mathrm{e}}{12}-\frac{\mathrm{e}}{12 n}+O\left(\frac{1}{n^{2}}\right)
$$

which conducts us to the equality

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{2}\left(\left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}-\mathrm{e}\right)=\frac{\mathrm{e}}{12} \tag{2.5}
\end{equation*}
$$

Another way to obtain (2.5) consists in a (repeated) use of the L'Hospital's rule, but this gives no idea of the provenance of the result.

So, the best approximation of e by the sequences of general term $\left(1+\frac{1}{n}\right)^{n+p}$ is the one corresponding to $p=\frac{1}{2}$.

3. A two-sided estimate

The equality (2.5) suggests us to search a two sided estimate of the form

$$
\begin{equation*}
\frac{\mathrm{e}}{12(n+\alpha)^{2}}<\left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}-\mathrm{e}<\frac{\mathrm{e}}{12(n+\beta)^{2}} \tag{3.1}
\end{equation*}
$$

where α and β are two real constants.
Professor Ioan Gavrea communicated me ([1]) a convenient left part of (3.1), namely for $\alpha=\frac{1}{2}$, we have

$$
\begin{equation*}
\frac{\mathrm{e}}{12\left(n+\frac{1}{2}\right)^{2}}<\left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}-\mathrm{e} \tag{3.2}
\end{equation*}
$$

We present here his proof. Let

$$
a_{n}=\frac{\left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}}{\mathrm{e}}
$$

be and $b_{n}=\ln a_{n}$, that is

$$
b_{n}=\left(n+\frac{1}{2}\right)[\ln (n+1)-\ln n]-1
$$

We have successively

$$
\begin{gathered}
b_{n}=\left(n+\frac{1}{2}\right)\left[\ln \left(n+\frac{1}{2}+\frac{1}{2}\right)-\ln \left(n+\frac{1}{2}-\frac{1}{2}\right)\right]-1 \\
=\left(n+\frac{1}{2}\right)\left[\ln \left(n+\frac{1}{2}\right)\left(1+\frac{1}{2\left(n+\frac{1}{2}\right)}\right)-\ln \left(n+\frac{1}{2}\right)\left(1-\frac{1}{2\left(n+\frac{1}{2}\right)}\right)\right]-1 \\
=\left(n+\frac{1}{2}\right)\left[\ln \left(1+\frac{1}{2\left(n+\frac{1}{2}\right)}\right)-\ln \left(1-\frac{1}{2\left(n+\frac{1}{2}\right)}\right)\right]-1 \\
=u\left[\ln \left(1+\frac{1}{2 u}\right)-\ln \left(1-\frac{1}{2 u}\right)\right]-1
\end{gathered}
$$

where we have denoted $n+\frac{1}{2}=u$
Using now the well known expansions

$$
\begin{aligned}
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \quad|x|<1 \\
& \ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\ldots \quad|x|<1
\end{aligned}
$$

(uniform convergent in every compact $K \subset(-1,1)$) and performing the usual calculations, we obtain

$$
b_{n}=2 n\left(\frac{1}{2 n}+\frac{1}{3} \frac{1}{(2 n)^{3}}+\frac{1}{5} \frac{1}{(2 n)^{5}}+\ldots\right)-1=\frac{1}{12 n^{2}}+\frac{1}{8 n^{4}}+\ldots>\frac{1}{12 n^{2}}
$$

(because of $n>0$). Therefore (using that $\mathrm{e}^{x}>1+x$, for $x>0$) we have

$$
\frac{\left(1+\frac{1}{n}\right)^{n+1 / 2}}{\mathrm{e}}=a_{n}=\mathrm{e}^{b_{n}}>\mathrm{e}^{\frac{1}{12 u^{2}}}>1+\frac{1}{12 u^{2}}
$$

and so

$$
\left(1+\frac{1}{n}\right)^{n+1 / 2}>\mathrm{e}\left(1+\frac{1}{12\left(n+\frac{1}{2}\right)^{n}}\right)
$$

that gives (3.2).
The problem of finding of an adequate constant β in (3.1) remains open.

4. Concluding remarks

The previous results, concerning the approximation of the number e by the sequence $\left(1+\frac{1}{n}\right)^{n+p}$ conduct to the idea to search a similar approximation of the exponential. We mention that an approximation of the exponential using the rational functions was given by J. Karamata (see [2]).
Acknowledgments. I thank Professor Ioan Gavrea for his communication of the inequality (3.2) and the proof.

References

[1] Gavrea, I., Private communication to the author, Cluj-Napoca, September 24, 2010.
[2] Karamata, J., Sur l'approximation de e^{x} par des fonctions rationelles, Bull. Soc. Math. Phys. Serbie, 1(1949), no. 1, 7-19.
[3] Mitrinović, D.S., Analytic Inequalities, Springer-Verlag, Berlin Heidelberg New York, 1970.
[4] Neville, E.H., Note 1209: Two inequalities used in the theory of the gamma functions, Math. Gazette, 20(1936), 279-280.
[5] Neville, E.H., Note 1225: Addition to the Note 1209, Math. Gazette, 21(1937), 55-56.
[6] Niculescu, C.P., Vernescu, A., On the order of convergence of the sequence $\left(1-\frac{1}{n}\right)^{n}$, (Romanian), Gaz. Mat., 109(2004), no. 4.
[7] Niculescu, C.P., Vernescu, A., A two-sided estimate of $\mathrm{e}^{x}-\left(1+\frac{x}{n}\right)^{n}$, JIPAM, 5(2004), no. 3, art. 55.
[8] Pólya, G., Szegö, G., Problems and Theorems in Analysis I, Springer-Verlag, Berlin Heidelberg New York, 1978.
[9] Sinnadura, J. St.-C., Applications of the inequality of the means, Math. Gazette, 45(1961), no. 354, 330-331.
[10] Vernescu, A., An inequality related to the number e, (Romanian), Gaz. Mat., 87(1982), no. 2-3, 61-62.
[11] Vernescu, A., An simple proof of an inequality related to the number e, (Romanian), Gaz. Mat., 93(1988), no. 5-6, 206-207.
[12] Vernescu, A., The Number e and the Mathematics of the Exponential, (Romanian), Publishing House of the University of Bucharest, 2004.
[13] Watson, G.N., An inequality associated with gamma function, Messenger Math., 45(1916), 28-30.
[14] Watson, G.N., Note 1254: Comments on Note 1225, Math. Gazette, 21(1937), 292-295.
[15] Whittaker, E.T., Watson, G.N., A Course of Modern Analysis, Cambridge Univ. Press, 1952.

Andrei Vernescu
"Valahia" University of Târgovişte
Department of Sciences
Bd. Unirii 18
130082 Târgovişte
Romania
e-mail: avernescu@clicknet.ro

[^0]: ${ }^{1)}$ Using the notations $e_{n}=\left(1+\frac{1}{n}\right)^{n}, f_{n}=\left(1+\frac{1}{n}\right)^{n+1}, g_{n}=\left(1-\frac{1}{n}\right)^{n}, h_{n}=$ $\left(1-\frac{1}{n}\right)^{n-1}$ and applying the GM-AM inequality for the numbers $a_{1}=a_{2}=a_{3}=\ldots=$ $a_{n}=1+\frac{1}{n}, a_{n+1}=1$, we obtain that the sequence $\left(e_{n}\right)_{n}$ is strictly increasing (see [9]). Applying the GM-AM inequality for the numbers $b_{1}=b_{2}=b_{3}=\ldots=b_{n}=1-\frac{1}{n}$, $b_{n+1}=1$, we obtain analogously that the sequence $\left(g_{n}\right)_{n}$ is strictly increasing. The identities $f_{n}=\frac{1}{g_{n+1}}$ and $h_{n}=\frac{1}{e_{n-1}}$ show us that the sequences $\left(f_{n}\right)_{n}$ and $\left(h_{n}\right)_{n}$ are strictly decreasing. Therefore $e_{n}<\mathrm{e}<f_{n}$ and $g_{n}<\frac{1}{\mathrm{e}}<h_{n}$.

