
Stud. Univ. Babeş-Bolyai Math. 56(2011), No. 2, 587–598

Approximation of the solution of
stochastic differential equations driven
by multifractional Brownian motion

Anna Soós

Abstract. The aim of this paper is to approximate the solution of a
stochastic differential equations

dX(t) = F (X(t))dt + G(X(t))dB(t), X(0) = X0, t ≥ 0

on Rn. We will use wavelet approximation of multifractional Brownian
motion.
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1. Introduction

The fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1) is a zero
mean Gaussian random process

(
B(t)

)
t≥0

with continuous sample paths and

with covariance function

E
(
B(s)B(t)

)
=

1
2

(
t2H + s2H − |s− t|2H

)
.

For H = 1
2 the fractional Brownian motion is the ordinary standard

Brownian motion.
The fractional Brownian motion B has on any finite interval [0, T ]

Hölder continuous paths with exponent γ ∈ (0,H) (see [5]). Moreover, the
quadratic variation on [a, b] ⊆ [0, T ] is

lim
|∆n|→0

n∑
i=1

(
B(tni )−B(tni−1)

)2

=

 ∞ if H < 1
2 ,

b− a if H = 1
2 ,

0 if H > 1
2 ,

(1.1)

where ∆n = (a = tn0 < · · · < tnn = b) is a partition of [a, b] with

|∆n| = max
1≤i≤n

(tni − tni−1).
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If H 6= 1
2 , then the convergence in (1.1) holds with probability 1 uni-

formly in the set of all partitions of [a, b], while for H = 1
2 the convergence in

(1.1) holds in mean square uniformly in the set of all partitions of [a, b]. Note
that, if H 6= 1

2 , then B is not a semimartingale, so the classical stochastic
integration does not work. But the Hölder continuity of B will ensure the
existence of integrals

T∫
0

G(u)dB(u),

defined in terms of fractional integration as investigated in [15] and [16] for
the stochasticc process (G(t))t∈[0,T ] with Hölder continuous paths of order
α > 1 − H. Moreover, the fractional Brownian motion is H-self similar, so
for any c > 0 the process

(
cHB(t/c)

)
t≥0

is again a fractional Brownian

motion, has stationary increments. Stochastic differential equations driven
by fBm have received considerable attention during the last two decades.
Fractional Brownian motion as driving noise is used in electrical engineering
([6]) or biophysics ([11]). Moreover, fBm has established itself also in financial
modelling ([4],[8]).

The multifractional Brownian motion (mfBm) is obtained by replacing
the constant parameter H of the fractional Brownian motion by a smooth
enough functional parameter H(·). We denote by H a function defined on the
real line and with values in a fixed interval [a, b] ⊂ (0, 1). We assume that it
is uniformly Hölder continuous of order β > b on each compact subset of R.

In this article we study the approximation of the Itô stochastic differ-
ential equation

dX(t) = F (X(t))dt + G(X(t))dB(t), X(0) = X0, t ≥ 0 (1.2)

on Rn. Here F : Rn → Rn, G : Rn → Rn, B =
(
B(t)

)
t≥0

, H ∈ (0, 1)

is a 1-dimensional multifractional Brownian motion adapted to a filtration
F = (Ft)t≥0 on a probability space (Ω,K, P ), and x0 is a F0 measurable
random variable independent of B.

Suppose with F and G satisfy with probability 1:
F ∈ C(Rn × [0, T ], Rn), G ∈ C1(Rn × [0, T ], Rn) and

F (·, t), ∂G(·, t)
∂x

,
∂G(·, t)

∂t
are locally Lipschitz, ∀t ∈ [0, T ].

2. Wavelet approximation for (B(t))t∈[0,1]

Let {2j/2Ψ(2jx−k) : (j, k) ∈ Z2} be a Lamarie Meyer wavelet basis of L2(R)
and denote by Ψ the function defined by

Ψ(x, θ) =
∫

R
eixy Ψ(y)

|y|θ+ 1
2
dy,
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where Ψ(y) is the Fourier transform. We use the following wavelet approxi-
mation of the multifractional Brownian motion (B(t))t∈[0,1] with Hurst index
H investigated in [1].

B(t) =
∞∑

j=−∞

∞∑
k=−∞

2−jH(k/2j)(Ψ(2jt− k, H(k/2j))−Ψ(−k,H(k/2j)))εj,k,

(2.1)
where εj,k are independent identically distributed N(0, 1) random variables.
This process was introduced in [3] to model fBm with piecewise constant
Hurst index and continuous path.

As in [2] and [12] we consider the following assumptions for Ψ: Ψ ∈ C1

and there exists a constant c > 0 such that

| sup
θ∈[a,b]

Ψ(t, θ)| ≤ c

(2 + |t|)2
and | sup

θ∈[a,b]

Ψ′(t, θ)| ≤ c

(2 + |t|)3
for all t ∈ R.

(2.2)
We consider the following high frequency component of the wavelet rep-

resentation in (2.1)

V1(t) =
∞∑

j=0

∞∑
k=−∞

2−jH(Ψ(2jt− k,H(k/2j))−Ψ(−k,H(k/2j)))εj,k

and the low frequency component

V2(t) =
−1∑

j=−∞

∞∑
k=−∞

2−jH(Ψ(2jt− k,H(k/2j))−Ψ(−k, H(k/2j)))εj,k.

Obviously,
B(t) = V1(t) + V2(t) for each t ∈ [0, 1].

Let N ∈ N. In the following we use two approximation components, corre-
sponding to the components V1, respectively V2, namely

BN
1 (t) =

N∑
j=0

∑
|k|≤ 2N+4

(N−j+1)2

2−jH(Ψ(2jt− k, H(k/2j))−Ψ(−k, H(k/2j)))εj,k

and

BN
2 (t) =

−1∑
j=−2[N/2]

∑
|k|≤2[N/2]

2−jH(Ψ(2jt−k, H(k/2j))−Ψ(−k,H(k/2j)))εj,k.

We denote
BN (t) = BN

1 (t) + BN
2 (t) for each t ∈ [0, 1]. (2.3)

Using Theorem 2 and Theorem 3 from [2] we have the following result:

Theorem 2.1. The sequence (BN )N∈N converges to B almost surely in ω ∈ Ω
and uniformly in t ∈ [0, 1], i.e.

P
(

lim
N→∞

sup
t∈[0,1]

|BN (t)−B(t)| = 0
)

= 1.
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In the sequel we need the following result:

Theorem 2.2. For all N ∈ N the approximating processes (BN (t))t∈[0,1] are
Lipschitz continuous with probability 1.

Proof. We write

|BN (s)−BN (t)| ≤ |BN
1 (s)−BN

1 (t)|+ |BN
2 (s)−BN

2 (t)|

≤
N∑

j=0

∑
|k|≤ 2N+4

(N−j+1)2

2−jH |Ψ(2js− k,H(k/2j))−Ψ(2jt− k,H(k/2j)))||εj,k|

+
−1∑

j=−2[N/2]

∑
|k|≤2[N/2]

2−jH |Ψ(2js− k,H(k/2j))−Ψ(2jt− k,H(k/2j))||εj,k|.

Using the assumption (2.2) for Ψ and using that the set of indices of j and k
is bounded, it follows that there exists a cN > 0 (depending on ω) such that

|BN (s)−BN (t)| ≤ cN |s− t| for all s, t ∈ [0, 1] and all n ∈ N.

�

3. Fractional integrals and derivatives

Let a, b ∈ R, a < b and f, g : R → R. We use notions and results about
fractional calculus, from [14] and [15]:

f(a+) := lim
δ↘0

f(a + δ), f(b−) := lim
δ↘0

f(b− δ),

fa+(x) = I(a,b)(f(x)− f(a+)), gb−(x) = I(a,b)(g(x)− g(b−)).

Note that for α > 0 we have (−1)α = eiπα.

For f ∈ L1(a, b) and α > 0 the left- and right-sided fractional Rieman-
Liouville integral of f of order α on (a, b) is given for almost every x by

Iα
a+f(x) =

1
Γ(α)

x∫
a

(x− y)α−1f(y)dy

and

Iα
b−f(x) =

(−1)−α

Γ(α)

b∫
x

(y − x)α−1f(y)dy.

For p > 1 let Iα
a+(Lp(a, b)), be the class of functions f which have

the representation f = Iα
a+Φ, where Φ ∈ Lp(a, b), and let Iα

b−(Lp(a, b))
be the class of functions g which have the representation g = Iα

b−ϕ, where
ϕ ∈ Lp(a, b). If 0 < α < 1, then the function Φ, respectively ϕ, in the rep-
resentations above agree almost surely with the left-sided and respectively
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right-sided fractional derivative of f of order α (in the Weyl representation)

Φ(x) = Dα
a+f(x) =

1
Γ(1− α)

 f(x)
(x− a)α

+ α

x∫
a

f(x)− f(y)
(x− y)α+1

dy

 I(a,b)(x)

and

ϕ(x) = Dα
b−g(x) =

(−1)α

Γ(1− α)

 g(x)
(b− x)α

+ α

b∫
x

g(x)− g(y)
(y − x)α+1

dy

 I(a,b)(x).

The convergence at the singularity y = x holds in the Lp-sense. Recall that

Iα
a+(Dα

a+f) = f for f ∈ Iα
a+(Lp(a, b)), Iα

b−(Dα
b−g) = g for g ∈ Iα

b−(Lp(a, b))

and
Dα

a+(Iα
a+f) = f, Dα

b−(Iα
b−g) = g for f, g ∈ L1(a, b).

For completeness we denote

D0
a+f(x) = f(x), D0

b−g(x) = g(x), D1
a+f(x) = f ′(x), D1

b−g(x) = g′(x).

Let 0 ≤ α ≤ 1. The fractional integral of f with respect to g is defined as
b∫

a

f(x)dg(x) = (−1)α

b∫
a

Dα
a+fa+(x)D1−α

b− gb−(x)dx (3.1)

+f(a+)(g(b−)− g(a+))

if fa+ ∈ Iα
a+(Lp(a, b)), gb− ∈ I1−α

b− (Lq(a, b)) for 1
p + 1

q ≤ 1.
In our investigations we will take p = q = 2. If 0 ≤ α < 1

2 , then the
integral in (3.1) can be written as

b∫
a

f(x)dg(x) = (−1)α

b∫
a

Dα
a+f(x)D1−α

b− gb−(x)dx (3.2)

if f ∈ Iα
a+(L2(a, b)), f(a+) exists, gb− ∈ I1−α

b− (L2(a, b)) (see [15]).

4. The stochastic integral

Without loss of generality we consider 0 < T ≤ 1, because for arbitrary T > 0
we can rescale the time variable using the H-self similarity property of the
multifractional Brownian motion meaning that

(
B(ct)

)
t≥0

and
(
cHB(t)

)
t≥0

are equal in distribution for every c > 0.

We will define the

T∫
0

G(u)dB(u) Itô integral instead of

t∫
0

G(u)dB(u)

and use
t∫

0

G(u)dB(u) =

T∫
0

I[0,t](u)G(u)dB(u) for t ∈ [0, T ]



592 Anna Soós

(by Theorem 2.5, p. 345, in [15]).
We consider α > 1−H. It follows by (3.2) that

T∫
0

G(u)dB(u) = (−1)α

T∫
0

Dα
0+G(u)D1−α

T− BT−(u)du (4.1)

for G ∈ Iα
0+(L2(0, T )), where G(0+) exists and BT− ∈ I1−α

T− (L2(0, T )).
The condition G ∈ Iα

0+(L2(0, T )) (with probability 1) means that G ∈
L2(0, T ) and

Iε(x) =

x−ε∫
0

G(x)−G(y)
(x− y)α+1

dy for x ∈ (0, T )

converges in L2(0, T ) as ε ↘ 0.
The condition BT− ∈ I1−α

T− (L2(0, T )) means BT− ∈ L2(0, T ) and

Jε(x) =

T∫
x+ε

B(x)−B(y)
(y − x)2−α

dy for x ∈ (0, T )

converges in L2(0, T ) as ε ↘ 0 This condition for B is fulfilled for α >
1−H, since the multifractional Brownian motion B is almost surely Hölder
continuous with exponent γ ∈ (0,H) (see [5]).

We will use (3.2) for the integrals with respect the approximating pro-
cesses

(
BN (t)

)
t∈[0,T ]

. Observe that BN,T− ∈ I1−α
T− (L2(0, T )), which follows

from the Lipschitz continuity property in Theorem 2.2. We have
T∫

0

G(u)dBN (u) = (−1)α

T∫
0

Dα
0+G(u)D1−α

T− BN,T−(u)du (4.2)

for G ∈ Iα
0+(L2(0, T )), where G(0+) exists.

Let
(
Z(t)

)
t∈[0,T ]

be a cádlág process. Its generalized quadratic variation

process
(
[Z](t)

)
t∈[0,T ]

is defined as

[Z](t) = lim
ε↘0

ε

1∫
0

t∫
0

1
u

(Zt−(s + u)− Zt−(s))2dsdu + (Z(t)− Z(t−))2,

if the limit exists uniformly in probability (see [16] ).
In particular, if B is a multifractional Brownian motion with Hurst

index H ∈ ( 1
2 , 1) and BN is an approximation of B as given in (2.3), it is

easy to verify that

[B](t) = 0 and [BN ](t) = 0 for each t ∈ [0, T ], (4.3)

because B is locally Hölder continuous and BN is Lipschitz continuous. The
Itô formula for change of variable for fractional integrals is given in the next
theorem.
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Theorem 4.1 ([16], Theorem 5.8, p. 170). Let
(
Z(t)

)
t∈[0,T ]

be a continuous

process with generalized quadratic variation [Z]. Let Q : R × [0, T ] → R be
a random function such that a.s. we have Q ∈ C1(R × [0, T ]) and ∂2Q

∂x2 ∈
C(R× [0, T ]). Then, for t0, t ∈ [0, T ] we have

Q(Z(t), t)−Q(Z(t0), t0) =

t∫
t0

∂Q

∂x
(Z(s), s)dZ(s) +

t∫
t0

∂Q

∂t
(Z(s), s)ds

+

t∫
t0

∂2Q

∂2x
(Z(s), s)d[Z]s.

Let 1 −H < α < 1
2 and let G ∈ Iα

0+(L2(0, T )) such that G(0+) exists.
We define the processes

Z(t) =

t∫
0

G(s)dB(s) and ZN (t) =

t∫
0

G(s)dBN (s), t ∈ (0, T ].

Then by Theorem 5.6, p. 167 in [16] it follows that

[Z](t) = 0 and [ZN ](t) = 0.

Using Theorem 4.1, it follows that, if Q : R× [0, T ] → R is a random function
such that a.s. we have Q ∈ C1(R × [0, T ]) and ∂2Q

∂x2 ∈ C(R × [0, T ]), then for
t0, t ∈ [0, T ] we have

Q(Z(t), t)−Q(Z(t0), t0) =

t∫
t0

∂Q

∂x
(Z(s), s)G(s)dB(s) (4.4)

+

t∫
t0

∂Q

∂t
(Z(s), s)ds

and

Q(ZN (t), t)−Q(ZN (t0), t0) =

t∫
t0

∂Q

∂x
(ZN (s), s)G(s)dBN (s) (4.5)

+

t∫
t0

∂Q

∂t
(ZN (s), s)ds.

5. Stochastic differential equations driven by multifractional
Brownian motion

Let
(
B(t)

)
t≥0

be a multifractional Brownian motion with Hurst parameter

H such that H > 1
2 . We investigate stochastic differential equations of the
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form

dX(t) = F (X(t), t)dt + G(X(t), t)dB(t), (5.1)
X(t0) = X0,

where t0 ∈ (0, T ], X0 is a random vector in Rn and the random functions F
and G satisfy with probability 1 the following conditions:

(C1) F ∈ C(Rn × [0, T ], Rn), G ∈ C1(Rn × [0, T ], Rn);

(C2) for each t ∈ [0, T ] the functions F (·, t), ∂G(·, t)
∂xi

,
∂G(·, t)

∂t
are locally Lip-

schitz for each i ∈ {1, . . . , n}.

We consider the pathwise auxiliary partial differential equation on Rn ×R×
[0, T ]

∂K

∂z
(y, z, t) = G(K(y, z, t), t), (5.2)

K(Y0, Z0, t0) = X0,

where Y0 is an arbitrary random vector in Rn and Z0 an arbitrary random
variable in R. From the theory of differential equations it follows that with
probability 1 there exists a local solution K ∈ C1(Rn× [0, T ], Rn) in a neigh-
bourhood V of (Y0, Z0, t0) with partial derivatives being Lipschitz in the
variable y and

det
(

Ki

∂yj
(y, z, t)

)
1≤i,j≤n

6= 0.

We have for (x, y, t) ∈ V

∂2K

∂z2
(y, z, t) =

n∑
j=1

∂G

∂xj
(K(y, z, t), t)Gj(K(y, z, t), t).

We also consider the pathwise differential equation (in matrix representation)
on [0, T ]

dY (t) =
(

K

∂y
(Y (t), B(t), t)

)−1[
F (K(Y (t), B(t), t), t)− ∂K

∂t
(Y (t), B(t), t)

]
dt

Y (t0) = Y0,

which has a unique local solution on a maximal interval (t10, t
2
0) ⊆ [0, T ] with

t0 ∈ (t10, t
2
0) (see [13]).

Applying the Itô formula, see Theorem 4.1 and relation (4.4), to the
random function Q(z, t) = K(Y (t), z, t) (in fact, successively for K1, . . . ,Kn)
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and the fractional Brownian motion B we obtain

K(Y (t), B(t), t)−K(Y (t0), B(t0), t0)

=
n∑

j=1

t∫
t0

∂K

∂yj
(Y (s), B(s), s)dY j(s) +

t∫
t0

∂K

∂z
(Y (s), B(s), s)dB(s)

+

t∫
t0

∂K

∂t
(Y (s), B(s), s)ds

=
n∑

j=1

t∫
t0

∂K

∂yj
(Y (s), B(s), s)dY j(s)

+

t∫
t0

G(K(Y (s), B(s), s), s)dB(s) +

t∫
t0

∂K

∂t
(Y (s), B(s), s)ds

=

t∫
t0

F (K(Y (s), B(s), s), s)ds +

t∫
t0

G(K(Y (s), B(s), s), s)dB(s).

Therefore,

X(t) := K(Y (t), B(t), t)

satisfies

X(t) = X0 +

t∫
t0

F (X(s), s)ds +

t∫
t0

G(X(s), s)dB(s).

Instead of the process
(
B(t)

)
t∈[0,1]

we consider its approximations(
BN (t)

)
t∈[0,1]

given in (2.3). For each N ∈ N we consider the pathwise

differential equation (in matrix representation)

dYN (t) =
(

∂K

∂y
(YN (t), BN (t), t)

)−1 [
F (K(YN (t), BN (t), t), t)

−∂K

∂t
(YN (t), BN (t), t)

]
dt

YN (t0) = Y0,

which has a unique local solution YN on a maximal interval (t1, t2) ⊂ (t10, t
2
0)

of existence which contains t0. Applying the Itô formula, see Theorem 4.1 and
(4.5), to the random function Q(z, t) = K(YN (t), z, t) (in fact, successively
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for K1, . . . ,Kn) and the process BN we obtain

K(YN (t), BN (t), t)−K(YN (t0), BN (t0), t0)

=
n∑

j=1

t∫
t0

∂K

∂yj
(YN (s), BN (s), s)dY j

N (s) +

t∫
t0

∂K

∂z
(YN (s), BN (s), s)dBN (s)

+

t∫
t0

∂K

∂t
(YN (s), BN (s), s)ds

=
n∑

j=1

t∫
t0

∂K

∂yj
(YN (s), BN (s), s)dY j

N (s) +

t∫
t0

G(K(YN (s), BN (s), s), s)dBN (s)

+

t∫
t0

∂K

∂t
(YN (s), BN (s), s)ds

=

t∫
t0

F (K(YN (s), BN (s), s), s)ds +

t∫
t0

G(K(YN (s), BN (s), s), s)dBN (s).

Therefore,
XN (t) := K(YN (t), BN (t), t)

satisfies

XN (t) = X0 +

t∫
t0

F (XN (s), s)ds +

t∫
t0

G(XN (s), s)dBN (s), t ∈ (t1, t2).

By Theorem 7.2 [13] it follows that we have the following pathwise property

lim
N→∞

sup
t∈(t1,t2)

‖YN (t)− Y (t)‖ = 0.

Then the continuity properties of K and (2.4) imply that for a.e. ω ∈ Ω it
holds

lim
N→∞

sup
t∈(t1,t2)

‖XN (t)−X(t)‖ = 0.

By this we have proved the main result of our paper:

Theorem 5.1. Let B be a multifractional Brownian motion approximated
through the processes BN given in (2.1) and (2.3). Let F,G : Rn×[0, T ] → Rn

be random functions satisfying with probability 1 the conditions (C1) and
(C2). Let t0 ∈ (0, T ] be fixed. Then, each of the stochastic equations

X(t) = X0 +

t∫
t0

F (X(s), s)ds +

t∫
t0

G(X(s), s)dB(s),



Approximation of the solutions of SDE driven by mfBm 597

XN (t) = X0 +

t∫
t0

F (XN (s), s)ds +

t∫
t0

G(XN (s), s)dBN (s), N ∈ N

admits almost surely a unique local solution on a common interval (t1, t2)
(which is independent of N and contains t0). Moreover, we have the following
approximation result

P

(
lim

N→∞
sup

t∈(t1,t2)

‖XN (t)−X(t)‖ = 0

)
= 1.
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[5] Decreusefond, L., Üstünel, A.S., Stochastic Analysis of the Fractional Brown-
ian Motion, Potential Analysis, 10(1999), 177-214.

[6] Denk, G., Winkler, R., Modeling and simulation of transient noise in circuit
simulation, Math. Comput. Model. Dyn. Syst., 13(2007), no. 4, 383-394.

[7] Dzhaparidze, K., van Zanten, H., A Series Expansion of Fractional Brownian
Motion, Probab. Theory Relat. Fields, 130(2004), 39-55.

[8] Guasoni, P., No arbitrage under tranzaction costs, with fractional Brownian
motion and beyond, Math. Finance, 16(2006), 569-582.
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“Babeş-Bolyai” University
Faculty of Mathematics and Computer Sciences
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