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Bernstein quasi-interpolants on triangles

Paul Sablonnière

Abstract. The aim of this paper is to provide some results on Bernstein
quasi-interpolants of different types applied to functions defined on a
triangle. Classical multivariate Bernstein operators and their extensions
have been studied for about 25 years by various authors. Based on their
representation as differential operators, we extend our previous results
on the univariate case to the multivariate one and we define new families
of Bernstein quasi-interpolants. Then we compare their approximation
properties on various types of functions. Our approach seems to be dis-
tinct from another interesting extension given in [5, 6].
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1. Introduction and notations

The aim of this paper is to provide some results on Bernstein quasi-
interpolants of different types applied to functions defined on a triangle.
Classical multivariate Bernstein operators and their extensions have been
studied for about 25 years by various authors (see references). These exten-
sions are of Kantorovitch and Durrmeyer types. We only consider the latter
together with the genuine case studied e.g. in [24, 27, 39, 47].
On the unit triangle T := {(x, y) |x, y ≥ 0, 0 ≤ x + y ≤ 1}, the classical
Bernstein quasi-interpolants are defined by

Bnf(x, y) :=
∑

0≤i+j≤n

f

(
i

n
,
j

n

)
n!

i!j!k!
xiyjzk, z := 1−x−y, k := n−i−j.

Using the notation α := (i, j) ∈ ∆n := {(i, j)|0 ≤ i + j ≤ n}, we often write
them as

Bnf :=
∑

α∈∆n

f
(α

n

)
Bn

α, Bn
α(x, y, z) :=

n!
i!j!k!

xiyjzk

where {Bn
α, α ∈ ∆n} is the Bernstein basis of Pn. The Durrmeyer extension

has been first developed by Derriennic [13][14] in the case of the Legendre
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weight and later by various authors in the general case of Jacobi weights
[7][8]. With the sacalar product

〈f, g〉 :=
∫

T

w(x, y)f(x, y)g(x, y)dxdy, w(x, y) = xpyqzr, p, q, r > −1

the multivariate Bernstein-Durrmeyer (abbr. BD) operator is defined by

Mnf :=
∑

γ∈∆n

〈B̃n
γ , f〉Bn

γ , where B̃n
γ := Bn

γ /〈1, Bn
γ 〉

The genuine Bernstein-Durrmeyer (abbr. GBD) case corresponds to the limit
weight w(x, y) = 1/xyz and has been studied e.g. in [47]. Its definition in-
volves line integrals along the sides of the triangle T .
Using the representation of the above operators as differential operators in
the space P of bivariate polynomials, we extend our previous results on uni-
variate operators [40, 42, 44, 45, 46] to the bivariate ones and we define new
families of Bernstein quasi-interpolants (partial results are given in [41, 44]).
Then we compare their approximation properties on various types of func-
tions. Our approach seems to be distinct from another interesting extension
given by Berdysheva, Jetter and Stöckler in [3]-[6].
Here is a brief outline of the paper. In sections 2 and 3, we compute the
differential forms of the operator Bn and its inverse An on the space Pn of
polynomials of total degree at most n and we define the associated quasi-
interpolants B(r)

n , 0 ≤ r ≤ n (abbr. QIs). Then, in sections 4 and 5 (resp. 6
and 7), we follow the same program for Bernstein-Durrmeyer operators Mn

with Legendre weight w = 1 (resp. the genuine Bernstein-Durrmeyer opera-
tors Gn). In section 8, we give some partial results on the asymptotic expan-
sions and convergence orders of these various quasi-interpolants. In section 9,
we give some results on numerical experiments done on the approximations
of two functions by Bernstein and genuine Bernstein-Durrmeyer operators.
Finally, in Section 10, we set some open problems that would be useful to
solve for the applications of those QIs to various problems in approximation
theory and numerical analysis.

2. The classical Bernstein operator

2.1. Bn and its inverse An = B−1
n as operators on Pn

The classical Bernstein operator

Bnf :=
∑

α∈∆n

f
(α

n

)
Bn

α

where {Bn
α, α ∈ ∆n} is the Bernstein basis of Pn, is an isomorphism of the

space Pn of bivariate polynomials of total degree at most n. This can be
proved in various ways. For example, let {`n

α, α ∈ ∆n} be the Lagrange basis
of Pn (see e.g. Ciarlet [11], chapter 2) based on points {α

n , α ∈ ∆n}, then
Bn`n

α = Bn
α for α ∈ ∆n. Similarly, let {νn

α , α ∈ ∆n} be the Newton basis of
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Pn based on the same points {α
n , α ∈ ∆n}, defined for |α| = i + j = p ≤ n

and using the Pochammer symbol (n)p = n(n− 1) . . . (n− p + 1), by

νn
α =

i−1∏
k=0

(nx− k)
j−1∏
`=0

(ny − `)/(n)p

then Bnνn
α = mα where mα(x, y) = mi,j(x, y) := xiyj are the monomials of

Pn. So the image of the Lagrange (resp. Newton) basis is the Bernstein (resp.
monomial) basis.
Denoting An = B−1

n the inverse operator of Bn on Pn, then we have AnBn
α =

`n
α and Anmα = νn

α for all α ∈ ∆n. These properties are used below for the
computation of the coefficients of An expressed as a differential operator.

2.2. Bn as a differential operator

As in the univariate case (see e.g. [33], chapter 1, and [45]), the operator Bn

has the following representation in Pn:

Bn = Id +
n∑

r=2

∑
k+`=r

βk,`D
k,`

Note that the polynomial coefficients βk,` should be denoted β
(n)
k,` since they

depend on n. However, we omit the upper index for the sake of clarity.
Theorem. The polynomial coefficients βk,` satisfy the recurrence relation, for
k, ` ≥ 1

n ((k + 1)βk+1,` + (` + 1)βk,`+1)

= (1− x− y) (x(∂10βk,` + βk−1,`) + y(∂01βk,` + βk,`−1)) .

with β0,0 = 1, β1,0 = β0,1 = 0, and for k, ` ≥ 1

n(k + 1)βk+1,0 = x(1− x)(∂10βk,0 + βk−1,0)

n(` + 1)β0,`+1 = y(1− y)(∂01β0,` + β0,`−1)
Proof. Using Taylor’s formula

f(s, t) = f(x, y) +
∑
r≥1

1
r!

( ∑
k+`=r

(
n

k

)
(s− x)k(t− y)`Dk,`f(x, y)

)
and applying the Bernstein operator

Bnf(x, y)=f(x, y)+
∑
n≥1

1
n!

( ∑
k+`=n

(
n

k

)
Bn[(.− x)k(.− y)`](x, y)Dk,`f(x, y)

)
we first obtain

βk,`(x, y) :=
1
n!

(
n

k

)
Bn[(.− x)k(.− y)`](x, y).

or, setting φk,` = (.− x)k(.− y)` and m := n− k − ` :

βk,` =
1

k!`!(n− k − `)!

∑
i+j≤n

φk,`

(
i

n
,
j

n

)
Bn

i,j
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Let us compute the expression

z(xD1,0 + yD0,1)βk,` =
xzD1,0 + yzD0,1

k!`!m!
Bnφk,`

First we get

D1,0Bnφk,` = −k
∑

i+j≤n

φk−1,`

(
i

n
,
j

n

)
Bn

i,j +
∑

i+j≤n

φk,`

(
i

n
,
j

n

)
D1,0Bn

i,j ,

with
D1,0Bn

i,j = n
(
Bn−1

i−1,j −Bn−1
i,j

)
Moreover, we have

nxzBn
i−1,j = izBn

i,j , and nxzBn
i,j = (n− i− j)Bn

i,j

therefore

xzD1,0Bnφk,` = −kxzBnφk−1,` + z
∑

iφk,`

(
i

n
,
j

n

)
Bn

i,j

−x
∑

(n− i− j)φk,`

(
i

n
,
j

n

)
Bn

i,j .

Now, using the identities:

i = n

(
i

n
− x

)
+ nx, and i = n

(
z − n

(
i

n
− x

)
− n

(
j

n
− x

))
we obtain

xzD1,0Bnφk,` = −kzBnφk−1,` + n(1− y)Bnφk+1,` + nxBnφk,`+1

In the same way, we also have

yzD0,1Bnφk,` = −kzBnφk,`−1 + n(1− x)Bnφk,`+1 + nyBnφk+1,`

and finally

z(xD1,0 + yD0,1)Bnφk,` = −kz(xBnφk−1,` + yBnφk,`−1)

+n(Bnφk+1,` + Bnφk,`+1),
which gives the following recurrence relation on the polynomial coefficients:

n(k+1)βk+1,`+n(`+1)βk,`+1 =z
(
x(D1,0βk,`+βk−1,`)+ y(D0,1βk,`+βk,`−1)

)
.

�
Examples. Using the notations X := x(1 − x), Y := y(1 − y), the first beta
polynomials (depending on n) are given by

2nβ2,0 = X, nβ1,1 = −xy

6n2β3,0 = X(1− 2x), 2n2β2,1 = −3xy(1− 2x),

24n3β4,0 = X(1 + 3(n− 2)X), 6n3β3,1 = −4xy(1 + 3(n− 2)X),

4n3β2,2 = xy(n− 1− (n− 2)(x + y) + 3(n− 2)xy)

5!n4β5,0 = (1− 2x)X(1 + 2(5n− 6)X), 24n4β4,1 = −xy(1 + 2(5n− 6)X)

12n5β3,2 = 10xy((n− 1)(1− 6x)− (n− 2)y − (5n− 6)x(x + 3y − 4xy))
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2.3. An := B−1
n as a differential operator

2.3.1. First method: long recursion. The operator An has also the following
representation in Pn:

An = Id +
n∑

p=2

∑
i+j=p

αi,jD
i,j

A first method, giving a long recursion, consists in deducing the polynomial
coefficients from the identities Anmk,` = νn

k,` for 0 ≤ i + j ≤ n.

νn
k,` = xky` +

k+∑̀
p=2

∑
i+j=p

k!
(k − i)!

`!
(`− j)!

xk−iy`−jαi,j

giving the (long) recursion

αk,` =
νn

k,` −mk,`

k!`!
−

∑
(0,0)<(i,j)<(k,`)

xk−i

(k − i)!
y`−j

(`− j)!
αi,j .

2.3.2. Second method : expansion in the Newton basis. From the Taylor
expansion of f ∈ Pn:

f(., .) = f(x, y) +
n∑

p=1

∑
k+`=p

(.− x)k(.− y)`

k!`!
Dk,lf(x, y),

we deduce

Anf = f +
n∑

p=1

 ∑
k+`=p

An

[
(.− x)k(.− y)`

k!`!

]
Dk,lf(x, y)


giving

αk,`(x, y) = An

[
(.− x)k(.− y)`

k!`!

]
and since Anmij = νi,j , we obtain the compact form :

αk,`(x, y) =
(−1)p

k!`!

k∑
i=0

∑̀
j=0

(
k

i

)(
`

j

)
(−1)i+jxk−iy`−jνi,j(x, y).

2.3.3. Third method : direct short recursion. At least for polynomials αk,0

and α0,`, we have the short recursions [45]

(k + 1)(n− k)αk+1,0 = −k(1− 2x)αk,0 −Xαk−1,0.

(` + 1)(n− `)α0,`+1 = −k(1− 2y)α0,` − Y α0,`−1.

Following the model of beta-polynomials:

(k+1)nβk+1,`+n(`+1)βk,`+1 =z
(
x(D1,0βk,`+βk−1,`)+y(D0,1βk,`+ βk,`−1)

)
.

it would be possible to get a recursion for the computation of these polyno-
mials. However, it is still an open question.
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2.3.4. A table of polynomials alpha. With the notations X = x(1− x), Y =
y(1− y), nk := (n− 1) . . . (n− k), [i, j] := αi,j , here are the first polynomials
alpha

2n1[2, 0] = X, n1[1, 1] = xy, 2n1[2, 0] = Y

3n2[3, 0] = (1− 2x)X n2[2, 1] = −xy(12x),

n2[1, 2] = −xy(1− 2y), 3n2[0, 3] = (1− 2y)Y

8n3[4, 0] = −X(2− (n + 6)X), 2n3[3, 1] = xy(2− (n + 6)X),

4n3[2, 2] = xy(n− (n + 6)(x + y − 3xy))

30n4[5, 0] = (1− 2x)X(6− (5n + 12)X),

6n4[4, 1] = −xy(1− 2x)(6− (5n + 12)X)

6n4[3, 2] = −xy(n− 6nx− (n + 12)y + (5n + 12)x(x + 3y − 4xy))

3. Bernstein quasi-interpolants

3.1. Quasi-interpolants of order r

Given 0 ≤ r ≤ n, define the truncated inverse of order r

A(r)
n = Id +

r∑
p=2

∑
i+j=p

αi,jD
i,j

Then the Bernstein-quasi-interpolant (abbr. BQI) of order r is defined by

B(r)
n = A(r)

n Bn

In other words, for all polynomial p ∈ Pn, we have

B(r)
n p = Bnp +

r∑
p=2

∑
i+j=p

αi,jD
i,jBnp

Theorem. The operator B(r)
n is exact on Pr, for all 0 ≤ r ≤ n.

Proof. As p = AnBnp = B(n)
n p, we can write

p− B(r)
n p =

n∑
p=r+1

∑
i+j=p

αi,jD
i,jBnp

As p ∈ Pr, we have Bnp ∈ Pr, thus Di,jBnp = 0 for all (i, j) satisfying
i + j = p ≥ r + 1, thus p− B(r)

n p = 0. �
Therefore, we have constructed a chain of intermediate operators between the
classical Bernstein operator and the identity operator which can be written
in the form of the Lagrange interpolation operator Ln since AnBn

α = `n
α:

p = AnBnp =
∑

α∈∆n

f
(α

n

)
AnBn

α =
∑

α∈∆n

f
(α

n

)
`n
α = Lnp
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3.2. Some open questions on BQIs

Among the open questions relative to the BQIs, the following seem particu-
larly interesting:
1) Prove, as in the univariate case [50], that for r ∈ N fixed, the BQIs of
order r are uniformly bounded, i.e. there exists a constant Cr such that

‖B(r)
n ‖∞ ≤ Cr for all n ≥ r

2) Numerical experiments show that some functions f (e.g. of Runge type)
are better approximated by intermediate polynomials B(r)

n f rather than by
their Lagrange interpolant. This is not quite surprising in view of the fact that
‖Ln‖∞ goes to infinity rather fastly when n →∞ (see e.g. [9]). Therefore the
approximating polynomials generated in this way can be useful in practice,
in approximation as well as in CAGD.
3) It would be interesting to have a direct formula giving the polynomial
coefficients αi,j , or at least a short recursive formula.

4. Bernstein-Durrmeyer operators

For the sake of simplicity, we take w = 1 (Legendre) and we only con-
sider Bernstein Durrmeyer quasi-interpolants (abbr. BDQIs) in that case.
Of course, the same technique can be extended to general BDQIs with an
arbitrary Jacobi weight. It would be also interesting to study the generaliza-
tions recently proposed in [3, 4]. Setting

〈f, g〉 :=
∫

T

f(x, y)g(x, y)dxdy

since area(T ) = 1/2, we have∫
T

Bn
γ =

1
(n + 1)(n + 2)

whence the definition of the BD operator:

Mnf := (n + 1)(n + 2)
∑

γ∈∆n

〈Bn
γ , f〉Bn

γ

4.1. Mn and Kn = M−1
n as operators on Pn

Consider a family of orthogonal polynomials {Pk,`, 0 ≤ |γ| = k + ` ≤ n} on
T (see e.g. [12, 21, 22, 48]) whose expansion in the BB basis is the following:

Pγ =
∑

δ∈∆n

p(δ, γ)Bn
δ

It is known (see e.g. [13]) that for γ ∈ ∆s, with 0 ≤ s ≤ n, one has

MnPγ = ργ(n)Pγ ,

where the eigenvalue is given by

ργ(n) =
[n]s

(n + 3)s
=

Γ(n + 1)
Γ(n− s + 1)

Γ(n + 3)
Γ(n + s + 3)
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We use here the Pochhammer symbol defined by

(n)s := n(n + 1) . . . (n + s− 1) =
(n + s− 1)!

(n− 1)!
=

Γ(n + s)
Γ(n)

and we set

[n]s := n(n− 1) . . . (n− s + 1) =
n!

(n− s)!
=

Γ(n + 1)
Γ(n− s + 1)

Thus Mn is an automorphism of Pn. Denoting Kn = M−1
n , we have

KnPγ = ρ−1
γ (n)Pγ , γ ∈ ∆n

4.2. Mn as a differential operator on Pn

Like the classical Bernstein operator, the BD operator Mn can be expressed
as a differential operator on Pn:

Mn =
n∑

r=0

∑
δ∈∆r

µ
(n)
δ Dδ, µ

(n)
δ ∈ Pr

Therefore, for |γ| = m ≤ n:

MnPγ =
m∑

r=0

∑
δ∈∆r

µ
(n)
δ DδPγ = ργ(n)Pγ

As in Section 2.2, a direct expression of the polynomials µ
(n)
δ for δ = (k, `) ∈

∆r, can be deduced from Taylor’s formula:

µ
(n)
δ =

1
r!

(
r

k

)
Mn[(.− x)k(.− y)`]

4.3. Kn := M−1
n as a differential operator

One can also write Kn as a differential operator on Pn:

Kn =
n∑

r=0

∑
δ∈∆r

κ
(n)
δ Dδ, κ

(n)
δ ∈ Pr

Therefore, for |γ| = m ≤ n, we have the long recursion:

KnPγ =
m∑

r=0

∑
δ∈∆r

κ
(n)
δ DδPγ = ρ−1

γ (n)Pγ

For the computation of the polynomial coefficients κ, we did not use this
method. Rather, we compute the polynomials pγ := Mnmγ from which we
deduce Knpγ = mγ as follows.
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4.4. The polynomials pγ

In order to find the polynomial pγ whose image by Mn is the monomial
mγ := xiyj , i.e. such that Knmγ = pγ , we write

pγ :=
∑

δ∈∆n

c(γ, δ)B(n)
δ

Setting

Bn
γ := Bn

i,j :=
n!

i!j!k!
xiyjzk, k := n− i− j, for γ := (i, j) ∈ ∆n,

Bn
δ := Bn

p,q :=
n!

p!q!r!
xpyqzr, r := n− p− q, for δ := (p, q) ∈ ∆n

and introducing the Gram matrix

G[γ, δ] := 〈Bn
γ , Bn

δ 〉 =
1

(n + 1)2

(
i+p

i

)(
j+q

j

)(
k+r

k

)(
2n+2
n+1

)
we obtain

Mnpγ =
∑

δ∈∆n

c(γ, δ)MnB
(n)
δ =

1
2
(n+1)(n+2)

∑
δ∈∆n

c(γ, δ)

(∑
θ∈∆n

G[δ, θ]Bn
θ

)

Mnpγ =
1
2
(n + 1)(n + 2)

∑
θ∈∆n

(∑
δ∈∆n

G[θ, δ]c(γ, δ)

)
Bn

θ

Now, we need the representation of the monomial mγ in the BB basis:

mi,j =
∑

θ∈∆n

(
i
r

)(
j
s

)(
n

r,s

) Bn
θ , θ := (r, s)

By identification, we compute c(γ, δ) as the solution of the system of linear
equations

1
2
(n + 1)(n + 2)

∑
δ∈∆n

G[θ, δ]c(γ, δ) =

(
i
r

)(
j
s

)(
n

r,s

) , θ ∈ ∆n

4.5. A table of the first polynomials kappa

The list of the first kappa polynomials shows that they are more complex
than alpha polynomials of section 2.3.4 :

nκ
(n)
1,0 = 3x− 1, nκ

(n)
0,1 = 3y − 1

(n)2 κ
(n)
2,0 = (n + 9)x2 − (n + 7)x + 1

(n)2 κ
(n)
1,1 = 2(n + 9)xy − 4(x + y) + 1

(n)2 κ
(n)
0,2 = (n + 9)y2 − (n + 7)y + 1

(n)3 κ
(n)
3,0 = 5(n + 5)x3 − (7n + 31)x2 + (2n + 11)x− 1

(n)3 κ
(n)
2,1 = 15(n + 5)x2y − (n + 13)x2 − 4(2n + 11)xy + (n + 8)x + 5y − 1

(n)3 κ
(n)
1,2 = 15(n + 5)xy2 − (n + 13)y2 − 4(2n + 11)xy + 5x + (n + 8)y − 1
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(n)3 κ
(n)
0,3 = 5(n + 5)y3 − (7n + 31)y2 + (2n + 11)y − 1

(n)4 κ
(n)
4,0 =

1
2
((n + 4)(n + 33)x4 − 2(n2 + 34n + 113)x3

+(n + 4)(n + 33))x2 − 6(n + 5)x + 2)

(n)4 κ
(n)
3,1 = 2(n + 4)(n + 33)x2y(x− 1)− 2(3n + 19)x3

+(8n + 39)x(x + 2y)− 2(n + 6)x− 6y + 1

(n)4 κ
(n)
2,2 = 3(n+4)(n+33)x2y2−(n2+46n+189)xy(x+y)+(n+18)(x2+y2)

+(n + 5)(n + 18)xy − (n + 9)(x + y) + 1

κ
(n)
1,3 (x, y) = κ

(n)
3,1 (y, x), κ

(n)
0,4 (x, y) = κ

(n)
4,0 (y, x).

5. Bernstein-Durrmeyer quasi-interpolants

5.1. Bernstein-Durrmeyer quasi-interpolants of order r

Given 0 ≤ r ≤ n, define the truncated inverse of order r

K(r)
n = Id +

r∑
p=2

∑
i+j=p

κi,jD
i,j

Then the Bernstein-Durrmeyer quasi-interpolant (abbr. BDQI) of order r is
defined by

M(r)
n = K(r)

n Mn

In other words, for all polynomial p ∈ Pn, we have

M(r)
n p = Mnp +

r∑
p=2

∑
i+j=p

κi,jD
i,jMnp

Theorem. The operator M(r)
n is exact on Pr, for all 0 ≤ r ≤ n.

The proof is the same as for BQIs.
Therefore, we have constructed a chain of intermediate operators between the
Bernstein-Durrmeyer operator and the identity operator. The latter can be
written in the form of the orthogonal projector Pn on the space Pn. Indeed,
since Mn is a self-adjoint isomorphism in that space, we have, for all p ∈ Pn:

0 = 〈f − Pnf,Mnp〉 = 〈Mn(f − Pnf), p〉

As Mn(f − Pnf) ∈ Pn, this implies first that Mnf = MnPnf , i.e.
MnKnMnf = MnPnf and second that KnMnf = Pnf , in other words
KnMn = KnMn, q.e.d. �
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5.2. Some open questions on BDQIs

Among the open questions relative to the BDQIs, the following seem partic-
ularly interesting:
1) Prove that for r ∈ N fixed, the BDQIs of order r are uniformly bounded
for Lp norms i.e. there exists constants C(r, p) such that

‖B(r)
n ‖p ≤ C(r, p) for all n ≥ r

2) As for BQIs, numerical experiments show that some functions f (e.g. of
Runge type) are better approximated by intermediate polynomials M(r)

n f
rather than by their L2-orthogonal projection Pnf on Pn. (This is not quite
surprising in view of the fact that ‖Ln‖∞ goes to infinity fastly when n →∞).
Therefore the approximating polynomials generated in this way can be useful
in practice, both in approximation and in CAGD.
3) It would be interesting to have a direct formula giving the polynomial co-
efficients κi,j , or at least a recursive formula allowing their fast computation.
4) From the computational point of view, it would be also interesting to have
a fast algorithm for the effective computation of scalar products 〈Bn

γ , f〉. Even
though the Bernstein polynomials are Jacobi weights (up to a constant), using
the corresponding Gauss-Jacobi cubature formulas seem rather complicated
since weights and data points are distinct.

6. Genuine Bernstein-Durrmeyer operators

Let fs denote the restriction of f to the edge opposite to the vertex As = (es)
(barycentric coordinates :s e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1)), let
bn−2
k−1 be the univariate Bernstein polynomials on that edge, and let ∆∗

n be the
set of indices γ ∈ ∆n with no null component. Then the genuine Bernstein-
Durrmeyer (abbr. GBD) operators are defined by

Gnf :=
3∑

r=1

f(er)Bn
ner

+ (n− 1)
3∑

s=1

n−1∑
k=1

〈fs, b
n−2
k−1〉B

n
k

+(n− 1)(n− 2)
∑

γ∈∆∗
n

〈f,Bn−3
α 〉Bn

α

Note that in the second sum, 〈fs, b
n−2
k−1〉 is a univariate sacalar product along

the edge, and Bn
k is an abbreviation for Bn

α when α = (k, n−k, 0), (k, 0, n−k)
or (0, k, n− k).
Like the classical Bernstein and the BD operators, the GBD operator Gn can
be expressed as a differential operator on Pn:

Gn =
n∑

r=0

∑
δ∈∆r

θ
(n)
δ Dδ, β̄

(n)
δ ∈ Pr
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The inverse operator Hn := G−1
n can also be expressed as a differential oper-

ator on Pn:

Hn =
n∑

r=0

∑
δ∈∆r

η
(n)
δ Dδ, ᾱ

(n)
δ ∈ Pr

7. Genuine Bernstein-Durrmeyer quasi-interpolants

7.1. Genuine Bernstein-Durrmeyer quasi-interpolants of order r

Given 0 ≤ r ≤ n, define the truncated inverse of order r

H(r)
n = Id +

r∑
p=2

∑
i+j=p

θi,jD
i,j

Then the Genuine Bernstein-Durrmeyer quasi-interpolant (abbr. GBDQI) of
order r is defined by

G(r)
n = H(r)

n Gn

G(r)
n :=

r∑
|γ|=0

η(n)
γ DγGn, 0 ≤ r ≤ n

Theorem. The operator G(r)
n is exact on Pr, for all 0 ≤ r ≤ n.

The proof is the same as for BQIs and BDQIs.

7.2. A table of the first polynomials eta

With the notation nk := (n− 1) . . . (n− k), here are the first polynomials

n1η
(n)
20 = −X, n1η̄

(n)
11 = 2xy

n2η
(n)
30 = (1− 2x)X, n2η̄

(n)
21 = −3xy(1− 2x)

2n3η
(n)
40 = X((n + 7)X − 2), n3η̄

(n)
31 = −2xy((n + 7)X − 2)

n3η
(n)
22 = xy((n + 7)(3xy − x− y) + n + 1)

n4η5,0 := (1− 2x)X(1− (n + 3)X), n4η4,1 := 5(2x− 1)(1− (n + 3)X)xy

n4η3,2 := (5(n + 3)x(4xy − x− 3y) + (n + 1)(6x− 1) + (n + 11)y)xy

8. Asymptotic formulas for Bernstein type quasi-interpolants

We only sketch a study the convergence for polynomials though the results
can be extended to smooth functions (this will be developed elsewhere). Given
a polynomial p ∈ P, we are interested in the following limits:

limnr+1(Q(2r)
n p(x)− p(x)) and lim nr+1(Q(2r+1)

n p(x)− p(x))

where Q(s)
n , s = 2r, 2r+1 is one of the three types of Bernstein QIs previously

defined. For original operators (case s = 0), see also [1, 2, 33, 34, 48].
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8.1. Bernstein QIs

For beta and alpha polynomials, we define the polynomials

β̄k,` = lim nrβk,` for k + ` = 2r − 1 or 2r

ᾱk,` = lim nrαk,` for k + ` = 2r − 1 or 2r

From the recurrence formulas of section 2.2, we immediately deduce the fol-
lowing
Theorem. The following recurrence relations hold:

(k + 1)β̄k+1,` + (` + 1)β̄k,`+1 = z
(
xβ̄k−1,` + yβ̄k,`−1

)
for k + ` = 2r − 1,

(k + 1)β̄k+1,` + (` + 1)β̄k,`+1 = z
(
xD1,0β̄k,` + yD0,1β̄k,`

)
for k + ` = 2r.

We have not yet obtained the general formulas for alpha-polynomials. How-
ever, for polynomials ᾱk,0 and ᾱ0,`, we deduce from the recurrence formulas
of section 2.3.4 :

(2r+1)ᾱ2r+1,0 = −2r(1−2x)ᾱ2r,0−Xᾱ2r−1,0 (2r+2)ᾱ2r+2,0 = −Xᾱ2r,0,

(2r+1)ᾱ0,2r+1 = −2r(1−2y)ᾱ0,2r−Y ᾱ0,2r−1 (2r+2)ᾱ0,2r+2 = −Y ᾱ0,2r,

Here is a table of the first polynomials:

(k, `) βk,` αk,`

(2, 0) X/2 −X/2
(1, 1) −xy xy
(3, 0) (1− 2x)X/6 (1− 2x)X/3
(2, 1) −xy(1− 2x)/2 −xy(1− 2x)
(4, 0) X2/8 X2/8
(3, 1) −xyX/2 −xyX/2
(2, 2) xy(z + 3xy)/4 xy(z + 3xy)/4

The asymptotic formulas are obtained as follows. For any polynomial f :

f − B(q)
n f =

∑
p≥q+1

∑
i+j=p

αi,jD
i,jf

For q = 2r − 1 , we get

nr(f − B(2r)
n f) =

∑
p≥2r

∑
i+j=p

nrαi,jD
i,jBnf

As lim nrαi,j = ᾱi,j for i + j = 2r, lim nrαi,j = 0 for i + j = p > 2r and
lim Di,jBnf = Di,jf , we obtain:

limnr(f − B(2r)
n f) =

∑
i+j=2r

ᾱi,jD
i,jf

Similarly, for q = 2r , we get

nr+1(f − B(2r+1)
n f) =

∑
p≥2r+1

∑
i+j=p

nr+1αi,jD
i,jBnf
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As lim nr+1αi,j = ᾱi,j for i + j = 2r + 1, 2r + 2, lim nr+1αi,j = 0 for i + j =
p > 2r + 2 and lim Di,jBnf = Di,jf , we obtain:

limnr+1(f − B(2r+1)
n f) =

2r+2∑
p=2r+1

∑
i+j=p

ᾱi,jD
i,jf

Examples.

lim n(f − B(2)
n f) = −1

2
(XD2,0f − xyD1,1f + Y D0,2f)

lim n2(f − B(3)
n f) =

∑
|γ|=3

ᾱγDγf +
∑
|γ|=4

ᾱγDγf

=
1
3
(1− 2x)XD3,0f −xy(1− 2x)D2,1f −xy(1− 2xy)D1,2f +(1− 2y)Y D0,3f

+
1
8
X2D4,0f − 1

2
xyXD3,1f +

1
4
xy(z + 3xy)D2,2f − 1

2
xyY D1,3f +

1
8
Y 2D0,4f

8.2. Bernstein-Durrmeyer QIs

For lambda and kappa polynomials, we define

λ̄k,` = lim nrλk,` for k + ` = 2r − 1 or 2r

κ̄k,` = lim nrκk,` for k + ` = 2r − 1 or 2r

Here is a table of the first polynomials κ̄k,`:
(k, `) κ̄k,`

(1, 0) 3x− 1
(2, 0) −X
(1, 1) 2xy
(3, 0) −X(5x− 2)
(2, 1) x(15xy − x− 8y + 1)
(4, 0) X2/2
(3, 1) −2xyX
(2, 2) xy(3xy − (x + y) + 1)

As for Bernstein QIs, we deduce, for any polynomial p :

lim nr(f −M(2r)
n f) =

∑
i+j=2r

κ̄i,jD
i,jf, q = 2r − 1

Similarly, for q = 2r , we get

lim nr+1(f −M(2r+1)
n f) =

2r+2∑
p=2r+1

∑
i+j=p

κ̄i,jD
i,jf, q = 2r

Examples.

lim n(f −M(2)
n f) = −XD2,0f + 2xyD1,1f − Y D0,2f

lim n2(f −M(3)
n f) =

∑
|γ|=3

ᾱγDγf +
∑
|γ|=4

ᾱγDγf

= −X(5x−2)D3,0f−x(15xy−x−8y+1)D2,1f−yx(15xy−8x−y+1)D1,2f
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−(5y − 2)Y D0,3f +
1
2
X2D4,0f − 2xyXD3,1f

+xy(3xy − (x + y) + 1)D2,2f − 2xyY D1,3f +
1
2
Y 2D0,4f

8.3. Genuine Bernstein-Durrmeyer QIs

For and polynomials, we define

θ̄k,` = lim nrθk,` for k + ` = 2r − 1 or 2r

η̄k,` = lim nrηk,` for k + ` = 2r − 1 or 2r

Here is a table of the first polynomials:

(k, `) η̄k,`

(2, 0) −X
(1, 1) 2xy
(3, 0) (1− 2x)X
(2, 1) −3xy(1− 2x)
(4, 0) X2/2
(3, 1) −2xyX
(2, 2) xy(3xy − (x + y) + 1)

9. Numerical experiments on Bernstein quasi-interpolants

We present some numerical tests on the following functions

f1(x, y) =
1

1 + 16((x− 1/3)2 + (y − 1/3)2)

f2(x, y) = exp(−x2 − y2)

using classical and genuine Bernstein quasi-interpolants of various degrees
and orders.
We denote the uniform errors respectively by eb

(r)
n f := ‖f −B(r)

n f‖ for Bern-
stein QIs and by eg

(r)
n := ‖f − G(r)

n f‖ for genuine Bernstein-Durrmeyer QIs.

(n, r) eb
(r)
n f1 eb

(r)
n f2 (n, r) eg

(r)
n f1 eg

(r)
n f2

(8, 0) 0.38 3.6(-2) (5, 1) 0.6 8.8(−2)
(8, 3) 8.4(-2) 2.3(-3) (5, 3) 0.3 8.8(−3)
(8, 5) 2.4(-2) 1.2(-4) (5, 4) 0.25 1.2(−3)
(8, 8) 0.12 2.0(-6) (5,5) 0.14 4.8(-4)
(15, 0) 0.26 2.0(-2) (10,0) 0.46 5.2(-2)
(15, 4) 4.6(-2) 4.4(-5) (10,2) 0.25 5.2(-3)
(15, 8) 1.2(-2) 6.0(-8) (10,4) 0.15 4.0(-4)
(15, 9) 5.6(-3) 3.0(-8) (10,6) 8.4(-2) 4.8(-5)
(15, 10) 9.2(-3) 3.4(-9) (10,7) 0.12 2.6(-4)
(15, 15) 1.5(-2) 5.0(-11) (10,10)
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We see that the behaviours of QIs are quite different for f1 and f2.
1) f1 is a rational function of Runge type : the Lagrange interpolants for n = 8
and n = 15 both give bad results. However, the errors eb

(r)
n f1 seem to have

a minimum value for some intermediate QIs, for example for (n, r) = (8, 5)
and (n, r) = (15, 9). A similar fact occurs for the errors eg

(r)
n f1 where the

minimum value is obtained for (n, r) = (10, 6). However the errors are higher
than those obtained by Bernstein QIs for n = 8.
2) f1 is a good analytic function with a nice behaviour: the Lagrange inter-
polant gives the best results. The errors slowly decrease from r = 0 to r = n.
If one does not want a very high precision, the first QIs can be taken as
approximants of the given function. For the genuine Durrmeyer operator, the
errors for n = 10 are higher than those obtained by Bernstein QIs for n = 8,
except maybe the minimum value for (n, r) = (10, 6).
We also compared the above results with those obtained using the BD opera-
tor with Legendre weight (the errors are denoted ed

(r)
n f). For the two tested

functions, the results were worse. We only give them for the exponential
functionf2.

(n, r) eb
(r)
n f2 eg

(r)
n f2 ed

(r)
n f2

(5, 0) 5.6(−2) 8.8(−2) 0.18
(5, 3) 4.6(−3) 8.8(−3) 4.2(-3)
(5, 4) 6.4(−4) 1.2(−3) 2.3(-3)
(5,5) 6.4(-4) 8.8(-4) 1.6(-3)

As a conclusion of these tests (and of other tests done on various functions),
the classical Bernstein QIs seem a priori to be the more efficient. Of course,
the values of f on uniform lattices of points of the triangle must be available.
If the function is only known by its moments or other mean integral values,
then one could consider the approximation by BDQIs with convenient Jacobi
weights or by GDQIs.

10. Some applications

In this final section, we briefly present some possible applications of the above
quasi-interpolants to various problems in approximation, CAGD and numer-
ical analysis.

• in approximation, the Hausdorff moment problem in T consists in find-
ing a function f having given moments µγ(f) :=

∫
T

f(x, y)xky`dxdy for
some indices γ = (k, `) ∈ N2. Such a function can be approximated by
the Bernstein-Durrmeyer quasi-interpolants of Section 5. Indeed, scalar
products 〈f,Bn

α〉 are directly computable from moments, so Mnf is
easily obtained together with its partial derivatives.

• in CAGD, when one is interested in approximating a function defined on
a uniform lattice of points in the triangle T , Bernstein quasi-interpolants
of Section 3 can sometimes offer an alternative to strict interpolation at
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those points since their norms seem to be uniformly bounded in n for a
given order r.

• in numerical analysis, it would be perhaps interesting to derive cubature
formulas from integration of Bernstein quasi-interpolants. In the same
way, approximate formulas for partial derivatives can be obtained by
computing derivatives of Bernstein or Bernstein-Durrmeyer type quasi-
interpolants.
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75(1985), 116-119.

[13] Derriennic, M.M., On multivariate approximation by Bernstein-type polynomi-
als, J. Approx. Theory, 45(1985), 155-166.
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