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On the rate of convergence of a new q-Szász-
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Abstract. In the present paper we introduce a new q-generalization of
Szász-Mirakjan operators and we investigate their approximation prop-
erties. By using a weighted modulus of smoothness, we give local and
global estimations for the error of approximation.

Mathematics Subject Classification (2010): 41A36, 41A25.

Keywords: q-calculus, Szász-Mirakjan operator, Bohman-Korovkin type
theorem, weighted space, weighted modulus of smoothness.

1. Introduction

The aim of this paper is to study the approximation properties of a new
Szász-Mirakjan type operator constructed by using q-Calculus. Firstly, we
recall some basic definitions and notations used in quantum calculus, see,
e.g., [6, pp. 7-13].

Let q > 0. For any n ∈ N0 := {0} ∪ N the q-integer [n]q is defined by

[n]q := 1 + q + . . . qn−1 (n ∈ N), [0]q := 0,

and the q-factorial [n]q! by

[n]q! := [1]q[2]q . . . [n]q (n ∈ N), [0]q! := 1.

Also, the q-binomial coefficients are denoted by
[
n
k

]
q

and are defined by

[
n
k

]
q

=
[n]q!

[k]q! [n− k]q!
, k = 0, 1, . . . , n.

The q-derivative of a function f : R → R is defined by

Dqf (x) =
f(x)− f(qx)

(1− q)x
, x 6= 0, Dqf (0) := lim

x→0
Dqf (x) ,

and the high q-derivatives D0
qf := f, Dn

q f := Dq

(
Dn−1

q f
)
, n ∈ N.
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The product rule is

Dq (f(x)g(x)) = Dq (f(x)) g(x) + f(qx)Dq (g(x)) . (1.1)

We recall the q-Taylor theorem as it is given in [4, p. 103].

Theorem 1.1. If the function g(x) is capable of expansion as a convergent
power series and q is not a root of unity, then

g(x) =
∞∑

r=0

(x− a)r
q

[r]q!
Dr

qg(a),

where

(x− a)r
q =

r−1∏
s=0

(x− qsa) =
r∑

k=0

[
r
k

]
q

q
k(k−1)

2 xr−k(−a)k.

2. Auxiliary results

Throughout the paper we consider q ∈ (0, 1).
We define a suitable q-difference operator as follows

∆0
qfk,s = fk,s, (2.1)

∆r+1
q fk,s = qr∆r

qfk+1,s −∆r
qfk,s−1, r ∈ N0, (2.2)

where fk,s = f
(

[k]q
qs[n]q

)
, k ∈ N0, s ∈ Z.

The following lemma gives an expression for the r-th q-differences ∆r
qfk,s

as a sum of multiplies of values of f .

Lemma 2.1. The q-difference operator ∆r
q defined by (2.1)-(2.2)satisfies

∆r
qfk,s =

r∑
j=0

(−1)r−jqj(j−1)/2

[
r
j

]
q

fk+j,j+s−r for r, k ∈ N0, s ∈ Z.

(2.3)

Taking into account the relations (2.1)-(2.2) and the formula[
r + 1
j + 1

]
q

= qr−j

[
r
j

]
q

+
[

r
j + 1

]
q

,

the identity (2.3) can be easily obtained by induction over r ∈ N0.
In what follows, the monomial of m degree is denoted by em, m ∈ N0.
Let us denote by [x0, x1, . . . , xn; f ] the divided difference of the function

f with respect to the points x0, x1, . . . , xn.

Lemma 2.2. For all k, r ∈ N0, s ∈ Z, we have

[xk,s−1, . . . , xk+r,s+r−1; f ] =
qr(r+2s−1)/2[n]rq

[r]q!
∆r

qfk,r+s−1, (2.4)

where xk,s−1 = [k]q
qs−1[n]q

.
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Proof. We use the mathematical induction with respect to r. For r = 0 the
equality (2.4) follows immediately from (2.1). Let us assume that (2.4) holds
true for some r ≥ 0 and all k ∈ N0, s ∈ Z.

We have

[xk,s−1, . . . , xk+r+1,s+r; f ]

=
[xk+1,s, . . . , xk+r+1,s+r; f ]− [xk,s−1, . . . , xk+r,s+r−1; f ]

xk+r+1,s+r − xk,s−1
.

Since xk+r+1,s+r − xk,s−1 = [r+1]q
qr+s[n]q

, by using (2.2) we get

[xk,s−1, . . . , xk+r+1,s+r; f ]

=
q(r+1)(r+2s)/2[n]r+1

q

[r + 1]q!
(
qr∆r

qfk+1,r+s −∆r
qfk,r+s−1

)
=
q(r+1)(r+2s)/2[n]r+1

q

[r + 1]q!
∆r+1

q fk,r+s.

�

3. Construction of the operators

In 1987 A. Lupaş [9] introduced the first q-analogue of Bernstein operator
and investigated its approximating and shape-preserving properties. Another
q-generalization of the classical Bernstein polynomials is due to G. Phillips
[13]. More properties of these two q-extensions were obtained over time in
several papers such as [3], [10], [11], [1]. We mention that the comprehensive
survey [12] due to S. Ostrovska gives a good perspective of the most important
achievements during a decade relative to these operators.

Two of the known expansions in q-calculus of the exponential function
are given as follows (see, e.g., [6, p. 31])

Eq(x) =
∞∑

k=0

qk(k−1)/2 xk

[k]q!
, x ∈ R, |q| < 1,

eq(x) =
∞∑

k=0

xk

[k]q!
, |x| < 1

1− q
, |q| < 1.

It is obvious that lim
q→1−

Eq(x) = lim
q→1−

eq(x) = ex.

For q ∈ (0, 1), in [2] A. Aral introduced the first q-analogue of the
classical Szász-Mirakjan operators given by

Sq
n(f ;x) = Eq

(
− [n]q

x

bn

) ∞∑
k=0

f

(
[k]q bn
[n]q

) (
[n]q x

)k

[k]q!(bn)k
,

where 0 ≤ x < bn

1−qn , (bn)n is a sequence of positive numbers such that
lim
n
bn = ∞.



530 Cristina Radu, Saddika Tarabie and Andreea Veţeleanu

The operator Sq
n reproduces linear functions and

Sq
n(e2;x) = qx2 +

bn
[n]q

x, 0 ≤ x <
bn

1− qn
.

Motivated by this work, for q ∈ (0, 1) we give another q-analogue of the
same class of operators as follows

Sn,q (f ;x) =
∞∑

k=0

(
[n]q x

)k

[k]q!
qk(k−1)Eq

(
− [n]q q

kx
)
f

(
[k]q

[n]q qk−1

)
, x ≥ 0,

(3.1)
where f ∈ F (R+) := {f : R+ → R, the series in (3.1) is convergent} .

Since Eq (x) is convergent for every x ∈ R, by using Theorem 1.1 and
the property Dr

qEq (x) = q
r(r−1)

2 Eq (qrx) we obtain

∞∑
r=0

(−x)r

[r]q!
qr(r−1)Eq (qrx) = Eq(0) = 1, x ∈ R,

which yields that the operator Sn,q is well defined.
For q → 1−, the above operators reduce to the classical Szász-Mirakjan

operators. In this case, the approximation function Sn,qf is defined on R+

for each n ∈ N.

Theorem 3.1. Let q ∈ (0, 1) and Sn,q, n ∈ N, be defined by (3.1). For any
f ∈ F (R+) we have

Sn,q(f ;x) =
∞∑

r=0

([n]qx)
r

[r]q!
q

r(r−1)
2 ∆r

qf0,r−1, x ≥ 0. (3.2)

Proof. Let f ∈ F (R+).
By using (2.1), the operator Sn,q can be expressed as follows

Sn,q (f ;x) =
∞∑

k=0

(
[n]q x

)k

[k]q!
qk(k−1)Eq

(
− [n]q q

kx
)

∆0
qfk,k−1.

Applying q-derivative operator to Sn,qf and taking into account the product
rule (1.1) and the property DqEq(ax) = aEq(aqx), (see e.g. [6, pp. 29-32]),
we have

DqSn,q(f ;x)

= [n]q
∞∑

k=0

(
[n]q x

)k

[k]q!
qk(k+1)Eq

(
− [n]q q

k+1x
) (

∆0
qfk+1,k −∆0

qfk,k−1

)

= [n]q
∞∑

k=0

(
[n]q x

)k

[k]q!
qk(k+1)Eq

(
− [n]q q

k+1x
)

∆1
qfk,k.
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For n ∈ N and x ∈ R+, by induction with respect to r ∈ N, we can prove

Dr
qSn,q(f ;x)

= [n]rqq
r(r−1)

2

∞∑
k=0

(
[n]q x

)k

[k]q!
qk(2r+k−1)Eq

(
− [n]q q

k+rx
)

∆r
qfk,k+r−1.

Choosing x = 0, we deduce Dr
qSn,q(f ; 0) = [n]rqq

r(r−1)
2 ∆r

qf0,r−1.
Choosing a = 0 in Theorem 1.1, we obtain

Sn,q(f ;x) =
∞∑

r=0

([n]qx)
r

[r]q!
q

r(r−1)
2 ∆r

qf0,r−1,

which completes the proof. �

Corollary 3.2. Let q ∈ (0, 1) and Sn,q, n ∈ N, be defined by (3.1). For any
f ∈ F (R+) we have

Sn,q(f ;x) =
∞∑

r=0

xr

[
0,

1
[n]q

,
[2]q
q[n]q

, . . . ,
[r]q

qr−1[n]q
; f
]
, x ≥ 0. (3.3)

Proof. The identity (3.3) is obtained from the above theorem and (2.4) by
choosing k = s = 0. �

Corollary 3.3. For all n ∈ N, x ∈ R+ and 0 < q < 1, we have

Sn,q (e0;x) = 1, (3.4)
Sn,q (e1;x) = x, (3.5)

Sn,q (e2;x) = x2 +
1

[n]q
x. (3.6)

Moreover, for m ∈ N0 and 0 < q < 1, the operator Sn,q defined by (3.1)
can be expressed as

Sn,q(em;x) =
m∑

r=0

xr

[
0,

1
[n]q

,
[2]q
q[n]q

, . . . ,
[r]q

qr−1[n]q
; em

]
, x ≥ 0. (3.7)

Proof. Since for any distinct points x0, . . . , xr, the divided difference

[x0, . . . , xr; em] =

 0 if m < r,
1 if m = r,

x0 + . . .+ xr if m = r + 1,

(see e.g. [5, p.63]), the identities (3.4)-(3.7) are obvious. �

Lemma 3.4. For m ∈ N0 and q ∈ (0, 1) we have

Sn,q(em;x) ≤ Am,q(1 + xm), x ≥ 0, n ∈ N, (3.8)

where Am,q is a positive constant depending only on q and m.
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Proof. Let m ∈ N. From (3.7) we get

Sn,q(em;x) ≤ (1 + xm)
m∑

r=1

[
0,

1
[n]q

, . . . ,
[r]q

qr−1[n]q
; em

]
.

Applying the well known Lagrange’s Mean Value Theorem, we can write

Sn,q(em;x) ≤ (1 + xm)
m∑

r=1

(
m
r

)
(ξr)

m−r
,

where 0 < ξr <
[r]q

qr−1[n]q
, 0 < r ≤ m.

Consequently, we have

Sn,q(em;x) ≤ (1 + xm)
m∑

r=1

(
m
r

)
[r]m−r

q

q(r−1)(m−r)[n]m−r
q

≤ (1 + xm)[m]m−1
q

m∑
r=1

(
m
r

)
1

q(r−1)(m−r)qm−r+r2

≤ Am,q(1 + xm),

where

Am,q := [m]m−1
q

(
1 +

1
qm

)m

, m ≥ 1. (3.9)

For m = 0 we can take A0,q = 1
2 . �

Examining relation (3.6) it is clear that the sequence of the operators
(Sn,q)n does not satisfies the conditions of Bohman-Korovkin theorem.

Further on, we consider a sequence (qn)n, qn ∈ (0, 1), such that

lim
n
qn = 1. (3.10)

The condition (3.10) guarantees that [n]qn
→∞ for n→∞.

Theorem 3.5. Let (qn)n be a sequence satisfying (3.10) and let the operators
Sn,qn

, n ∈ N, be defined by (3.1). For any compact J ⊂ R+ and for each
f ∈ C(R+) we have

lim
n→∞

Sn,qn
(f ;x) = f(x), uniformly in x ∈ J.

Proof. Replacing q by a sequence (qn)n with the given conditions, the result
follows from (3.4)-(3.6) and the well-known Bohman-Korovkin theorem (see
[7], pp. 8-9). �

4. Error of approximation

Let α ∈ N. We denote by Bα(R+) the weighted space of real-valued functions
f defined on R+ with the property |f(x)| ≤Mf (1+xα) for all x ∈ R+, where
Mf is a constant depending on the function f . We also consider the weighted
subspace Cα(R+) of Bα(R+) given by

Cα(R+) := {f ∈ Bα(R+) : f continuous on R+} .
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Endowed with the norm ‖·‖α, where ‖f‖α := sup
x∈R+

|f(x)|
1+xα , both Bα(R+)

and Cα(R+) are Banach spaces.
We can give estimates of the error |Sn,q(f ; ·)− f |, n ∈ N, for unbounded

functions by using a weighted modulus of smoothness associated to the space
Bα (R+).

We consider

Ωα(f ; δ) := sup
x≥0

0<h≤δ

|f(x+ h)− f(x)|
1 + (x+ h)α

, δ > 0, α ∈ N. (4.1)

It is evident that for each f ∈ Bα (R+), Ωα(f ; ·) is well defined and

Ωα(f ; δ) ≤ 2 ‖f‖α , δ > 0, f ∈ Bα (R+) , α ∈ N.
The weighted modulus of smoothness Ωα(f ; ·) possesses the following prop-
erties ([8]).

Ωα(f ;λδ) ≤ (λ+ 1)Ωα(f ; δ), δ > 0, λ > 0, (4.2)
Ωα(f ;nδ) ≤ nΩα(f ; δ), δ > 0, n ∈ N,

lim
δ→0+

Ωα(f ; δ) = 0.

Theorem 4.1. Let (qn)n be a sequence satisfying (3.10). Let q0 = inf
n∈N

qn and

α ∈ N. For each n ∈ N and every f ∈ Bα (R+) one has

|Sn,qn
(f ;x)− f(x)| ≤ Cα,q0(1 + xα+1)Ωα

(
f ;
√

1/[n]qn

)
, x ≥ 0, (4.3)

where Cα,q0 is a positive constant independent of f and n.

Proof. Let n ∈ N, f ∈ Bα (R+) and x ≥ 0 be fixed. Setting µx,α(t) :=
1 + (x+ |t− x|)α and ψx(t) := |t− x|, t ≥ 0, relations (4.1) and (4.2) imply

|f(t)− f(x)| ≤ (1 + (x+ |t− x|)α)
(

1 +
1
δ
|t− x|

)
Ωα(f ; δ)

= µx,α(t)
(

1 +
1
δ
ψx(t)

)
Ωα(f ; δ), t ≥ 0.

By using the Cauchy inequality for linear positive operators which pre-
serve the constants, we obtain

|Sn,qn(f ;x)− f(x)| ≤ Sn,qn (|f − f(x)| ;x) (4.4)

≤
(
Sn,qn

(µx,α;x) +
1
δ
Sn,qn

(µx,αψx;x)
)

Ωα(f ; δ)

≤
√
Sn,qn(µ2

x,α;x)
(

1 +
1
δ

√
Sn,qn(ψ2

x;x)
)

Ωα(f ; δ).

Since

µ2
x,α(t) = (1 + (x+ |t− x|)α)2 ≤ 2

(
1 + (2x+ t)2α

)
≤ 2

(
1 + 22α

(
(2x)2α + t2α

))
,
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and taking into account (3.4) and (3.8) we get

Sn,qn
(µ2

x,α;x) ≤ B2
α,qn

(1 + x2α), (4.5)

where B2
α,qn

= 2α+1
(
22α +A2α,qn

)
.

According to (3.4)-(3.6) we have Sn,qn
(ψ2

x;x) = 1
[n]qn

x.

By choosing δ :=
√

1
[n]qn

in (4.3), from (4.5) follows

|Sn,qn
(f ;x)− f(x)| ≤ Bα,qn

√
1 + x2α(1 +

√
x)Ωα

(
f ;

√
1

[n]qn

)
.

Finally, since 1 +
√
x ≤

√
2
√

1 + x and (1 + x2α)(1 + x) ≤ 4(1 + xα+1)
for x ≥ 0 and α ∈ N, we obtain

|Sn,qn
(f ;x)− f(x)| ≤ Cα,q0(1 + xα+1)Ωα

(
f ;
√

1/[n]qn

)
, x ≥ 0,

where q0 := inf
n∈N

qn and Cα,q0 := 2
√

2Bα,q0 . �

On the basis of Theorem 4.1 we give the following global estimate.

Corollary 4.2. Let (qn)n be a sequence satisfying (3.10) and α ∈ N. For each
n ∈ N and every f ∈ Bα (R+) one has

‖Sn,qn
(f ; ·)− f‖α+1 ≤ Cα,q0Ωα

(
f ;
√

1/[n]qn

)
,

where Cα,q0 is a positive constant independent of f and n.

Remark 4.3. For any function f ∈ Bα (R+) , α ∈ N, the rate of convergence
of the operators Sn,qn

(f ; ·) to f in weighted norm is
√

1
[n]qn

which is faster

than
√

bn

[n]qn
obtained in [2].
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