On the rate of convergence of a new q-SzászMirakjan operator

Cristina Radu, Saddika Tarabie and Andreea Veţeleanu

Abstract

In the present paper we introduce a new q-generalization of Szász-Mirakjan operators and we investigate their approximation properties. By using a weighted modulus of smoothness, we give local and global estimations for the error of approximation.

Mathematics Subject Classification (2010): 41A36, 41A25.
Keywords: q-calculus, Szász-Mirakjan operator, Bohman-Korovkin type theorem, weighted space, weighted modulus of smoothness.

1. Introduction

The aim of this paper is to study the approximation properties of a new Szász-Mirakjan type operator constructed by using q-Calculus. Firstly, we recall some basic definitions and notations used in quantum calculus, see, e.g., [6, pp. 7-13].

Let $q>0$. For any $n \in \mathbb{N}_{0}:=\{0\} \cup \mathbb{N}$ the q-integer $[n]_{q}$ is defined by

$$
[n]_{q}:=1+q+\ldots q^{n-1} \quad(n \in \mathbb{N}), \quad[0]_{q}:=0
$$

and the q-factorial $[n]_{q}$! by

$$
[n]_{q}!:=[1]_{q}[2]_{q} \ldots[n]_{q} \quad(n \in \mathbb{N}), \quad[0]_{q}!:=1
$$

Also, the q-binomial coefficients are denoted by $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ and are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}, \quad k=0,1, \ldots, n .
$$

The q-derivative of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
D_{q} f(x)=\frac{f(x)-f(q x)}{(1-q) x}, \quad x \neq 0, \quad D_{q} f(0):=\lim _{x \rightarrow 0} D_{q} f(x),
$$

and the high q-derivatives $D_{q}^{0} f:=f, \quad D_{q}^{n} f:=D_{q}\left(D_{q}^{n-1} f\right), n \in \mathbb{N}$.

The product rule is

$$
\begin{equation*}
D_{q}(f(x) g(x))=D_{q}(f(x)) g(x)+f(q x) D_{q}(g(x)) \tag{1.1}
\end{equation*}
$$

We recall the q-Taylor theorem as it is given in [4, p. 103].
Theorem 1.1. If the function $g(x)$ is capable of expansion as a convergent power series and q is not a root of unity, then

$$
g(x)=\sum_{r=0}^{\infty} \frac{(x-a)_{q}^{r}}{[r]_{q}!} D_{q}^{r} g(a),
$$

where

$$
(x-a)_{q}^{r}=\prod_{s=0}^{r-1}\left(x-q^{s} a\right)=\sum_{k=0}^{r}\left[\begin{array}{l}
r \\
k
\end{array}\right]_{q} q^{\frac{k(k-1)}{2}} x^{r-k}(-a)^{k} .
$$

2. Auxiliary results

Throughout the paper we consider $q \in(0,1)$.
We define a suitable q-difference operator as follows

$$
\begin{gather*}
\Delta_{q}^{0} f_{k, s}=f_{k, s} \tag{2.1}\\
\Delta_{q}^{r+1} f_{k, s}=q^{r} \Delta_{q}^{r} f_{k+1, s}-\Delta_{q}^{r} f_{k, s-1}, \quad r \in \mathbb{N}_{0} \tag{2.2}
\end{gather*}
$$

where $f_{k, s}=f\left(\frac{[k]_{q}}{q^{s}[n]_{q}}\right), k \in \mathbb{N}_{0}, s \in \mathbb{Z}$.
The following lemma gives an expression for the r-th q-differences $\Delta_{q}^{r} f_{k, s}$ as a sum of multiplies of values of f.

Lemma 2.1. The q-difference operator Δ_{q}^{r} defined by (2.1)-(2.2) satisfies

$$
\Delta_{q}^{r} f_{k, s}=\sum_{j=0}^{r}(-1)^{r-j} q^{j(j-1) / 2}\left[\begin{array}{l}
r \tag{2.3}\\
j
\end{array}\right]_{q} f_{k+j, j+s-r} \quad \text { for } r, k \in \mathbb{N}_{0}, \quad s \in \mathbb{Z}
$$

Taking into account the relations (2.1)-(2.2) and the formula

$$
\left[\begin{array}{l}
r+1 \\
j+1
\end{array}\right]_{q}=q^{r-j}\left[\begin{array}{l}
r \\
j
\end{array}\right]_{q}+\left[\begin{array}{c}
r \\
j+1
\end{array}\right]_{q}
$$

the identity (2.3) can be easily obtained by induction over $r \in \mathbb{N}_{0}$.
In what follows, the monomial of m degree is denoted by $e_{m}, m \in \mathbb{N}_{0}$.
Let us denote by $\left[x_{0}, x_{1}, \ldots, x_{n} ; f\right]$ the divided difference of the function f with respect to the points $x_{0}, x_{1}, \ldots, x_{n}$.

Lemma 2.2. For all $k, r \in \mathbb{N}_{0}, s \in \mathbb{Z}$, we have

$$
\begin{equation*}
\left[x_{k, s-1}, \ldots, x_{k+r, s+r-1} ; f\right]=\frac{q^{r(r+2 s-1) / 2}[n]_{q}^{r}}{[r]_{q}!} \Delta_{q}^{r} f_{k, r+s-1} \tag{2.4}
\end{equation*}
$$

where $x_{k, s-1}=\frac{[k]_{q}}{q^{s-1}[n]_{q}}$.

Proof. We use the mathematical induction with respect to r. For $r=0$ the equality (2.4) follows immediately from (2.1). Let us assume that (2.4) holds true for some $r \geq 0$ and all $k \in \mathbb{N}_{0}, s \in \mathbb{Z}$.

We have

$$
\begin{aligned}
& {\left[x_{k, s-1}, \ldots, x_{k+r+1, s+r} ; f\right]} \\
& =\frac{\left[x_{k+1, s}, \ldots, x_{k+r+1, s+r} ; f\right]-\left[x_{k, s-1}, \ldots, x_{k+r, s+r-1} ; f\right]}{x_{k+r+1, s+r}-x_{k, s-1}}
\end{aligned}
$$

Since $x_{k+r+1, s+r}-x_{k, s-1}=\frac{[r+1]_{q}}{q^{r+s}[n]_{q}}$, by using (2.2) we get

$$
\begin{aligned}
& {\left[x_{k, s-1}, \ldots, x_{k+r+1, s+r} ; f\right]} \\
& =\frac{q^{(r+1)(r+2 s) / 2}[n]_{q}^{r+1}}{[r+1]_{q}!}\left(q^{r} \Delta_{q}^{r} f_{k+1, r+s}-\Delta_{q}^{r} f_{k, r+s-1}\right) \\
& =\frac{q^{(r+1)(r+2 s) / 2}[n]_{q}^{r+1}}{[r+1]_{q}!} \Delta_{q}^{r+1} f_{k, r+s} .
\end{aligned}
$$

3. Construction of the operators

In 1987 A. Lupaş [9] introduced the first q-analogue of Bernstein operator and investigated its approximating and shape-preserving properties. Another q-generalization of the classical Bernstein polynomials is due to G. Phillips [13]. More properties of these two q-extensions were obtained over time in several papers such as [3], [10], [11], [1]. We mention that the comprehensive survey [12] due to S. Ostrovska gives a good perspective of the most important achievements during a decade relative to these operators.

Two of the known expansions in q-calculus of the exponential function are given as follows (see, e.g., [6, p. 31])

$$
\begin{gathered}
E_{q}(x)=\sum_{k=0}^{\infty} q^{k(k-1) / 2} \frac{x^{k}}{[k]_{q}!}, \quad x \in \mathbb{R}, \quad|q|<1, \\
e_{q}(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{[k]_{q}!}, \quad|x|<\frac{1}{1-q}, \quad|q|<1 .
\end{gathered}
$$

It is obvious that $\lim _{q \rightarrow 1^{-}} E_{q}(x)=\lim _{q \rightarrow 1^{-}} e_{q}(x)=e^{x}$.
For $q \in(0,1)$, in [2] A. Aral introduced the first q-analogue of the classical Szász-Mirakjan operators given by

$$
S_{n}^{q}(f ; x)=E_{q}\left(-[n]_{q} \frac{x}{b_{n}}\right) \sum_{k=0}^{\infty} f\left(\frac{[k]_{q} b_{n}}{[n]_{q}}\right) \frac{\left([n]_{q} x\right)^{k}}{[k]_{q}!\left(b_{n}\right)^{k}}
$$

where $0 \leq x<\frac{b_{n}}{1-q^{n}},\left(b_{n}\right)_{n}$ is a sequence of positive numbers such that $\lim _{n} b_{n}=\infty$.

The operator S_{n}^{q} reproduces linear functions and

$$
S_{n}^{q}\left(e_{2} ; x\right)=q x^{2}+\frac{b_{n}}{[n]_{q}} x, \quad 0 \leq x<\frac{b_{n}}{1-q^{n}} .
$$

Motivated by this work, for $q \in(0,1)$ we give another q-analogue of the same class of operators as follows

$$
\begin{equation*}
S_{n, q}(f ; x)=\sum_{k=0}^{\infty} \frac{\left([n]_{q} x\right)^{k}}{[k]_{q}!} q^{k(k-1)} E_{q}\left(-[n]_{q} q^{k} x\right) f\left(\frac{[k]_{q}}{[n]_{q} q^{k-1}}\right), \quad x \geq 0 \tag{3.1}
\end{equation*}
$$

where $f \in \mathcal{F}\left(\mathbb{R}_{+}\right):=\left\{f: \mathbb{R}_{+} \rightarrow \mathbb{R}\right.$, the series in (3.1) is convergent $\}$.
Since $E_{q}(x)$ is convergent for every $x \in \mathbb{R}$, by using Theorem 1.1 and the property $D_{q}^{r} E_{q}(x)=q^{\frac{r(r-1)}{2}} E_{q}\left(q^{r} x\right)$ we obtain

$$
\sum_{r=0}^{\infty} \frac{(-x)^{r}}{[r]_{q}!} q^{r(r-1)} E_{q}\left(q^{r} x\right)=E_{q}(0)=1, \quad x \in \mathbb{R}
$$

which yields that the operator $S_{n, q}$ is well defined.
For $q \rightarrow 1^{-}$, the above operators reduce to the classical Szász-Mirakjan operators. In this case, the approximation function $S_{n, q} f$ is defined on \mathbb{R}_{+} for each $n \in \mathbb{N}$.

Theorem 3.1. Let $q \in(0,1)$ and $S_{n, q}, n \in \mathbb{N}$, be defined by (3.1). For any $f \in \mathcal{F}\left(\mathbb{R}_{+}\right)$we have

$$
\begin{equation*}
S_{n, q}(f ; x)=\sum_{r=0}^{\infty} \frac{\left([n]_{q} x\right)^{r}}{[r]_{q}!} q^{\frac{r(r-1)}{2}} \Delta_{q}^{r} f_{0, r-1}, \quad x \geq 0 \tag{3.2}
\end{equation*}
$$

Proof. Let $f \in \mathcal{F}\left(\mathbb{R}_{+}\right)$.
By using (2.1), the operator $S_{n, q}$ can be expressed as follows

$$
S_{n, q}(f ; x)=\sum_{k=0}^{\infty} \frac{\left([n]_{q} x\right)^{k}}{[k]_{q}!} q^{k(k-1)} E_{q}\left(-[n]_{q} q^{k} x\right) \Delta_{q}^{0} f_{k, k-1} .
$$

Applying q-derivative operator to $S_{n, q} f$ and taking into account the product rule (1.1) and the property $D_{q} E_{q}(a x)=a E_{q}(a q x)$, (see e.g. [6, pp. 29-32]), we have

$$
\begin{aligned}
& D_{q} S_{n, q}(f ; x) \\
& =[n]_{q} \sum_{k=0}^{\infty} \frac{\left([n]_{q} x\right)^{k}}{[k]_{q}!} q^{k(k+1)} E_{q}\left(-[n]_{q} q^{k+1} x\right)\left(\Delta_{q}^{0} f_{k+1, k}-\Delta_{q}^{0} f_{k, k-1}\right) \\
& =[n]_{q} \sum_{k=0}^{\infty} \frac{\left([n]_{q} x\right)^{k}}{[k]_{q}!} q^{k(k+1)} E_{q}\left(-[n]_{q} q^{k+1} x\right) \Delta_{q}^{1} f_{k, k} .
\end{aligned}
$$

For $n \in \mathbb{N}$ and $x \in \mathbb{R}_{+}$, by induction with respect to $r \in \mathbb{N}$, we can prove

$$
\begin{aligned}
& D_{q}^{r} S_{n, q}(f ; x) \\
& =[n]_{q}^{r} q^{\frac{r(r-1)}{2}} \sum_{k=0}^{\infty} \frac{\left([n]_{q} x\right)^{k}}{[k]_{q}!} q^{k(2 r+k-1)} E_{q}\left(-[n]_{q} q^{k+r} x\right) \Delta_{q}^{r} f_{k, k+r-1}
\end{aligned}
$$

Choosing $x=0$, we deduce $D_{q}^{r} S_{n, q}(f ; 0)=[n]_{q}^{r} q^{\frac{r(r-1)}{2}} \Delta_{q}^{r} f_{0, r-1}$.
Choosing $a=0$ in Theorem 1.1, we obtain

$$
S_{n, q}(f ; x)=\sum_{r=0}^{\infty} \frac{\left([n]_{q} x\right)^{r}}{[r]_{q}!} q^{\frac{r(r-1)}{2}} \Delta_{q}^{r} f_{0, r-1}
$$

which completes the proof.
Corollary 3.2. Let $q \in(0,1)$ and $S_{n, q}, n \in \mathbb{N}$, be defined by (3.1). For any $f \in \mathcal{F}\left(\mathbb{R}_{+}\right)$we have

$$
\begin{equation*}
S_{n, q}(f ; x)=\sum_{r=0}^{\infty} x^{r}\left[0, \frac{1}{[n]_{q}}, \frac{[2]_{q}}{q[n]_{q}}, \ldots, \frac{[r]_{q}}{q^{r-1}[n]_{q}} ; f\right], \quad x \geq 0 \tag{3.3}
\end{equation*}
$$

Proof. The identity (3.3) is obtained from the above theorem and (2.4) by choosing $k=s=0$.

Corollary 3.3. For all $n \in \mathbb{N}, x \in \mathbb{R}_{+}$and $0<q<1$, we have

$$
\begin{align*}
S_{n, q}\left(e_{0} ; x\right) & =1 \tag{3.4}\\
S_{n, q}\left(e_{1} ; x\right) & =x \tag{3.5}\\
S_{n, q}\left(e_{2} ; x\right) & =x^{2}+\frac{1}{[n]_{q}} x . \tag{3.6}
\end{align*}
$$

Moreover, for $m \in \mathbb{N}_{0}$ and $0<q<1$, the operator $S_{n, q}$ defined by (3.1) can be expressed as

$$
\begin{equation*}
S_{n, q}\left(e_{m} ; x\right)=\sum_{r=0}^{m} x^{r}\left[0, \frac{1}{[n]_{q}}, \frac{[2]_{q}}{q[n]_{q}}, \ldots, \frac{[r]_{q}}{q^{r-1}[n]_{q}} ; e_{m}\right], \quad x \geq 0 \tag{3.7}
\end{equation*}
$$

Proof. Since for any distinct points x_{0}, \ldots, x_{r}, the divided difference

$$
\left[x_{0}, \ldots, x_{r} ; e_{m}\right]=\left\{\begin{array}{cl}
0 & \text { if } \\
1 & \text { if } m<r \\
x_{0}+\ldots+x_{r} & \text { if } \\
m=r+1
\end{array}\right.
$$

(see e.g. [5, p.63]), the identities (3.4)-(3.7) are obvious.
Lemma 3.4. For $m \in \mathbb{N}_{0}$ and $q \in(0,1)$ we have

$$
\begin{equation*}
S_{n, q}\left(e_{m} ; x\right) \leq A_{m, q}\left(1+x^{m}\right), \quad x \geq 0, \quad n \in \mathbb{N}, \tag{3.8}
\end{equation*}
$$

where $A_{m, q}$ is a positive constant depending only on q and m.

Proof. Let $m \in \mathbb{N}$. From (3.7) we get

$$
S_{n, q}\left(e_{m} ; x\right) \leq\left(1+x^{m}\right) \sum_{r=1}^{m}\left[0, \frac{1}{[n]_{q}}, \ldots, \frac{[r]_{q}}{q^{r-1}[n]_{q}} ; e_{m}\right] .
$$

Applying the well known Lagrange's Mean Value Theorem, we can write

$$
S_{n, q}\left(e_{m} ; x\right) \leq\left(1+x^{m}\right) \sum_{r=1}^{m}\binom{m}{r}\left(\xi_{r}\right)^{m-r}
$$

where $0<\xi_{r}<\frac{[r]_{q}}{q^{r-1}[n]_{q}}, 0<r \leq m$.
Consequently, we have

$$
\begin{aligned}
S_{n, q}\left(e_{m} ; x\right) & \leq\left(1+x^{m}\right) \sum_{r=1}^{m}\binom{m}{r} \frac{[r]_{q}^{m-r}}{q^{(r-1)(m-r)}[n]_{q}^{m-r}} \\
& \leq\left(1+x^{m}\right)[m]_{q}^{m-1} \sum_{r=1}^{m}\binom{m}{r} \frac{1}{q^{(r-1)(m-r)} q^{m-r+r^{2}}} \\
& \leq A_{m, q}\left(1+x^{m}\right)
\end{aligned}
$$

where

$$
\begin{equation*}
A_{m, q}:=[m]_{q}^{m-1}\left(1+\frac{1}{q^{m}}\right)^{m}, \quad m \geq 1 \tag{3.9}
\end{equation*}
$$

For $m=0$ we can take $A_{0, q}=\frac{1}{2}$.
Examining relation (3.6) it is clear that the sequence of the operators $\left(S_{n, q}\right)_{n}$ does not satisfies the conditions of Bohman-Korovkin theorem.

Further on, we consider a sequence $\left(q_{n}\right)_{n}, q_{n} \in(0,1)$, such that

$$
\begin{equation*}
\lim _{n} q_{n}=1 \tag{3.10}
\end{equation*}
$$

The condition (3.10) guarantees that $[n]_{q_{n}} \rightarrow \infty$ for $n \rightarrow \infty$.
Theorem 3.5. Let $\left(q_{n}\right)_{n}$ be a sequence satisfying (3.10) and let the operators $S_{n, q_{n}}, n \in \mathbb{N}$, be defined by (3.1). For any compact $J \subset \mathbb{R}_{+}$and for each $f \in C\left(\mathbb{R}_{+}\right)$we have

$$
\lim _{n \rightarrow \infty} S_{n, q_{n}}(f ; x)=f(x), \quad \text { uniformly in } x \in J
$$

Proof. Replacing q by a sequence $\left(q_{n}\right)_{n}$ with the given conditions, the result follows from (3.4)-(3.6) and the well-known Bohman-Korovkin theorem (see [7], pp. 8-9).

4. Error of approximation

Let $\alpha \in \mathbb{N}$. We denote by $B_{\alpha}\left(\mathbb{R}_{+}\right)$the weighted space of real-valued functions f defined on \mathbb{R}_{+}with the property $|f(x)| \leq M_{f}\left(1+x^{\alpha}\right)$ for all $x \in \mathbb{R}_{+}$, where M_{f} is a constant depending on the function f. We also consider the weighted subspace $C_{\alpha}\left(\mathbb{R}_{+}\right)$of $B_{\alpha}\left(\mathbb{R}_{+}\right)$given by

$$
C_{\alpha}\left(\mathbb{R}_{+}\right):=\left\{f \in B_{\alpha}\left(\mathbb{R}_{+}\right): f \text { continuous on } \mathbb{R}_{+}\right\} .
$$

Endowed with the norm $\|\cdot\|_{\alpha}$, where $\|f\|_{\alpha}:=\sup _{x \in \mathbb{R}_{+}} \frac{|f(x)|}{1+x^{\alpha}}$, both $B_{\alpha}\left(\mathbb{R}_{+}\right)$ and $C_{\alpha}\left(\mathbb{R}_{+}\right)$are Banach spaces.

We can give estimates of the error $\left|S_{n, q}(f ; \cdot)-f\right|, n \in \mathbb{N}$, for unbounded functions by using a weighted modulus of smoothness associated to the space $B_{\alpha}\left(\mathbb{R}_{+}\right)$.

We consider

$$
\begin{equation*}
\Omega_{\alpha}(f ; \delta):=\sup _{\substack{x \geq 0 \\ 0<h \leq \delta}} \frac{|f(x+h)-f(x)|}{1+(x+h)^{\alpha}}, \delta>0, \alpha \in \mathbb{N} \tag{4.1}
\end{equation*}
$$

It is evident that for each $f \in B_{\alpha}\left(\mathbb{R}_{+}\right), \Omega_{\alpha}(f ; \cdot)$ is well defined and

$$
\Omega_{\alpha}(f ; \delta) \leq 2\|f\|_{\alpha}, \delta>0, \quad f \in B_{\alpha}\left(\mathbb{R}_{+}\right), \alpha \in \mathbb{N}
$$

The weighted modulus of smoothness $\Omega_{\alpha}(f ; \cdot)$ possesses the following properties ([8]).

$$
\begin{align*}
& \Omega_{\alpha}(f ; \lambda \delta) \leq(\lambda+1) \Omega_{\alpha}(f ; \delta), \quad \delta>0, \lambda>0 \tag{4.2}\\
& \Omega_{\alpha}(f ; n \delta) \leq n \Omega_{\alpha}(f ; \delta), \quad \delta>0, n \in \mathbb{N} \\
& \lim _{\delta \rightarrow 0^{+}} \Omega_{\alpha}(f ; \delta)=0
\end{align*}
$$

Theorem 4.1. Let $\left(q_{n}\right)_{n}$ be a sequence satisfying (3.10). Let $q_{0}=\inf _{n \in \mathbb{N}} q_{n}$ and $\alpha \in \mathbb{N}$. For each $n \in \mathbb{N}$ and every $f \in B_{\alpha}\left(\mathbb{R}_{+}\right)$one has

$$
\begin{equation*}
\left|S_{n, q_{n}}(f ; x)-f(x)\right| \leq C_{\alpha, q_{0}}\left(1+x^{\alpha+1}\right) \Omega_{\alpha}\left(f ; \sqrt{1 /[n]_{q_{n}}}\right), \quad x \geq 0 \tag{4.3}
\end{equation*}
$$

where $C_{\alpha, q_{0}}$ is a positive constant independent of f and n.
Proof. Let $n \in \mathbb{N}, f \in B_{\alpha}\left(\mathbb{R}_{+}\right)$and $x \geq 0$ be fixed. Setting $\mu_{x, \alpha}(t):=$ $1+(x+|t-x|)^{\alpha}$ and $\psi_{x}(t):=|t-x|, \quad t \geq 0$, relations (4.1) and (4.2) imply

$$
\begin{aligned}
|f(t)-f(x)| & \leq\left(1+(x+|t-x|)^{\alpha}\right)\left(1+\frac{1}{\delta}|t-x|\right) \Omega_{\alpha}(f ; \delta) \\
& =\mu_{x, \alpha}(t)\left(1+\frac{1}{\delta} \psi_{x}(t)\right) \Omega_{\alpha}(f ; \delta), \quad t \geq 0
\end{aligned}
$$

By using the Cauchy inequality for linear positive operators which preserve the constants, we obtain

$$
\begin{align*}
\left|S_{n, q_{n}}(f ; x)-f(x)\right| & \leq S_{n, q_{n}}(|f-f(x)| ; x) \tag{4.4}\\
& \leq\left(S_{n, q_{n}}\left(\mu_{x, \alpha} ; x\right)+\frac{1}{\delta} S_{n, q_{n}}\left(\mu_{x, \alpha} \psi_{x} ; x\right)\right) \Omega_{\alpha}(f ; \delta) \\
& \leq \sqrt{S_{n, q_{n}}\left(\mu_{x, \alpha}^{2} ; x\right)}\left(1+\frac{1}{\delta} \sqrt{S_{n, q_{n}}\left(\psi_{x}^{2} ; x\right)}\right) \Omega_{\alpha}(f ; \delta) .
\end{align*}
$$

Since

$$
\begin{aligned}
\mu_{x, \alpha}^{2}(t) & =\left(1+(x+|t-x|)^{\alpha}\right)^{2} \leq 2\left(1+(2 x+t)^{2 \alpha}\right) \\
& \leq 2\left(1+2^{2 \alpha}\left((2 x)^{2 \alpha}+t^{2 \alpha}\right)\right)
\end{aligned}
$$

and taking into account (3.4) and (3.8) we get

$$
\begin{equation*}
S_{n, q_{n}}\left(\mu_{x, \alpha}^{2} ; x\right) \leq B_{\alpha, q_{n}}^{2}\left(1+x^{2 \alpha}\right), \tag{4.5}
\end{equation*}
$$

where $B_{\alpha, q_{n}}^{2}=2^{\alpha+1}\left(2^{2 \alpha}+A_{2 \alpha, q_{n}}\right)$.
According to (3.4)-(3.6) we have $S_{n, q_{n}}\left(\psi_{x}^{2} ; x\right)=\frac{1}{[n]_{q_{n}}} x$.
By choosing $\delta:=\sqrt{\frac{1}{[n]_{q_{n}}}}$ in (4.3), from (4.5) follows

$$
\left|S_{n, q_{n}}(f ; x)-f(x)\right| \leq B_{\alpha, q_{n}} \sqrt{1+x^{2 \alpha}}(1+\sqrt{x}) \Omega_{\alpha}\left(f ; \sqrt{\frac{1}{[n]_{q_{n}}}}\right)
$$

Finally, since $1+\sqrt{x} \leq \sqrt{2} \sqrt{1+x}$ and $\left(1+x^{2 \alpha}\right)(1+x) \leq 4\left(1+x^{\alpha+1}\right)$ for $x \geq 0$ and $\alpha \in \mathbb{N}$, we obtain

$$
\left|S_{n, q_{n}}(f ; x)-f(x)\right| \leq C_{\alpha, q_{0}}\left(1+x^{\alpha+1}\right) \Omega_{\alpha}\left(f ; \sqrt{1 /[n]_{q_{n}}}\right), \quad x \geq 0
$$

where $q_{0}:=\inf _{n \in \mathbb{N}} q_{n}$ and $C_{\alpha, q_{0}}:=2 \sqrt{2} B_{\alpha, q_{0}}$.
On the basis of Theorem 4.1 we give the following global estimate.
Corollary 4.2. Let $\left(q_{n}\right)_{n}$ be a sequence satisfying (3.10) and $\alpha \in \mathbb{N}$. For each $n \in \mathbb{N}$ and every $f \in B_{\alpha}\left(\mathbb{R}_{+}\right)$one has

$$
\left\|S_{n, q_{n}}(f ; \cdot)-f\right\|_{\alpha+1} \leq C_{\alpha, q_{0}} \Omega_{\alpha}\left(f ; \sqrt{1 /[n]_{q_{n}}}\right)
$$

where $C_{\alpha, q_{0}}$ is a positive constant independent of f and n.
Remark 4.3. For any function $f \in B_{\alpha}\left(\mathbb{R}_{+}\right), \alpha \in \mathbb{N}$, the rate of convergence of the operators $S_{n, q_{n}}(f ; \cdot)$ to f in weighted norm is $\sqrt{\frac{1}{[n]_{q_{n}}}}$ which is faster than $\sqrt{\frac{b_{n}}{[n] q_{n}}}$ obtained in [2].

References

[1] Agratini, O., On certain q-analogues of the Bernstein operators, Carpathian J. Math., 24(2008), no. 3, 281-286.
[2] Aral, A., A generalization of Szász-Mirakjan operators based on q-integers, Math. Comput. Model., 47(2008), 1052-1062.
[3] Bărbosu, D., Some generalized bivariate Bernstein operators, Math. Notes (Miskolc), 1(2000), 3-10.
[4] Ernst, T., The history of q-calculus and a new method, U.U.D.M. Report 2000, 16, Uppsala, Department of Mathematics, Uppsala University, 2000.
[5] Ivan, M., Elements of Interpolation Theory, Mediamira Science Publisher, Cluj-Napoca, 2004.
[6] Kac, V., Cheung, P., Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
[7] Lorentz, G. G., Bernstein Polynomials, Math. Expo. Vol. 8, Univ. of Toronto Press, Toronto, 1953.
[8] López-Moreno, A.-J., Weighted silmultaneous approximation with Baskakov type operators, Acta Mathematica Hungarica, 104(2004), 143-151.
[9] Lupaş, A., A q-analogue of the Bernstein operator, Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca, 9(1987), 85-92.
[10] Ostrovska, S., On the Lupas q-analogue of the Bernstein operator, Rocky Mountain Journal of Mathematics, 36(2006), 1615-1629.
[11] Ostrovska, S., On the improvement of analytic properties under the limit q Bernstein operator, J. Approx. Theory, 138(2006), 37-53.
[12] Ostrovska, S., The first decade of the q-Bernstein polynomials :results and perspectives, J. Math. Anal. Approx. Theory, 2 (2007), 35-51.
[13] Phillips, G.M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4(1997), 511-518.

Cristina Radu
Schuller Eh Klar,
47, Calea Baciului, 400230 Cluj-Napoca,
Romania
e-mail: radu.cristina@schuller.ro
Saddika Tarabie
Tishrin University, Faculty of Sciences
1267 Latakia,
Syria
e-mail: sadikatorbey@yahoo.com
Andreea Vețeleanu
"Babeş-Bolyai" University,
Faculty of Mathematics and Computer Sciences
1, Kogălniceanu Street,
400084 Cluj-Napoca,
Romania
e-mail: andreeav@math.ubbcluj.ro

