Note on q-Bernstein-Schurer operators

Carmen-Violeta Muraru

Abstract

In this paper, we introduce a generalization of the BernsteinSchurer operators based on q-integers and get a Bohman-Korovkin type approximation theorem of these operators. We also compute the rate of convergence by using the first modulus of smoothness.

Mathematics Subject Classification (2010): 41A36.
Keywords: q-integers, positive linear operator, Bernstein operator, modulus of continuity.

1. Preliminaries

Lupaş [18] introduced in 1987 a q-type of the Bernstein operators and in 1997 another generalization of these operators based on q-integers was introduced by Phillips [20]. He obtained the rate of convergence and a Voronovskaja type asymptotic formula for the new Bernstein operators. After this, many authors studied new classes of q-generalized operators. To show the extend of this research direction, we mention in the following some achievements in this field. In [5] Bărbosu introduced a Stancu type generalization of two dimensional Bernstein operators based on q-integers. In [1] O. Agratini introduced a new class of q-Bernstein-type operators which fix certain polynomials and studied the limit of iterates of Lupaş q-analogue of the Bernstein operators. In [4] Aral and Doğru obtained the uniform approximation of q-Bleimann-Butzer-Hahn (BBH) operators and in [9] O. Doğru and V. Gupta studied the monotonicity properties and the Voronovskaja type asymptotic estimate of these operators. See also the recent paper [2].
T. Trif [21] investigated Meyer-König and Zeller (MKZ) operators based on q-integers. Some approximation properties of q-MKZ operators were investigated by W. Heping in [16]. O. Doğru and O. Duman introduced also a new generalization of Meyer-König and Zeller operators and studied some statistical approximation properties in [7]. O. Doğru and Gupta [8] constructed a q-type generalization of Meyer-König and Zeller operators in bivariate case. A new q-generalization of Meyer-König and Zeller type operators was constructed by Doğru and Muraru for improve the rate of convergence, see [10].
O. Doğru and M. Orkcu proved in [11] that a new modification of q-MKZ operators provides a better estimation on the $\left[\alpha_{n}, 1\right] \subset[1 / 2,1)$ by means of the modulus of continuity.

An extension in q-Calculus of Szász-Mirakyan operators was constructed by Aral [3] who formulated also a Voronovskaya theorem related to qderivatives for these operators.

Durrmeyer type generalization of the operators based on q-integers was studied by Derriennic in [6]. Gupta and Heping introduced a q-analoque of Bernstein-Durrmeyer operators in [13] and in 2009 Gupta and Finta [14] studied some local and global approximation properties for q-Durrmeyer operators. See also [12]. In [15] Gupta and Radu constructed a q-analoque of Baskakov-Kantorovich operators and investigated their weighted statistical approximation properties. Also, N. Mahmudov introduced in [19] new classes of q-Baskakov and q-Baskakov-Kantorovich operators.

First of all, we recall elements of q-Calculus, see, e.g., [17]. For any fixed real number $q>0$, the q-integer $[k]_{q}$, for $k \in \mathbb{N}$ is defined as

$$
[k]_{q}= \begin{cases}\left(1-q^{k}\right) /(1-q), & q \neq 1 \\ k, & q=1\end{cases}
$$

Set $[0]_{q}=0$. The q-factorial $[k]_{q}$! and q-binomial coefficients $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ are defined as follows

$$
\begin{gathered}
{[k]_{q}!= \begin{cases}{[k]_{q}[k-1]_{q} \ldots[1]_{q},} & k=1,2, \ldots, \\
1, & k=0,\end{cases} } \\
{\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} \quad(0 \leq k \leq n) .}
\end{gathered}
$$

The q-analogue of $(x-a)^{n}$ is the polynomial

$$
(x-a)_{q}^{n}= \begin{cases}1 & \text { if } \quad n=0 \\ (x-a)(x-q a) \ldots\left(x-q^{n-1} a\right) & \text { if } \quad n \geq 1\end{cases}
$$

$C([a, b])$ represents the space of all real valued continuous functions defined on $[a, b]$. The space is endowed with usual norm $\|\cdot\|$ given by

$$
\|f\|=\sup _{x \in[a, b]}|f(x)|
$$

Let $p \in \mathbb{N}$ be fixed. In 1962 Schurer [22] introduced and studied the operators $\widetilde{B}_{m, p}: C([0, p+1]) \rightarrow C([0,1])$ defined for any $m \in \mathbb{N}$ and any function $f \in C([0, p+1])$ as follows

$$
\widetilde{B}_{m, p}(f ; x)=\sum_{k=0}^{m+p}\binom{m+p}{k} x^{k}(1-x)^{m+p-k} f\left(\frac{k}{m}\right), \quad x \in[0,1] .
$$

Our aim is to introduce a q-analogue of the above operators. We investigate the approximation properties of this class and we estimate the rate of convergence by using modulus of continuity.

2. Construction of generalized q-Bernstein-Schurer and approximation properties

Throughout the paper we consider $q \in(0,1)$.
For any $m \in \mathbb{N}$ and $f \in C([0, p+1]), p$ is fixed, we construct the class of generalized q -Bernstein-Schurer operators as follows

$$
\widetilde{B}_{m, p}(f ; q ; x)=\sum_{k=0}^{m+p}\left[\begin{array}{c}
m+p \tag{2.1}\\
k
\end{array}\right]_{q} x^{k} \prod_{s=0}^{m+p-k-1}\left(1-q^{s} x\right) f\left(\frac{[k]_{q}}{[m]_{q}}\right), x \in[0,1] .
$$

From here on, an empty product is taken to be equal 1. Clearly, the operator defined by (2.1) is linear and positive.

Lemma 2.1. Let $B_{m, p}(\cdot ; q ; \cdot)$ be given by (2.1). The following identities
$1^{\circ} \widetilde{B}_{m, p}\left(e_{0} ; q ; x\right)=1$,
$2^{\circ} \widetilde{B}_{m, p}\left(e_{1} ; q ; x\right)=\frac{x[m+p]_{q}}{[m]_{q}}$,
$3^{\circ} \widetilde{B}_{m, p}\left(e_{2} ; q ; x\right)=\frac{[m+p]_{q}}{[m]_{q}^{2}}\left([m+p]_{q} x^{2}+x(1-x)\right)$
hold, where $e_{j}(x)=x^{j}, j=0,1,2$.
Proof. 1° We use the known identity

$$
\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{k}(1-x)_{q}^{n-k}=1
$$

which can be proved by induction with respect to n. Actually, the left hand side represents $\left(B_{n, q} e_{0}\right)(x)$ where $B_{n, q}$ is the q -analogue of Bernstein operator introduced by G. M. Phillips [20]. Phillips proved $B_{n, q} e_{0}=e_{0}$.

In the above we choose $n:=m+p$.
Since

$$
(1-x)_{q}^{m+p-k}=\prod_{s=0}^{m+p-k-1}\left(1-q^{s} x\right)
$$

we get

$$
\sum_{k=0}^{m+p}\left[\begin{array}{c}
m+p \\
k
\end{array}\right]_{q} x^{k} \prod_{s=0}^{m+p-k-1}\left(1-q^{s} x\right)=1 .
$$

Consequently, we obtain $\widetilde{B}_{m, p}\left(e_{0} ; q ; x\right)=1$.

$$
\begin{gathered}
2^{\circ} \widetilde{B}_{m, p}\left(e_{1} ; q ; x\right)=\sum_{k=1}^{m+p}\left[\begin{array}{c}
m+p \\
k
\end{array}\right]_{q} x^{k} \prod_{s=0}^{m+p-k-1}\left(1-q^{s} x\right) \frac{[k]_{q}}{[m]_{q}} \\
\stackrel{k \rightarrow k+1}{=} x \cdot \frac{[m+p]_{q}}{[m]_{q}} \sum_{k=0}^{m+p-1} \frac{[m+p-1]_{q}!}{[k]![m+p-k-1]_{q}!} x^{k} \prod_{s=0}^{m+p-k-2}\left(1-q^{s} x\right) \\
=x \cdot \frac{[m+p]_{q}}{[m]_{q}} .
\end{gathered}
$$

$$
\begin{aligned}
3^{\circ} & \widetilde{B}_{m, p}\left(e_{2} ; q ; x\right)=\sum_{k=1}^{m+p}\left[\begin{array}{c}
m+p \\
k
\end{array}\right]_{q} x^{k} \prod_{s=0}^{m+p-k-1}\left(1-q^{s} x\right) \frac{[k]_{q}^{2}}{[m]_{q}^{2}} \\
& =\sum_{k=1}^{m+p} \frac{[k]_{q}}{[m]_{q}} \cdot \frac{[k]_{q}}{[m]_{q}} \cdot \frac{[m+p]_{q}!}{[m+p-k]_{q}![k]_{q}!} \cdot x^{k} \prod_{s=0}^{m+p-k-1}\left(1-q^{s} x\right) .
\end{aligned}
$$

Taking into account that $[k]_{q}=q[k-1]_{q}+1$, we obtain

$$
\begin{aligned}
\widetilde{B}_{m, p}\left(e_{2} ; q ; x\right) & =\frac{[m+p]_{q}}{[m]_{q}^{2}} \sum_{k=2}^{m+p} \frac{q[k-1]_{q}[m+p-1]_{q}!}{[k-1]_{q}![m+p-k]_{q}!} x^{k} \prod_{s=0}^{m+p-k-1}\left(1-q^{s} x\right) \\
& +\frac{[m+p]_{q}}{[m]_{q}^{2}} \sum_{k=1}^{m+p} \frac{[m+p-1]_{q}!}{[k-1]_{q}![m+p-k]_{q}!} x^{k} \prod_{s=0}^{m+p-k-1}\left(1-q^{s} x\right) .
\end{aligned}
$$

Replacing $k \rightarrow k+2$ in first sum and $k \rightarrow k+1$ in the second, we have

$$
\begin{aligned}
\widetilde{B}_{m, p}\left(e_{2} ; q ; x\right) & =\frac{[m+p-1]_{q}[m+p]_{q}}{[m]_{q}^{2}} q \sum_{k=0}^{m+p-2} \frac{[m+p-2]_{q}!}{[k]_{q}![m+p-k-2]_{q}} \\
& \cdot x^{k+2} \prod_{s=0}^{m+p-k-3}\left(1-q^{s} x\right) \\
& +\frac{[m+p]_{q}}{[m]_{q}^{2}} \sum_{k=0}^{m+p-1} \frac{[m+p-1]_{q}!}{[k]_{q}![m+p-k-1]_{q}} x^{k+1} \prod_{s=0}^{m+p-k-2}\left(1-q^{s} x\right) \\
& =\frac{[m+p-1]_{q}[m+p]_{q}}{[m]_{q}^{2}} q x^{2}+\frac{[m+p]_{q}}{[m]_{q}^{2}} x .
\end{aligned}
$$

Since $[m+p-1]_{q} q x^{2}+x=[m+p]_{q} x^{2}+x(1-x)$, the conclusion follows.
We can give now the following result, a theorem of Korovkin type.
Theorem 2.2. Let $q=q_{m}$ satisfy $0<q_{m}<1, \lim _{m \rightarrow \infty} q_{m}=1$ and $\lim _{m \rightarrow \infty} q_{m}^{m}=a$, $a<1$. Then, for any $f \in C([0, p+1])$, the following relation holds

$$
\lim _{m \rightarrow \infty} \widetilde{B}_{m, p}\left(f ; q_{m}\right)=f \text { uniformly on }[0,1] .
$$

Proof. The proof is based on the well known Korovkin theorem regarding the convergence of a sequence of linear and positive operators. So, it is enough to prove the conditions

$$
\lim _{m \rightarrow \infty} \widetilde{B}_{m, p}\left(e_{i} ; q_{m} ; x\right)=x^{i}, \quad i=0,1,2
$$

uniformly on $[0,1]$.
To prove the theorem we take into account the next relations obtained by simple calculations, where p is a fixed natural number.

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{[m+p]_{q_{m}}}{[m]_{q_{m}}}=1, \quad \lim _{m \rightarrow \infty} \frac{[m+p]_{q_{m}}}{[m]_{q_{m}}^{2}}=0 \tag{2.2}
\end{equation*}
$$

Taking into account Lemma 2.1 and the relations (2.2), our statement is proved.

3. On the rate of convergence

We will estimate the rate of convergence in terms of the modulus of continuity. Let $f \in C([0, b])$. The modulus of continuity of f denoted by $\omega_{f}(\delta)$ gives the maximum oscillation of f in any interval of length not exceeding $\delta>0$ and it is given by relation

$$
\omega_{f}(\delta)=\sup _{|y-x| \leq \delta}|f(y)-f(x)|, \quad x, y \in[0, b] .
$$

It is known that $\lim _{\delta \rightarrow 0^{+}} \omega_{f}(\delta)=0$ for $f \in C([0, b])$, and for any $\delta>0$ one has

$$
\begin{equation*}
|f(y)-f(x)| \leq \omega_{f}(\delta)\left(\frac{|y-x|}{\delta}+1\right) \tag{3.1}
\end{equation*}
$$

Our result will be read as follows.
Theorem 3.1. If $f \in C([0,1+p])$, then

$$
\left|\widetilde{B}_{m, p}(f ; q ; x)-f(x)\right| \leq 2 \omega_{f}\left(\delta_{m}\right)
$$

takes place, where

$$
\begin{equation*}
\delta_{m}=\frac{1}{\sqrt{[m]_{q}}}\left(p+\frac{1}{2 \sqrt{1-q^{m}}}\right), \quad q \in(0,1) \tag{3.2}
\end{equation*}
$$

Proof. Since $B_{m, p} e_{0}=e_{0}$, we have

$$
\begin{gathered}
\left|\widetilde{B}_{m, p}(f ; q ; x)-f(x)\right| \\
\leq \sum_{k=0}^{m+p}\left|f\left(\frac{[k]_{q}}{[m]_{q}}\right)-f(x)\right| \frac{[m+p]_{q}!}{[m+p-k]_{q}![k]_{q}!} x^{k} \prod_{s=0}^{m+p-k-1}\left(1-q^{s} x\right) .
\end{gathered}
$$

In view of (3.1) we get

$$
\begin{gathered}
\leq \widetilde{B}_{m, p}(f ; q ; x)-f(x) \mid \\
\leq \omega_{f}(\delta)\left\{\frac{1}{\delta} \sum_{k=0}^{m+p}\left|\frac{[k]_{q}}{[m]_{q}}-x\right| \frac{[m+p]_{q}!}{[m+p-k]_{q}![k]_{q}!} x^{k} \prod_{s=0}^{m+p-k}\left(1-q^{s} x\right)\right. \\
\left.+\sum_{k=0}^{m+p} \frac{[m+p]_{q}!}{[m+p-k]_{q}![k]_{q}!} x^{k} \prod_{s=0}^{m+p-k}\left(1-q^{s} x\right)\right\} \\
=\omega_{f}(\delta)\left\{\frac{1}{\delta} \sum_{k=0}^{m+p}\left|\frac{[k]_{q}}{[m]_{q}}-x\right| \frac{[m+p]_{q}!}{[m+p-k]_{q}![k]_{q}!} x^{k} \prod_{s=0}^{m+p-k}\left(1-q^{s} x\right)+\left(\widetilde{B}_{m, p, q} e_{0}\right)(x)\right\} .
\end{gathered}
$$

Using Cauchy-Schwartz inequality and Lemma 2.1 we can write

$$
\begin{aligned}
& \left|\widetilde{B}_{m, p}(f ; q ; x)-f(x)\right| \\
& \leq \omega_{f}(\delta)\left\{\frac{1}{\delta}\left(\sum_{k=0}^{m+p}\left(\frac{[k]_{q}}{[m]_{q}}-x\right)^{2} \frac{[m+p]_{q}!}{[m+p-k]_{q}![k]_{q}!} x^{k} \prod_{s=0}^{m+p-k}\left(1-q^{s} x\right)\right)^{1 / 2}+1\right\} \\
& =\omega_{f}(\delta)\left\{\frac{1}{\delta}\left(\left(\widetilde{B}_{m, p, q} e_{2}\right)(x)-2 x\left(\widetilde{B}_{m, p, q} e_{1}\right)(x)+x^{2}\left(\widetilde{B}_{m, p, q} e_{0}\right)(x)\right)^{1 / 2}+1\right\}
\end{aligned}
$$

$$
\begin{gathered}
=\omega_{f}(\delta)\left\{\frac{1}{\delta}\left(\frac{[m+p]_{q}}{[m]_{q}^{2}}\left([m+p]_{q} x^{2}+x(1-x)\right)-2 x^{2} \frac{[m+p]_{q}}{[m]_{q}}+x^{2}\right)^{1 / 2}+1\right\} \\
=\omega_{f}(\delta)\left\{\frac{1}{\delta}\left(x^{2}\left(\frac{[m+p]_{q}}{[m]_{q}}-1\right)^{2}+x(1-x) \frac{[m+p]_{q}}{[m]_{q}^{2}}\right)^{1 / 2}+1\right\}
\end{gathered}
$$

On the basis of the relation $\left(a^{2}+b^{2}\right)^{1 / 2} \leq|a|+|b|$, the above inequality implies

$$
\begin{gather*}
\left|\widetilde{B}_{m, p}(f ; q ; x)-f(x)\right| \\
\leq \omega_{f}(\delta)\left\{\frac{1}{\delta}\left(x\left|\frac{[m+p]_{q}}{[m]_{q}}-1\right|+\sqrt{\frac{x(1-x)}{[m]_{q}}} \sqrt{\frac{[m+p]_{q}}{[m]_{q}}}\right)+1\right\} \tag{3.3}
\end{gather*}
$$

Since

$$
x\left|\frac{[m+p]_{q}}{[m]_{q}}-1\right| \leq \frac{p}{\sqrt{[m]_{q}}}, \quad \sqrt{\frac{[m+p]_{q}}{[m]_{q}}} \leq \frac{1}{\sqrt{1-q^{m}}}
$$

and $\max _{x \in[0,1]} x(1-x)=1 / 4$, choosing $\delta=\delta_{m}$ as in (3.2), we obtain the desired result.

References

[1] Agratini, O., On certain q-analogues of the Bernstein operators, Carpathian J. Math., 24 (2008), no. 3, 281-286.
[2] Agratini, O., Nowak, G., On a generalization of Bleimann, Butzer and Hahn operators based on q-integers, Mathematical and Computer Modelling, 53(2011), no. 5-6, 699-706.
[3] Aral, A., A generalization of Szász-Mirakyan operators based on q-integers, Mathematical and Computer Modelling, 47(2008), 1052-1062.
[4] Aral, A., Doğru, O., Bleimann, Butzer, and Hahn Operators Based on the qIntegers, J. Inequal. Appl., vol. 2007, Art. ID 79410, 12 pp.
[5] Bărbosu, D., Some generalized bivariate Bernstein operators, Math. Notes, Miskolc, 1(2000), 3-10.
[6] Derriennic, M.M., Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rend. Mat. Palermo, 76(2005), 269-290.
[7] Doğru, O., Duman, O., Statistical approximation of Meyer-König and Zeller operators based on q-integers, Publ. Math. Debrecen, 68(2006), 199-214.
[8] Doğru, O., Gupta, V., Korovkin-type approximation properties of bivariate q -Meyer-Konig and Zeller operators, Calcolo, 43(2006), 51-63.
[9] Doğru, O., Gupta, V, Monotonicity and the asymptotic estimate of BleimannButzer and Hann operators based on q-integers, J. Inequal. Appl., 2007, 1-12.
[10] Doğru, O., Muraru, C. V., Statistical approximations by a Stancu type bivariate generalization of Meyer-König and Zeller type operators, Mathematical and Computer Modelling, 48(2008), no. 5-6, 961-968.
[11] Doğru, O., Orkcu, M., Statistical approximation by a modification of q-Meyer-Konig-Zeller operators, Applied Mathematics Letters, 23(2010), 261-266.
[12] Gupta, V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., 197(2008), 172-178.
[13] Gupta, V., Heping, W., The rate of convergence of q-Durrmeyer operators for $0<q<1$, Math. Methods Appl. Sci., 31(16)(2008), 1946-1955.
[14] Gupta, V., Finta, Z., On certain q-Durrmeyer operators, Appl. Math. Comput., 209(2009), 415-420.
[15] Gupta, V., Radu, C., Statistical approximation properties of q-BaskakovKantorovich operators, Cent. Eur. J. Math., 7(2009), no. 4, 809-818.
[16] Heping, W., Properties of convergence for q-Meyer-Konig and Zeller operators, J. Math. Anal. Appl., 335(2007), 1360-1373.
[17] Kac, V., Cheung, P., Quantum Calculus, Universitext, Springer, 2002.
[18] Lupaş, A., A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, Preprint 9(1987), 85-92.
[19] Mahmudov, N., Statistical approximation of Baskakov and Baskakov-Kantorovich operators based on the q-integers, Cent. Eur. J. Math., 8(4)(2010), 816826.
[20] Philips, G. M., On generalized Bernstein polynomials, in D. F. Griffits, G. A. Watson (Eds.), 1996, 263-269.
[21] Trif, T., Meyer-König and Zeller operators based on q-integers, Rev. Anal. Numer. Theor. Approx., 29(2000), 221-229.
[22] Schurer, F., Linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft Report, 1962.

Carmen-Violeta Muraru
University "Vasile Alecsandri" of Bacău
Department of Mathematics and Informatics
e-mail: carmen_7419@yahoo.com, cmuraru@ub.ro

