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Abstract. This paper is devoted to obtain estimates and to point out
convergence-type results and the superdense unbounded divergence for
some pointwise approximation formulas, related to the Chebyshev best
approximation on Jacobi node matrix.
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1. Introduction

Denote by C the Banach space of all continuous functions f : [−1, 1] → R,
endowed with the uniform norm and let Cr, r ≥ 1, be the subspace of C
which contains the functions f whose derivatives up to the order r belong to
C; we admit C0 = C.

Let us consider, also, a strictly increasing sequence of positive integers
mn, with mn ≥ n + 1, ∀ n ≥ 1, and the node matrix

M = {xk
mn

: n ≥ 1, 1 ≤ k ≤ mn}, (1.1)

where −1 ≤ x1
mn

< x2
mn

< x3
mn

< . . . < xmn
mn

≤ 1.
Define the operators Un : C → Pn, n ≥ 1, as follows: for each f in C,

let Unf be the unique polynomial of Pn for which the infimum of the set

{max{|f(xk
mn

)− P (xk
mn

)| : 1 ≤ k ≤ mn} : P ∈ Pn} (1.2)

is attained, [1], [4]; in this paper, Pn is the usual notation for the set of all
algebraic polynomials of degree at most n ∈ N.

The polynomial Unf = Un(f ;M) ∈ Pn, that provides the best approx-
imation of f in the Chebyshev sense, with respect to the finite point set

Jn = {xk
mn

: 1 ≤ k ≤ mn}, n ≥ 1, (1.3)
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is said to be the M-projection of f on the space Pn.
We associate to each row Jn, n ≥ 1, and f ∈ C, the Lagrange polynomial

Lmn
f which interpolates f at the nodes of Jn, namely

(Lmn
f)(x) =

mn∑
k=1

f(xk
mn

)lkmn
(x), x ∈ [−1, 1], (1.4)

and the Lebesgue function Λmn : [−1, 1] → [0,∞),

Λmn(x) =
mn∑
k=1

|lkmn
(x)|, x ∈ [−1, 1], (1.5)

where

lkmn
(x) =

umn
(x)

(x− xk
mn

)u′mn
(xk

mn
)
, 1 ≤ k ≤ mn; umn

(x) =
mn∏
k=1

(x−xk
mn

), n ≥ 1.

(1.6)
Clearly, if mn = n + 1, n ≥ 1, then the operators Un coincide with the

classical Lagrange projection operators, f 7→ Lmn
f .

On the other hand, assuming that each row Jn of M contains exactly
n + 2 points, i.e. mn = n + 2, ∀ n ≥ 1, Ph. C. Curtis Jr., [4], has proved
that the corresponding M-projection operators Un, n ≥ 1, are linear and
continuous operators and there exists a function g ∈ C for which the sequence
(Ung)n≥1 fails to converge uniformly on [−1, 1]. As we proved in [5], the set
of all functions f ∈ C with the property that lim sup

n→∞
‖Unf‖ = ∞ is, in fact,

a superdense set in the Banach space (C, ‖ · ‖); this superdense unbounded
divergence remains valid if mn = n + 3 and the nodes of Jn are symmetric
with respect to the origin, ∀ n ≥ 1, [6]. We recall that a subset S of a
topological space T is said to be superdense in T if it is residual (i.e. its
complement is of first Baire category), uncountable and dense in T . These
results of divergence type contrast with the well-known theorem concerning
the uniform convergence of the best approximation polynomials in supremum
norm, which states that the operators Qn : C → Pn, defined by ‖f−Qnf‖ =
inf{‖f −P‖ : P ∈ Pn}, f ∈ C, are continuous nonlinear projections and the
sequence (Qnf)n≥1 is uniformly convergent to f , for each f ∈ C.

In the next sections, we consider the case mn = n + 2, n ≥ 1. Our aim
is to point out estimates, results of convergence type and the phenomenon
of condensation of singularities for some pointwise approximation formulas
associated to the Chebyshev best approximation on the Jacobi node matrix.

The paper is organized as follows. In the second section, we introduce
the point-functionals that define the pointwise approximation formulas for
an arbitrary node matrix M in (1.1) and we derive an estimate of the corre-
sponding approximation error. In the third and fourth sections we establish
results of convergence type and we prove the superdense unbounded diver-
gence, respectively, for the pointwise approximation formulas corresponding
to the Jacobi matrix. To this goal, we use the following principle of conden-
sation of singularities from Functional Analysis.
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Theorem 1.1. [2], [3]. If X is a Banach space, Y is a normed space and
(An)n≥1 is a sequence of continuous linear operators from X into Y so that
the set of norms {‖An‖ : n ≥ 1} is unbounded, then the set of singularities
of the family {An : n ≥ 1}, namely

S =
{

x ∈ X : lim sup
n→∞

‖Anx‖ = ∞
}

,

is superdense in X.

In this paper, the notations m, M , Mk, k ≥ 1, stand for some generic
positive constants, which do not depend on n. If (an) and (bn) are sequences
of real numbers with bn 6= 0, we write an ∼ bn if 0 < m ≤ |an/bn| ≤ M ,
for all n ≥ 1. Also, ω(f ; ·) denotes the modulus of continuity of a function
f ∈ C.

2. Estimates for pointwise approximation formulas

Firstly, let us derive, according to [4], the formula of computing Unf , for
a given n ≥ 1. Let σn+2 ∈ C be a function satisfying the conditions
σn+2(xk

n+2) = (−1)k, 1 ≤ k ≤ n + 2. By means of Theorem of Charles
de la Vallée-Poussin, [1], [8], and taking into account (1.2), we get:

Unf = Ln+2f −
an+1(f)

an+1(σn+2)
Ln+2σn+2; f ∈ C, n ≥ 1, (2.1)

where an+1(f) is the leading-coefficient of Ln+2f .
Further, by introducing the notation

τk
n+2 = (u′n+2(x

k
n+2))

−1, 1 ≤ k ≤ n + 2, (2.2)

and remarking that signτk
n+2 = (−1)n−k, 1 ≤ k ≤ n + 2, we have:

an+1(f) =
n+2∑
k=1

τk
n+2f(xk

n+2) (2.3)

and

an+1(σn+2) = (−1)n+2
n+2∑
k=1

|τk
n+2|. (2.4)

The relations (2.1), (1.4) and the definition of σn+2 lead to:

(Unf)(x) =
n+2∑
k=1

dk
n+2(f)lkn+2(x); f ∈ C, |x| ≤ 1, n ≥ 1, (2.5)

where the linear functionals dk
n+2 : C → R, are given by:

dk
n+2(f) = f(xk

n+2) + (−1)k+1 an+1(f)
an+1(σn+2)

, 1 ≤ k ≤ n + 2. (2.6)
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The relations (2.3) and (2.4) give |an+1(f)| ≤ |an+1(σn+2)| · ‖f‖ which,
combined with (2.5) and (2.6), yield |dk

n+2(f)| ≤ 2‖f‖, so:

|(Unf)(x)| ≤ 2Λn+2(x) · ‖f‖; f ∈ C, |x| ≤ 1, n ≥ 1. (2.7)

Now, for a given point t ∈ [−1, 1], let us define the point-functionals
T t

n : C → R by

T t
n(f) = (Unf)(t) =

n+2∑
k=1

dk
n+2(f) · lkn+2(t); f ∈ C, n ≥ 1 (2.8)

and let us consider the approximation-errors Rt
nf , of the pointwise approxi-

mation formulas

f(t) = T t
n(f) + Rt

n(f); f ∈ C, n ≥ 1, (2.9)

associated to the Chebyshev discrete best approximation on the nodes (1.3)
of Jn.

By using the relation UnP = P , ∀ P ∈ Pn, that follows from (2.1), we
obtain, taking into account (2.9):

|Rt
nf | = |Rt

n(f − P )| ≤ |f(t)− P (t)|+ |T t
n(f − P )|, f ∈ Pn.

The last inequality, combined with (2.7), leads to:

|Rt
nf | ≤ (1 + 2Λn+2(t)) · ‖f − P‖; f ∈ C, P ∈ Pn. (2.10)

Further, let f ∈ Cr, r ≥ 0. It follows from the inequality of Gopengauz,
[9], the existence of a polynomial P̃ ∈ Pn so that:

‖f − P̃‖ ≤ M1n
−rω

(
f (r);

1
n

)
; n ≥ 1, (2.11)

where M1 = M1(r).
We derive from (2.10) and (2.11):

|Rt
nf | ≤ M1n

−r(1 + 2Λn+2(t))ω
(

f (r);
1
n

)
; f ∈ Cr, n ≥ 1. (2.12)

Finally, (2.12) leads to the following statement.

Theorem 2.1. The pointwise approximation formulas (2.8) and (2.9), with
respect to an arbitrary point t ∈ [−1, 1], are convergent on Cr, r ≥ 0, i.e.

lim
n→∞

T t
n(f) = f(t), ∀ f ∈ Cr,

if the corresponding Lebesgue functions satisfy the condition

Λn+2(t) = O(nr).
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3. Results of convergence-type for pointwise Jacobi
approximation formulas

In this section and the next section, we take as node matrix M the Jacobi
ultraspherical matrix M(α), α > −1, whose n-th row contains the roots
of the Jacobi ultraspherical polynomial P

(α)
n+2, n ≥ 1. In this framework, the

formulas (2.8) and (2.9) will be refereed to as pointwise Jacobi approximation
formulas, associated to the Chebyshev discrete best approximation.

The following estimate is valid, [7]:

Λn(t)− 1 ∼ |P (α)
n (t)|

√
n · kn(α); n ≥ 2, t ∈ [−1, 1], (3.1)

with

kn(α) =



1 + (1− t)α/2+1/4 lnn, if α > −1/2

lnn, if α = −1/2

ln(2 + n
√

1− t)
(1− t)−α/2−1/4 + nα+1/2

, if α < −1/2.

(3.2)

It follows from (2.12), (3.1) and (3.2):

|Rt
nf | ≤ M2n

−r(1 + |P (α)
n+2(t)|

√
n + 2 kn+2(α))ω

(
f (r);

1
n

)
; (3.3)

f ∈ Cr, n ≥ 2, t ∈ [−1, 1].

3.1. First case

Suppose that t ∈ (−1, 1). The following statement holds.

Theorem 3.1. Let consider the Jacobi pointwise approximation formulas with
respect to an arbitrary point t ∈ (−1, 1).

1◦. If r > α + 1/2 > 0 or α ≤ −1
2

and r ≥ 1, then these formulas are
convergent on the space Cr, namely

lim
n→∞

T t
n(f) = f(t), ∀ f ∈ Cr.

2◦. If α +
1
2
∈ N∗ and r = α +

1
2

or α ≤ −1
2

and r = 0, then these
formulas are convergent on the subset of all f ∈ Cr, whose r-th derivatives
satisfy the Dini-Lipschitz condition

lim
δ↘0

ω(f (r); δ) ln δ = 0.

Proof. The estimate ‖P (α)
n ‖ ∼ nq, with q = max{α,−1/2}, [10], together

with (3.3), yields:
|Rt

nf | ≤ M3n
α−r+1/2(lnn)ω

(
f (r);

1
n

)
, if α > −1/2

|Rt
nf | ≤ M3n

−r(lnn)ω
(

f (r);
1
n

)
, if α ≤ −1/2,

(3.4)
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for each f ∈ Cr, n ≥ 2 and t ∈ (−1, 1) \ Jn.
If t ∈ Jn, then P

(α)
n+2(t) = 0 and (2.12) provides:

|Rt
nf | ≤ 3M1n

−rω

(
f (r);

1
n

)
,

so the formulas (3.4) are valid for t ∈ (−1, 1).
The estimates (3.4) and the properties of ω imply the validity of the

assertions 1◦ and 2◦ of this theorem, which completes the proof. �

3.2. Second case

Let us examine the remaining cases t = ±1.

Theorem 3.2. Let consider the Jacobi pointwise approximation formulas with
respect to the end points t = −1 and t = 1.

1◦. If r ≥ α + 1/2 > 0 or α = −1/2 and r ≥ 1 or α < −1/2 and r ≥ 0,
then these formulas are convergent on the space Cr.

2◦. If α = −1/2 and r = 0, then these formulas are convergent on the
subset of all functions f in C satisfying the Dini-Lipschitz condition

lim
δ↘0

ω(f ; δ) ln δ = 0.

Proof. Using the estimate |P (α)
n (±1)| ∼ nα, α > −1, [10], we derive from

(3.1) and (3.2)

Λn(1) ∼

 nα+1/2, if α > −1/2
lnn, if α = −1/2
1, if α < −1/2.

(3.5)

The relations (2.12) and (3.5) yield:

|R±1
n f | ≤ M4n

α−r+1/2ω

(
f (r);

1
n

)
, if α > −1/2

|R±1
n f | ≤ M5n

−r lnnω

(
f (r);

1
n

)
, if α = −1/2

|R±1
n f | ≤ M6n

−rω

(
f (r);

1
n

)
, if α < −1/2,

which proves the assertions 1◦ and 2◦ of this theorem. �

4. Superdense unbounded divergence for a class of Jacobi
pointwise approximation formulas

In this section, we emphasize the phenomenon of condensation of singularities
for the family of the pointwise approximating functionals {T 0

n : n ≥ 1}.
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Theorem 4.1. The set of all functions f ∈ C for which the Jacobi point-
wise approximation formulas (2.8) and (2.9) with respect to the origin are
unboundedly divergent, i.e. lim sup

n→∞
|T 0

nf | = ∞, is superdense in the Banach

space (C, ‖ · ‖).

Proof. Define fn+2 ∈ C by

fn+2(x) =

 signlkn+2(0), if x ∈ Jn

1, if x ∈ {−1, 1}
linear, otherwise.

We obtain from (2.5), (2.6) and (2.8):

T 0
4n−2(f4n) =

4n∑
k=1

[
1 + (−1)k+1 a4n−1(f)

a4n−1(σ4n)
signlk4n(0)

]
|lk4n(0)|. (4.1)

On the other hand, the relations signlk4n(0) = (−1)k, 1 ≤ k ≤ 2n and
sigmlk4n(0) = (−1)k+1, 2n + 1 ≤ k ≤ 4n, show that f4n is an even function,
so we derive from (2.2) and (2.3):

a4n−1(f4n) =
4n∑

k=1

τk
4nf4n(xk

4n) =
4n∑

k=1

τ4n−k+1
4n f4n(x4n−k+1

4n )

=
4n∑

k=1

f4n(−xk
4n)

u′4n(−xk
4n)

= −
4n∑

k=1

f4n(xk
4n)

u′4n(xk
4n)

= −a4n−1(f4n) (4.2)

because the nodes of Jn in M(α) are symmetric with respect to the origin
and u4n is an even function. So, we obtain from (4.2):

a4n−1(f4n) = 0, n ≥ 1. (4.3)

The equalities (4.1) and (4.3) leads to:

T 0
4n−2(f4n) = Λ4n(0), n ≥ 1. (4.4)

Using the estimates (3.1), (3.2) and taking into account that

|P (α)
2n (0)| ∼ 1/

√
n,

[10], we infer:
Λ4n(0)− 1 ∼ lnn, ∀ α > −1. (4.5)

The relations (4.4) and (4.5) give:

|T 0
4n−2(f4n)| ∼ lnn, n ≥ 2, α > −1. (4.6)

Finally, apply Theorem 1.1, with X = C, Y = R, An = T 0
n and remark

that:

sup{‖An‖ : n ≥ 1} ≥ sup{‖T 0
4n−2‖ : n ≥ 1} ≥ sup{|T 0

4n−2(f4n)| : n ≥ 1},

which together with (4.6), proves the unboundedness of the set of norms
{‖An‖ : n ≥ 1}. This completes the proof. �
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