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Numerical quadratures and orthogonal
polynomials

Gradimir V. Milovanović

Abstract. Orthogonal polynomials of different kinds as the basic tools
play very important role in construction and analysis of quadrature
formulas of maximal and nearly maximal algebraic degree of exactness.
In this survey paper we give an account on some important connections
between orthogonal polynomials and Gaussian quadratures, as well as
several types of generalized orthogonal polynomials and corresponding
types of quadratures with simple and multiple nodes. Also, we give
some new results on a direct connection of generalized Birkhoff-Young
quadratures for analytic functions in the complex plane with multiple
orthogonal polynomials.

Mathematics Subject Classification (2010): 33C45, 41A55, 65D30, 65D32.

Keywords: Quadrature formula, node, weight, maximal degree of exact-
ness, orthogonal polynomial, quasi-orthogonal polynomial, s-orthogonal
polynomial, σ-orthogonal polynomial, multiple orthogonal polynomial.

1. Introduction

Let Pn be the set of all algebraic polynomials of degree at most n and dσ
be a finite positive Borel measure on the real line R such that its support
supp(dσ) is an infinite set, and all its moments µk =

∫
R tk dσ(t), k = 0, 1, . . .,

exist and are finite.
The n-point quadrature formula∫

R
f(t)dσ(t) =

n∑
k=1

σkf(τk) + Rn(f), (1.1)

which is exact on the set P2n−1 is known as the Gauss-Christofell quadrature
formula (cf. [14, p. 29], [20, p. 324]). It is a quadrature formula of the maximal
algebraic degree of exactness, i.e., Rn(Pdmax) = 0, where dmax = 2n− 1.

This famous method of numerical integration, for the Legendre measure
dσ(t) = dt on [−1, 1], was discovered in 1814 by C.F. Gauss [11], using his
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theory of continued fractions associated with hypergeometric series. It is in-
teresting to mention that Gauss determined numerical values of quadrature
parameters, the nodes τk and the weights σk, k = 1, . . . , n, for all n ≤ 7. An
elegant alternative derivation of this method was provided by Jacobi, and
a significant generalization to arbitrary measures was given by Christoffel.
The error term Rn(f) and convergence were proved by Markov and Stielt-
jes, respectively. A nice survey of Gauss-Christoffel quadrature formulae was
written by Gautschi [12].

In this survey paper we give an account on some important connec-
tions between orthogonal polynomials and Gaussian quadratures, as well as
several types of generalized orthogonal polynomials and corresponding types
of quadratures. The paper is organized as follows. Section 2 is devoted to
quadratures of Gaussian type (with maximal or nearly maximal degree of
exactness) and quasi-orthogonal polynomials. A connection between s- and
σ-orthogonal polynomials and quadratures with multiple nodes is presented
in Section 3. Finally, in Section 4 we consider the so-called multiple orthogo-
nal polynomials and give two applications. First, we show a direct connection
of Borges quadratures [3] with multiple orthogonal polynomial. Second ap-
plication is related to a generalization of the Birkhoff-Young quadratures [2]
for analytic functions in the complex plane. We give a characterization of
such generalized quadratures in terms of multiple orthogonal polynomials
and prove the existence and uniqueness of these quadratures.

2. Orthogonal and quasi-orthogonal polynomials and Gaussian
type of quadratures

The construction of quadrature formulae of the maximal (Gauss-Christoffel),
or nearly maximal, algebraic degree of exactness for integrals involving a
positive measure dσ is closely connected to polynomials orthogonal on the
real line with respect to the inner product

(f, g) = (f, g)dσ =
∫

R
f(t)g(t) dσ(t) (f, g ∈ L2(dσ)). (2.1)

The monic polynomials πν = πν(dσ; · ), ν = 0, 1, . . ., orthogonal with respect
to (2.1) satisfy the three-term recurrence relation (cf. [20, p. 97])

πν+1(t) = (t− αν)πν(t)− βνπν−1(t), ν = 0, 1, . . . , (2.2)
π0(t) = 1, π−1(t) = 0,

with recurrence coefficients αν = αν(dσ) and βν = βν(dσ) > 0, and β0 =
µ0 =

∫
R dσ(t) (by definition).

The following theorem is due to Jacobi (cf. [20, p. 322]):

Theorem 2.1. Given a positive integer m (≤ n), the quadrature formula (1.1)
has degree of exactness d = n− 1 + m if and only if the following conditions
are satisfied:

1◦ Formula (1.1) is interpolatory;
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2◦ The node polynomial qn(t) = (t− τ1)(t− τ2) · · · (t− τn) satisfies

(∀p ∈ Pm−1) (p, qn) =
∫

R
p(t)qn(t) dσ(x) = 0.

According to this theorem, an n-point quadrature formula (1.1) has the
maximal degree of exactness 2n − 1, i.e., m = n is optimal, because the
higher m (> n) is impossible. Namely, the condition 2◦ in Theorem 2.1 for
m = n + 1 requires the orthogonality (p, qn) = 0 for all p ∈ Pn, which is
impossible when p = qn.

Thus, in the case m = n, the orthogonality condition 2◦ from The-
orem 2.1 shows that the node polynomial qn must be (monic) orthogonal
polynomial with respect to the measure dσ, and therefore the nodes τk must
be zeros of the polynomial qn(t) = πn(dσ; t). The corresponding weights σk

(Christoffel numbers) can be expressed in terms of orthogonal polynomials
as values of the Christoffel function λn(dσ; t) at these zeros (cf. [20, p. 324]).

Computationally, today there are very stable methods for generating
Gauss-Christoffel rules. The most popular of them is one due to Golub and
Welsch [18]. Their method is based on determining the eigenvalues and the
first components of the eigenvectors of a symmetric tridiagonal Jacobi ma-
trix Jn(dσ), with elements formed from the coefficients in the three-term
recurrence relation (2.2).

Theorem 2.2. The nodes τk in the Gauss-Christoffel quadrature rule (1.1),
with respect to a positive measure dσ, are the eigenvalues of the n-th order
Jacobi matrix

Jn(dσ) =



α0

√
β1 O√

β1 α1

√
β2

√
β2 α2

. . .
. . . . . .

√
βn−1

O
√

βn−1 αn−1

 ,

where αν and βν , ν = 0, 1, . . . , n − 1, are the coefficients in the three-term
recurrence relation for the monic orthogonal polynomials πν(dσ; · ), and the
weights σk are given by

σk = β0v
2
k,1, k = 1, . . . , n,

where β0 = µ0 =
∫

R dσ(t) and vk,1 is the first component of the normalized
eigenvector vk corresponding to the eigenvalue τk,

Jn(dσ)vk = τkvk, vT
k vk = 1, k = 1, . . . , n.

If we put a smaller value of m, say m = n− r, in Theorem 2.1, the node
polynomial can be expressed in terms of orthogonal polynomials πν as

qn(t) = qn,r(t) = πn(t) + %1πn−1(t) + · · ·+ %rπn−r(t), (2.3)

where %1, . . . , %r are real numbers and n > r. For r = 0 we put qn,0 = πn.
Such polynomials {qn,r} are known as quasi-orthogonal polynomials and

they play very important role in the study of interpolatory quadratures with
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exactness d = 2n − r − 1, 0 ≤ r < n. Notice that for r = n, i.e., m = 0, the
quadrature (1.1) is only interpolatory, without the orthogonality condition
2◦ in Theorem 2.1.

It is clear if τk, k = 1, . . . , n, are nodes of the quadrature formula (1.1),
with exactness d = 2n−r−1, then these nodes are zeros of a quasi-polynomial
of the form (2.3). Contrary, if a quasi-polynomial qn,r has n real distinct zeros
τk, k = 1, . . . , n, then there exists a quadrature rule of the form (1.1), with
exactness d = 2n− r− 1 and non-zero weights σk, k = 1, . . . , n. Such kind of
quadratures have been studied by several authors (cf. [4, 5, 10, 21, 43]).
Quadratures with positive weigts are of particular interest and they are
known as positive quadrature formulae. Their convergence and some char-
acterizations were studied by several authors (cf. [10, 26, 27, 44]). For exam-
ple, Xu [44] showed that the quasi-orthogonal polynomials that lead to the
positive quadratures can all be expressed as characteristic polynomials of a
symmetric tridiagonal matrix with positive subdiagonal entries. Also, as a
consequence, for a fixed n, Xu [44] obtained that every positive quadrature
is a Gaussian quadrature formula for some another nonnegative measure.

Positive quadrature formulas on the real line with the highest degree of
exactness and with one or two prescribed nodes anywhere on the interval of
integration have been recently characterized in [5]. The simplest kinds of such
formulas are well known Gauss-Radau and Gauss-Lobatto quadratures with
one or both (finite) endpoints being fixed nodes, respectively (cf. [20, p. 328]).
Their nodes and weights can be obtained by a little modification of the Golub-
Welsch Theorem 2.2. Also, some cases with one or two additional prescribed
nodes inside the interval of integration can be analyzed by considering certain
modified Jacobi matrices (see [5]).

3. Power orthogonality and quadrature with multiple nodes

The first idea of numerical integration involving multiple nodes appeared in
the middle of the last century (Chakalov [6, 7, 8], Turán [40], Popoviciu [28],
Ghizzetti and Ossicini [15, 16], etc.).

Let η1, . . . , ηm (η1 < · · · < ηm) be given fixed (or prescribed) nodes,
with multiplicities m1, . . . ,mm, respectively, and τ1, . . . , τn (τ1 < · · · < τn)
be free nodes, with given multiplicities n1, . . . , nn, respectively. Interpolation
quadrature formulae of a general form

I(f) =
∫

R
f(t) dσ(t) ∼=

n∑
ν=1

nν−1∑
i=0

Ai,νf (i)(τν) +
m∑

ν=1

mν−1∑
i=0

Bi,νf (i)(ην), (3.1)

with an algebraic degree of exactness at least M + N − 1, were investigated
by Stancu [31, 35, 38].

Using fixed and free nodes we introduce two polynomials

qM (t) : =
m∏

ν=1

(t− ην)mν and QN (t) : =
n∏

ν=1

(t− τν)nν ,
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where M =
∑m

ν=1 mν and N =
∑n

ν=1 nν . Choosing the free nodes to increase
the degree of exactness leads to the so-called Gaussian type of quadratures. If
the free (or Gaussian) nodes τ1, . . . , τn are such that the quadrature rule (3.1)
is exact for each f ∈ PM+N+n−1, then we call it the Gauss-Stancu formula.
Stancu [36] proved that τ1, . . . , τn are the Gaussian nodes if and only if∫

R
tkQN (t)qM (t) dσ(t) = 0, k = 0, 1, . . . , n− 1. (3.2)

Under some restrictions of node polynomials qM (t) and QN (t) on the support
interval of the measure dσ(t) we can give sufficient conditions for the existence
of Gaussian nodes (cf. Stancu [36] and [17]). For example, if the multiplicities
of the Gaussian nodes are odd, e.g., nν = 2sν + 1, ν = 1, . . . , n, and if the
polynomial with fixed nodes qM (t) does not change its sign in the support
interval of the measure dσ(t), then, in this interval, there exist real distinct
nodes τν , ν = 1, . . . , n.

The last condition for the polynomial qM (t) means that the multiplici-
ties of the internal fixed nodes must be even. Defining a new (nonnegative)
measure dσ̂(t) := |qM (t)| dσ(t), the “orthogonality conditions” (3.2) can be
expressed in a simpler form∫

R
tkQN (t) dσ̂(t) = 0, k = 0, 1, . . . , n− 1.

This means that the general quadrature problem (3.1), under these condi-
tions, can be reduced to a problem with only Gaussian nodes, but with re-
spect to another modified measure. Computational methods for this purpose
are based on Christoffel’s theorem and described in details in [13] (see also
[17]).

Let πn(t) : =
∏n

ν=1(t − τν). Since QN (t)/πn(t) =
∏n

ν=1(t − τν)2sν ≥ 0
over the support interval, we can make an additional reinterpretation of the
“orthogonality conditions” (3.2) in the form∫

R
tkπn(t) dµ(t) = 0, k = 0, 1, . . . , n− 1, (3.3)

where

dµ(t) =

(
n∏

ν=1

(t− τν)2sν

)
dσ̂(t). (3.4)

This means that πn(t) is a polynomial orthogonal with respect to the new
nonnegative measure dµ(t) and, therefore, all zeros τ1, . . . , τn are simple,
real, and belong to the support interval. As we see the measure dµ(t) in-
volves the nodes τ1, . . . , τn, i.e., the unknown polynomial πn(t), which is
implicitly defined. This polynomial πn(t) belongs to the class of the so-called
σ-orthogonal polynomials {πn,σ(t)}n∈N0 , which correspond to the sequence
σ = (s1, s2, . . .) connected with multiplicities of Gaussian nodes. Namely,
the solution (τ̂1, . . . , τ̂n) of the previous (nonlinear) system of equations (3.3)
gives the σ-orthogonal polynomial

πn(t) = πn,σ(t) = (t− τ̂1) · · · (t− τ̂n),
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which is also the unique solution of the extremal problem

min
τ1<···<τn

∫
R
|t− τ1|2s1+2 · · · |t− τn|2sn+2dσ̂(t) =

∫
R
|πn,σ(t)|2dµ̂(t), (3.5)

where dµ̂ is of the form (3.4) with τ̂ν instead of τν , ν = 1, . . . , n.
If σ = (s, s, . . .), these polynomials reduce to the s-orthogonal polyno-

mials and the corresponding extremal problem (3.5) becomes

min
p∈Pn−1

∫
R
|tn + p(t)|2s+2dσ̂(t) =

∫
R
|πn(t)|2dµ̂(t) = ‖πn‖2dµ̂,

where dµ̂(t) = πn(t)2sdσ̂(t). (For details see Milovanović [22].)
Quadratures with only Gaussian nodes (m = 0),∫

R
f(t) dσ(t) =

n∑
ν=1

2sν∑
i=0

Ai,νf (i)(τν) + R(f),

which are exact for all algebraic polynomials of degree at most dmax =
2
∑n

ν=1 sν + 2n − 1, are known as Chakalov-Popoviciu quadrature formulas
(see [6, 7, 8], [28]). A deep theoretical progress in this subject was made by
Stancu (see [38] and [32]–[37]). In the special case of the Legendre measure
on [−1, 1], when all multiplicities are mutually equal, these formulas reduce
to the well-known Turán quadrature [40]. A connection between quadratures,
s and σ-orthogonality and moment-preserving approximation with defective
splines was given in survey paper [22]. A very efficient method for constructing
quadratures with multiple nodes was given recently by Milovanović, Spalević
and Cvetković [24]. We mention also a nice recent book by Shi [30].

4. Multiple orthogonality

In this section we consider applications of multiple orthogonal polynomials
to some special type of quadratures. Otherwise, multiple orthogonal polyno-
mials are intimately related to Hermite-Padé approximants and, because of
that, they are known as Hermite-Padé polynomials. A nice survey on these
polynomials, as well as some their applications to various fields of mathemat-
ics (number theory, special functions, etc.) and in the study of their analytic,
asymptotic properties, was given by Aptekarev [1].

4.1. Multiple orthogonal polynomials

Multiple orthogonal polynomials are a generalization of standard orthogonal
polynomials in the sense that they satisfy m orthogonality conditions.

Let m ≥ 1 be an integer and let wj , j = 1, . . . ,m, be weight functions
on the real line so that the support of each wj is a subset of an interval
Ej . Let ~n = (n1, n2, . . . , nm) be a vector of m nonnegative integers, which
is called a multi-index with the length |~n| = n1 + n2 + · · · + nm. There are
two types of multiple orthogonal polynomials, but here we consider only the
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so-called type II multiple orthogonal polynomials π~n(t) of degree |~n|. Such
monic polynomials are defined by the m orthogonality relations∫

E1

π~n (t) t`w1(t) dt = 0, ` = 0, 1, . . . , n1 − 1,∫
E2

π~n (t) t`w2(t) dt = 0, ` = 0, 1, . . . , n2 − 1,

...∫
Em

π~n (t) t`wm(t) dt = 0, ` = 0, 1, . . . , nm − 1.


(4.1)

Evidently, for m = 1 they reduce to the ordinary orthogonal polynomials.
The conditions (4.1) give |~n| linear equations for the |~n| unknown coeffi-

cients ak,~n of the polynomial π~n (t) =
|~n|∑

k=0

ak,~n tk, where a|~n|,~n = 1. However,

the matrix of coefficients of this system of equations can be singular and we
need some additional conditions on the m weight functions to provide the
uniqueness of the multiple orthogonal polynomials. If the polynomial π~n (t)
is unique, then we say that ~n is a normal multi-index and if all multi-indices
are normal then we have a complete system.

One important complete system is the AT system, in which all weight
functions are supported on the same interval E (= E1 = E2 = · · · = Em)
and the following |~n| functions:

w1(t), tw1(t), . . . , tn1−1w1(t), w2(t), tw2(t), . . . , tn2−1w2(t),

. . . , wm(t), twm(t), . . . , tnm−1wm(t)

form a Chebyshev system on E for each multi-index ~n. This means that every
linear combination

m∑
j=1

Qnj−1(t)wj(t),

where Qnj−1 is a polynomial of degree at most nj − 1, has at most |~n| − 1
zeros on E.

In 2001 Van Assche and Coussement [42] proved the following result:

Theorem 4.1. In an AT system the type II multiple orthogonal polynomial
π~n (x) has exactly |~n| zeros on E.

For these multiple orthogonal polynomials with nearly diagonal multi-
index there is an interesting recurrence relation of order m + 1. Let n ∈ N
and write it as n = km + j, with k = [n/m] and 0 ≤ j < m. The nearly
diagonal multi-index ~s(n) corresponding to n is given by

~s(n) = (k + 1, k + 1, . . . , k + 1︸ ︷︷ ︸
j times

, k, k, . . . , k︸ ︷︷ ︸
m−j times

).
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Denote the corresponding type II multiple (monic) orthogonal polynomials
by πn(t) = π~s(n)(t). Then, the following recurrence relation

xπk(t) = πk+1(t) +
m∑

i=0

αk,m−iπk−i(t) , k ≥ 0, (4.2)

holds, with initial conditions π0(t) = 1 and πi(t) = 0 for i = −1,−2, . . . ,−m
(see [41]).

Setting k = 0, 1, . . . , n− 1 in the recurrence relation (4.2), we get

t


π0(t)
π1(t)

...
πn−1(t)

 = Hn


π0(t)
π1(t)

...
πn−1(t)

+ πn(t)


0
0
...
1

 ,

i.e.,
Hnpn(t) = tpn(t)− πn(t)en, (4.3)

where

pn(t) =
[
π0(t) π1(t) . . . πn−1(t)

]T
, en = [0 0 . . . 0 1]T ,

and Hn = [hij ]ni,j=1 is a lower (banded) Hessenberg matrix of order n, where

hi,i+1 = 1, i = 1, . . . , n− 1;
hi,i−r = αi−1,m−r, i = r + 1, . . . , n, r = 0, 1, . . . ,m.

It is easy to see that πn(t) = det(tIn −Hn), where In is the identity matrix
of the order n. In [25] we presented an effective numerical method for con-
structing the Hessenberg matrix Hn using a form of the discretized Stieltjes-
Gautschi procedure.

These multiple orthogonal polynomials can be applied to some kinds of
quadratures. Here, we consider such two applications.

4.2. Quadratures of C.F. Borges

In 1994 Borges [3] considered a problem that arises in evaluation of computer
graphics illumination models. Starting with that problem, he examined the
problem of numerically evaluating a set of m definite integrals taken with
respect to distinct weight functions wj , j = 1, 2, . . . ,m, but related by a
common integrand and interval of integration∫

E

f(t)wj(t) dt, j = 1, 2, . . . ,m.

It was shown that it is not efficient to use a set of m Gauss-Christoffel quad-
rature formulas because valuable information is wasted.

In [3] Borges introduced a performance ratio as

R =
Overall degree of exactness + 1
Number of integrand evaluation

.
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For example, for a set of m Gauss-Christoffel n-point quadrature formulas,
this performance index gives

R =
(2n− 1) + 1

mn
=

2
m

,

i.e., R < 1 for all m > 2.
Borges [3] proposed quadratures of the following form∫

E

f(t) wj(t) dt ≈
n∑

ν=1

Aj,νf(τν), j = 1, 2, . . . ,m. (4.4)

If Aj,ν are determined so that (4.4) are interpolatory quadratures (degree
of exactness ≤ n − 1), then R = n/n = 1. However, this performance ratio
can be improved taking an AT system of the weights W = {w1, w2, . . . , wm}
supported on the same interval E. For a multi-index ~n = (n1, n2, . . . , nm) we
put n = |~n|.

Following [3, Definition 3] an optimal set of quadratures with respect
to (W,~n) was introduced in [25]. In that sense, the Borges set of quadratures
(4.4) is optimal if and only if their weight coefficients Aj,ν and nodes τν

satisfy the following system of equations
n∑

ν=1

Aj,ν τk
ν =

∫
E

tkwj(t) dt, k = 0, 1, . . . , n + nj − 1,

for j = 1, 2 . . . , m.
Regarding this facts, the following characterization of Borges quadra-

tures in terms of multiple orthogonal polynomials can be given (see [25]):

Theorem 4.2. Let W be an AT system of weight functions supported on the
interval E, ~n = (n1, n2, . . . , nm), and n = |~n|. The Borges quadrature formu-
lae (4.4) form an optimal set with respect to (W,~n) if and only if:

1◦ They are exact for all polynomials of degree ≤ n− 1;
2◦ The node polynomial qn(t) = (t − τ1)(t − τ2) · · · (t − τn) is the type

II multiple orthogonal polynomial π~n with respect to W .

Notice that the performance ratio for such quadratures is R > 1. Evi-
dently, the nodes τν , ν = 1, . . . , n, as a zeros of the type II multiple orthogonal
polynomial π~n, are distinct and located in E (see Theorem 4.1). The weight
coefficients satisfy m systems of linear equations with Vandermonde matrix

V (τ1, τ2, . . . , τn)


Aj,1

Aj,2

...
Aj,n

 =


µ

(j)
0

µ
(j)
1
...

µ
(j)
n−1

 , j = 1, 2, . . . ,m,

where
µ(j)

ν =
∫

E

tνwj(t) dt, ν = 0, 1, . . . , n− 1.

This Vandermonde matrix is non-singular and each of the previous systems
always has the unique solution.
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For the case of the nearly diagonal multi-indices ~s(n) we can compute
the nodes τν , ν = 1, . . . , n, as eigenvalues of the corresponding banded Hes-
senberg matrix Hn. Then, from (4.3) it follows that the eigenvector associated
with τν is given by pn(τν), where pn(t) =

[
π0(t) π1(t) . . . πn−1(t)

]T . We
can use now this fact to compute the weight coefficients Aj,ν by requiring
that each rule correctly generate the first n modified moments

µ̂(j)
ν =

∫
E

πν(t)wj(t) dt, ν = 0, 1, . . . , n− 1.

Let Vn be the matrix of the eigenvectors of matrix Hn, each normalized
so that the first component is equal to 1, i.e.,

Vn =
[
pn(τ1) pn(τ2) . . . pn(τn)

]
.

Thus, for determining the weight coefficients we should solve the following m
systems of equations

Vn


Aj,1

Aj,2

...
Aj,n

 =


µ̂

(j)
0

µ̂
(j)
1
...

µ̂
(j)
n−1

 , j = 1, 2, . . . ,m.

This efficient and stable algorithm for constructing Borges quadratures,
as well as several numerical examples, were given in [25].

4.3. Birkhoff-Young quadratures and improvements

For numerical integration of analytic functions over a line segment in the
complex plane, Birkhoff and Young [2] proposed a quadrature formula of the
form

I(f) =

z0+h∫
z0−h

f(z) dz =
h

15
{
24f(z0) + 4 [f(z0 + h) + f(z0 − h)]

− [f(z0 + ih) + f(z0 − ih)]
}

+ RBY
5 (f). (4.5)

For the error term RBY
5 (f) the following estimate [45] (see also Davis and

Rabinowitz [9, p. 136])

|RBY
5 (f)| ≤ |h|7

1890
max
z∈S

|f (6)(z)|

holds, where S denotes the square with vertices z0 + ikh, k = 0, 1, 2, 3. This
error estimate is about four tenths as large as the corresponding error RES

5 (f)
for the so-called extended Simpson’s rule (cf. [29, p. 124])

I(f) ≈ h

90
{
114f(z0)+34

[
f(z0 +h)+f(z0−h)

]
−
[
f(z0 +2h)+f(z0−2h)

]}
,

for which we have

|RES
5 (f)| ∼ |h|7

756
|f (6)(ζ)|, 0 <

ζ − (z0 − 2h)
4h

< 1.
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Without loss of generality we can consider the integration over [−1, 1]
for analytic functions in a unit disk Ω =

{
z : |z| ≤ 1

}
, so that the previous

Birkhoff-Young formula (4.5) becomes∫ 1

−1

f(z) dz =
8
5
f(0) +

4
15
[
f(1) + f(−1)

]
− 1

15
[
f(i) + f(−i)

]
+R5(f). (4.6)

In 1976 Lether [19] pointed out that the three point Gauss-Legendre
quadrature∫ 1

−1

f(z) dz =
8
9
f(0) +

5
9
[
f(
√

3/5) + f(−
√

3/5)
]
+R3(f), (4.7)

which is also exact for all polynomials of degree at most five, is more precise
than (4.6) and he recommended it for numerical integration. However, Tošić
[39] improved the quadrature (4.6) in the form∫ 1

−1

f(z) dz = Af(0)+B
[
f(r)+f(−r)

]
+C

[
f(ir)+f(−ir)

]
+RT

5 (f ; r), (4.8)

where

A = 2
(

1− 1
5r4

)
, B =

1
6r2

+
1

10r4
, C = − 1

6r2
+

1
10r4

, 0 < r < 1,

and the error-term is given by the expression

RT
5 (f ; r) =

(
−2

3
r4 +

2
7

)
f (6)(0)

6!
+
(
−2

5
r4 +

2
9

)
f (8)(0)

8!
+ · · · . (4.9)

Evidently, for r = 1 this formula reduces to (4.6) and for r =
√

3/5 to the
Gauss-Legendre formula (4.7) (then C = 0). Moreover, for r = 4

√
3/7 the

first term on the right-hand side in (4.9) vanishes and (4.8) reduces to the
modified Birkhoff-Young formula of maximum accuracy (named MF in [39]),
with the coefficients

A =
16
15

, B =
1
6

(
7
5

+

√
7
3

)
, C =

1
6

(
7
5
−
√

7
3

)
,

and with the error-term

RMF
5 (f) = RT

5 (f ; 4
√

3/7) =
1

793800
f (8)(0) +

1
61122600

f (10)(0) + · · · .

This formula was extended by Milovanović and D- ord-ević [23] to the following
quadrature formula of interpolatory type∫ 1

−1

f(z) dz = Af(0) + C11

[
f(r1) + f(−r1)

]
+ C12

[
f(ir1) + f(−ir1)

]
+C21

[
f(r2) + f(−r2)

]
+ C22

[
f(ir2) + f(−ir2)

]
+R9(f ; r1, r2),

where 0 < r1 < r2 < 1. They proved that for

r1 = r∗1 =
4

√
63− 4

√
114

143
and r2 = r∗2 =

4

√
63 + 4

√
114

143
,
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this formula reduces to a quadrature rule of the algebraic exactness p = 13,
with the error-term

R9(f ; r∗1 , r∗2) =
1

28122661066500
f (14)(0) + · · · ≈ 3.56 · 10−14f (14)(0).

4.4. Generalized Birkhoff-Young quadratures

In this subsection we consider a kind of generalized Birkhoff-Young quadra-
ture formulas and give a connection with multiple orthogonal polynomials.
We introduce N -point quadrature formula for weighted integrals of analytic
functions in Ω =

{
z : |z| ≤ 1

}
,

I(f) :=
∫ 1

−1

f(z)w(z) dz = QN (f) + RN (f),

where w : (−1, 1) → R+ is an even positive weight function, for which all
moments µk =

∫ 1

−1
zkw(z) dz, k = 0, 1, . . ., exist.

For a given fixed integer m ≥ 1 and for each N ∈ N, we put N = 2mn+ν,
where n = [N/2m] and ν ∈ {0, 1, . . . , 2m−1}. We define the node polynomial

ωN (z) = zνpn,ν(z2m) = zν
n∏

k=1

(z2m − rk), 0 < r1 < · · · < rn < 1, (4.10)

and consider the corresponding interpolatory quadrature rule QN of the form

QN (f) =
ν−1∑
j=0

Cjf
(j)(0) +

n∑
k=1

m∑
j=1

Ak,j

[
f
(
xkeiθj

)
+ f

(
−xkeiθj

)]
,

where

xk = 2m
√

rk, k = 1, . . . , n; θj =
(j − 1)π

m
, j = 1, . . . ,m.

If ν = 0, the first sum in QN (f) is empty.

Theorem 4.3. Let m be a fixed positive integer and w be an even positive
weight function w on (−1, 1), for which all moments µk =

∫ 1

−1
zkw(z) dz,

k ≥ 0, exist. For any N ∈ N there exists a unique interpolatory quadrature
QN (f) with a maximal degree of exactness dmax = 2(m + 1)n + s, where

n =
[

N

2m

]
, ν = N − 2mn, s =

{
ν − 1, ν even,

ν, ν odd.
(4.11)

The node polynomial (4.10) is characterized by the following orthogonality
relations ∫ 1

0

tkpn,ν(tm)ts/2w(
√

t) dt = 0, k = 0, 1 . . . , n− 1. (4.12)

Proof. For a given N ∈ N and a fixed m ∈ N, suppose that f ∈ Pd, where
d ≥ N = 2mn + ν, with n = [N/2m] and ν = N − 2mn. Then, it can be
expressed in the form

f(z) = u(z)ωN (z) + v(z) = u(z)zνpn,ν(z2m) + v(z), u ∈ Pd−N , v ∈ PN−1,
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from which, by an integration with respect to the weight function w, we get

I(f) =
∫ 1

−1

u(z)zνpn,ν(z2m)w(z) dz + I(v).

Since our quadrature is interpolatory and v(z) = f(z) at the zeros of ωN ,
we have I(v) = QN (v) = QN (f). Thus, the quadrature formula QN (f) has a
maximal degree of precision if and only if∫ 1

−1

u(z)zνpn,ν(z2m)w(z) dz = 0

for a maximal degree of the polynomial u ∈ Pd−N . According to the values
of ν, this “orthogonality condition” can be represented in the form∫ 1

−1

h(z2)zs+1pn,ν(z2m)w(z) dz = 0, h ∈ Pn−1, (4.13)

which means that the maximal degree of the polynomial u ∈ Pd−N is

dmax −N =
{

2n− 1, ν is even,
2n, ν is odd,

i.e., dmax = 2(m + 1)n + s, where s is defined by (4.11).
Finally, by substitution z2 = t, the orthogonality conditions (4.13) can

be expressed in the form (4.12). �

Regarding (4.12) the polynomial t 7→ pn,ν(tm) (of degree mn) is orthog-
onal to Pn with respect to the weight function ts/2w(

√
t) on (0, 1), and it can

be interpreted in terms of multiple orthogonal polynomials.

Theorem 4.4. Under conditions of the previous theorem, for any N ∈ N
there exists a unique interpolatory quadrature QN (f), with a maximal degree
of exactness dmax = 2(m + 1)n + s, if and only if the polynomial pn,ν(t) is
the type II multiple orthogonal polynomial π~n(t), with respect to the weights
wj(t) = t(s+2j)/(2m)−1w(t1/(2m)), with nj = 1 +

[
n−j
m

]
, j = 1, . . . ,m.

Proof. Evidently, the conditions (4.12) are equivalent to∫ 1

0

tk/mpn,ν(t)t(s+2)/(2m)−1w(t1/(2m)) dt = 0, k = 0, 1, . . . , n− 1.

Now, putting k = m` + j − 1, ` = [k/m], we get for each j = 1, . . . ,m,∫ 1

0

t`pn,ν(t)wj(t) dt = 0, ` = 0, 1 . . . , nj − 1,

where

wj(t) = t(s+2j)/(2m)−1w(t1/(2m)) and nj = 1 +
[
n− j

m

]
.

Notice that these weight functions, defined on the same interval E1 = E2 =
· · · = Em = E = (0, 1), can be expressed in the form wj(t) = t(j−1)/mw1(t),
j = 1, . . . ,m, where w1(t) = t(s+2)/(2m)−1w(t1/(2m)). Since the Müntz system
{tk+(j−1)/m}, k = 0, 1, . . . , nj − 1; j = 1, . . . ,m, is a Chebyshev system
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on [0,∞), and also on E = (0, 1), and w1(t) > 0 on E, we conclude that
{wj , j = 1, . . . ,m} is an AT system on E.

Therefore, according to Theorem 4.1, the unique type II multiple or-
thogonal polynomial pn,ν(t) = π~n(t) has exactly

|~n| :=
m∑

j=1

nj =
m∑

j=1

(
1 +

[
n− j

m

])
= n

zeros in (0, 1). �
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[13] Gautschi, W., Orthogonal polynomials: applications and computation, Acta Nu-
merica, 1996, 45–119.

[14] Gautschi, W., Orthogonal Polynomials: Computation and Approximation,
Clarendon Press, Oxford, 2004.

[15] Ghizzetti, A., Ossicini, A., Quadrature Formulae, Akademie Verlag, Berlin,
1970.



Numerical quadratures and orthogonal polynomials 463

[16] Ghizzetti, A., Ossicini, A., Sull’ esistenza e unicità delle formule di quadratura
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