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Recent results on Chlodovsky operators

Harun Karsli

Abstract. We take a view on the results concerning the Bernstein–
Chlodovsky operators obtained especially in the last five years. The
list presented in this paper is not exhaustive. We apologise all authors
possessing papers on the Chlodovsky operators and are not referred in
this paper.
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1. Introduction

For a function f defined on [0,∞) and bounded on every finite interval [0, b] ⊂
[0,∞), the classical Bernstein-Chlodovsky operators are defined by

(Cnf) (x) :=
n∑

k=0

f

(
bn

n
k

)
pk,n

(
x

bn

)
, (1.1)

where pk,n denotes as usual

pk,n(x) =
(

n
k

)
xk (1− x)n−k

, 0 ≤ x ≤ 1,

and (bn)∞n=1 is a positive increasing sequence of reals with the properties

lim
n→∞

bn = ∞ , lim
n→∞

bn

n
= 0. (1.2)

These polynomials were introduced by I. Chlodovsky [11] in 1937 to generalize
the Bernstein polynomials (Bnf)(x), for the case bn = 1, n ∈ N0, which
approximate the function f on the interval [0, 1] (or, suitably modified on
any fixed finite interval [−b, b]). His main result is the following:

Chlodovsky’s Theorem. Let (bn) satisfy (1.2) and, for b > 0, let M(b; f) :=
sup

0≤t≤b
|f(t)| . If

lim
n→∞

M(bn; f) exp(−σn/bn) = 0 for each σ > 0, (1.3)
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then
lim

n→∞
(Cnf) (x) = f(x)

at each point x of continuity of the function f .

As a corollary he states that if a function f belonging to C[0,∞) is of order
f(x) = O(expxp) for some p > 0, and if the sequence {bn} satisfies the
condition

bn ≤ n
1

p+1+η ,

where η > 0, no matter how small, then (Cnf)(x) converges to f(x) at each
point x ∈ R+.

The first part of the next and very important lemma is due to
Chlodovsky [11].

For t ∈ [0, 1] the inequality

0 ≤ z ≤ 3
2

√
nt(1− t)

implies ∑
|k−nt|≥2z

√
nt(1−t)

pk,n(t) ≤ 2 exp
(
−z2

)
.

In particular, for 0 < δ ≤ x < bn and sufficiently large n,∑
| kbn

n −x|≥δ

pk,n

(
x

bn

)
≤ 2 exp

(
− δ2

4x

n

bn

)
. (1.4)

The proof of (1.4) is given in the 1960 by Albrycht and Radecki [2].

Chlodovsky showed more, namely the simultaneous convergence of the de-
rivative (Cnf)′(x) to f ′(x) at points x where it exists, a result taken up by
Butzer [6].

Next question concerning Chlodovsky operators was the rate of approxima-
tion by (Cnf) (x) to f(x), which is the counterpart of the classical questions
for Bernstein polynomials answered by Voronovskaya [29] in 1932. She showed
that for bounded f on [0, 1], one has the asymptotic formula

lim
n→∞

n[(Bnf)(x0)− f(x0)] =
x0(1− x0)

2
f ′′(x0) (1.5)

at each fixed point x0 ∈ [0, 1] for which there exists f ′′(x0) 6= 0.

The following relations of the Voronovskaya-type for the Chlodovsky opera-
tors and their derivatives are presented in [2].

If a function f satisfies

lim
n→∞

n

bn
exp

(
−σ

n

bn

)
M(bn; f) = 0 for each σ > 0,

then the Voronovskaya-type theorems for Chlodovsky operators read

lim
n→∞

n

bn
[Cnf(x)− f(x)] =

x

2
f ′′(x)
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at each point x ≥ 0 for which f ′′(x) exists.

2002 [3] In their introduction the authors write that “ as far as we know,
[a Voronovskaya-type formula] cannot be stated for the classical Cn”. For this
purpose they introduced the “more flexible” polynomials

C∗
nf(x) =

n∑
k=0

f
(cn

n
k
)( n

k

)(
x

bn

)k (
1− x

bn

)n−k

for which bn ≤ cn for all n ≥ 1, and bn → 0, bn/n → 0, with bn − cn → 0,
all as n →∞. They worked in the weighted (polynomial) space. Their main
theorem stated that

lim
n→∞

ρn[C∗
nf(x)− f(x)] = axf ′′(x) + bxf ′(x),

where {ρn} is a divergent increasing sequence of reals such that ρncn/n → 2a
and ρn(cn/bn − 1) → b as n →∞, a, b ≥ 0.

It is a pity these authors were not aware of the paper [2].

2003 [4] In this paper it is presented the extension of (1.5) to derivatives
of the Bernstein polynomials. The result states that for bounded f for which
f ′′′(x) exists at x ∈ [0, 1], one has

lim
n→∞

n[(Bnf)′(x)− f ′(x)] =
1− 2x

2
f ′′(x) +

x(1− x)
2

f ′′′(x). (1.6)

2. A brief history of the recent results on Chlodovsky
operators (2005-...)

We present below, in chronological order, a list of papers dealing with the
Bernstein-Chlodovsky Polynomials.

2005 [13] We introduce a Chlodovsky Type Durrmeyer operator as fol-
lows: Dn : BV [0,∞) → P,

(Dnf) (x) =
(n + 1)

bn

n∑
k=0

pk,n

(
x

bn

) bn∫
0

f(t)pk,n

(
t

bn

)
dt, 0 ≤ x ≤ bn (2.1)

where P := {P : [0,∞) → R}, is a polynomial functions set, and pk,n (x) =(
n
k

)
xk(1−x)n−k is the Bernstein basis. We estimated the rate of convergence

of operators Dn, for functions of bounded variation at the points which one
sided limit exist, for functions of bounded variation on the interval [0,∞), by
means of the techniques of probability theory.

2006 [8] The authors establish two inverse theorems for Bernstein-
Chlodovsky type polynomials of two variables in a rectangular and a tri-
angular domain.
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2006 [15] The aim of this paper is to study the problem of the ap-
proximation of functions of two variables by means of Bernstein-Chlodovsky
polynomials in a rectangular domain.

2006 [1] The concern of this note is to introduce a general class of linear
positive operators of discrete type acting on the space of real valued functions
defined on a plane domain. These operators preserve some test functions of
Bohman-Korovkin theorem. As a particular class, a modified variant of the
bivariate Bernstein-Chlodovsky operators is presented.

2007 [17] We estimate the rate of pointwise convergence of the Chlodov-
sky-type Bernstein operators (Cnf)(x) for functions defined on the interval
[0, bn], for bn → ∞ as n → ∞, which are of bounded variation on [0,∞).
At those points for which one-sided limits exists, we shall prove that the

operators (Cnf)(x) converge to the limit
f(x+) + f(x−)

2
.

2007 [18] Denote by DBV (I), the class of differentiable functions defined
on a set I ⊂ R, whose derivatives are with bounded variation on I:

DBV (I) = {f : f ′ ∈ BV (I)} .

The aim of this paper is to estimate the rate of convergence of Dnf defined
in (2.1) toward f , which is a function that has a derivative with bounded
variation on [0, bn],where bn → ∞ as n goes to infinity. (Dnf)(x) converges
to f(x) in every point x of discontinuity of the first kind of the derivative of
f .

2008 [19] We define a new kind of MKZD operators for functions defined
on [0, bn], named Chlodovsky-type MKZD operators as

(M∗
nf) (x) =

∞∑
k=0

n + k

bn
mn,k

(
x

bn

) bn∫
0

f(t)bn,k

(
t

bn

)
dt, 0 ≤ x ≤ bn,

where mn,k (x) =
(

n + k − 1
k

)
xk(1−x)n and bn,k(t) = n

(
n + k

k

)
tk(1−t)n−1.

The aim of this paper is to study the behavior of the M∗
n operators for func-

tions of bounded variation and give an estimate, by means of the techniques of
probability theory, of the rate of convergence of the operators on the interval
[0, bn], (n →∞) extending infinity.

2008 [20] The concern of this paper is to study the rate of convergence
of Cnf to f for f ∈ DBV ([0, bn]) , (n →∞) extending infinity. At the point
x, which is a discontinuity of the first kind of the derivative, we shall prove
that (Cnf) (x) converge to the limit f(x).
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2008 [23] For α ≥ 1, we now introduce Chlodovsky-Bézier operators
Cn,α as follows:

(Cn,αf) (x) =
n∑

k=0

f

(
k bn

n

)
Q

(α)
n,k

(
x

bn

)
, ( 0 ≤ x ≤ bn ), (2.2)

where Q
(α)
n,k( x

bn
) =

(
Jn,k( x

bn
)
)α

−
(
Jn,k+1( x

bn
)
)α

and Jn,k( x
bn

) =
n∑

j=k

pj,n( x
bn

)

be the Bézier basis functions. Obviously, Cn,α is a positive linear operator and
Cn,α(1, x) = 1. In particular when α = 1, the operators (2.2) reduce to the
operators (1.1) In this paper, we estimate the rate of pointwise convergence
of the Bézier Variant of Chlodovsky operators Cn,α for functions, defined on
the interval extending infinity, of bounded variation.

2008 [24] We introduce the following q-Chlodovsky polynomials defined
as

(Cn,qf)(x) =
n∑

k=0

f

( [k]q
[n]q

bn

)[
n
k

]
q

(
x

bn

)k n−k−1∏
s=0

(
1− qs x

bn

)
, 0 ≤ x ≤ bn

where (bn) is a positive increasing sequence with the property (1.2). We study
some approximation properties of these new operators, which include the
well-known Bohman-Korovkin-type theorem, degree of pointwise and uniform
convergence and investigation of the monotonocity property of q−Chlodovsky
operators.

2009 [9] The author introduce the positive linear operators q-Bernstein-
Chlodovsky polynomials on a rectangular domain and obtain their Korovkin
type approximation properties. The rate of convergence of this generalization
is obtained by means of the modulus of continuity, and also by using the K-
functional of Peetre. He obtains weighted approximation properties for these
positive linear operators and their generalizations.

2009 [16] Approximation on an unbounded interval is studied in this
work by means of a new-defined two-parameter polynomial operator based
on Chlodovsky polynomials. The operator’s properties including convergence
rate are investigated using the weighted modulus of continuity.

2009 [7] This paper is first of all devoted to the counterpart of (1.6)
for the Chlodovsky polynomials, namely the Voronovskaya-type theorem for
(Cnf)′(x). The Theorem states that:

For a function f , defined on [0,∞)

lim
n→∞

n

bn
[(Cnf)′(x)− f ′(x)] =

f ′′(x) + xf ′′′(x)
2

(2.3)

at each fixed point x ≥ 0 for which f ′′′(x) exists, provided that the growth
condition (1.3) is satisfied.

The second aim of this paper is to study Voronovskaya-type theorems for the
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derivatives of this operator and to compare the effectiveness of the Szász-
Mirakyan operator with the Bernstein-Chlodovsky polynomials in general.

The only way to fully match the assertion of (2.3) is to work with the Szász-
Chlodovsky operator

exp
(
−nx

bn

) ∞∑
k=0

f

(
kbn

n

)(
nx

bn

)k 1
k!

:= (Lnf)(x),

defined and studied by Stypinski [28].

In the same paper, given a function f locally integrable on the interval [0,∞)
we define the Kantorovich variant of the Chlodovsky-Bernstein polynomials
as

(Knf)(x) :=
n + 1
bn+1

n∑
k=0

pk,n

(
x

bn+1

) (k+1)bn+1
n+1∫

kbn+1
n+1

f(u)du if 0 ≤ x ≤ bn+1,

(2.4)
where (bn) satisfies conditions (1.2).

If F denotes the indefinite integral of f , i.e., F (x) =

x∫
0

f(u)du, then we have

(Cn+1F )′(x) = (Knf)(x) for almost all x ∈ [0, bn+1], in particular for every
x ∈ [0, bn+1] at which f is continuous.

We set

M I(b; f) :=

√√√√√ b∫
0

|f(u)|2 du.

The following result is a corollary of our Theorem on the Voronovskaya-type
theorems for the derivatives of (Cnf)(x).

If one has

lim
n→∞

n√
bn

exp
(
−α

n

bn

)
M I(bn; f) = 0

for every α > 0, then

lim
n→∞

n + 1
bn+1

[(Knf)(x)− f(x)] =
f ′(x) + xf ′′(x)

2

at each fixed point x ≥ 0 for which f ′′(x) exists.

2009 [26] In this paper we introduce the Bézier variant of the Chlo-
dovsky-Kantorovich operators (2.4) of order (n− 1) for f ∈ Lloc[0,∞) as

Kn−1,αf(x) :=
n

bn

n−1∑
k=0

Q
(α)
n−1,k

(
x

bn

) (k+1)bn
n∫

kbn
n

f(u)du if 0 ≤ x ≤ bn, (2.5)
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where α > 0, Q
(α)
n−1,k (t) = Jα

n−1,k (t) − Jα
n−1,k+1 (t) and Jn−1,k (t) are the

Bézier basis functions defined for t ∈ [0, 1] as

Jn−1,k (t) =
n−1∑
j=k

pj,n−1 (t) if k = 0, 1, . . . , n− 1,

Jn−1,n (t) = 0. Clearly, if α = 1 then Kn−1,αf reduce to operators (2.4)
with n replaced by n− 1. Our paper is concerned with the rate of pointwise
convergence of operators (2.5) when f ∈ Mloc[0,∞),i.e. f is measurable and
locally bounded on [0,∞). By using the Chanturiya modulus of variation we
present estimations for the rate of convergence of Kn−1,αf(x) at the points x
of continuity of f and at the discontinuity points of the first kind of f . We will
formulate our results for Kn−1,αf with α > 0. The corresponding estimations
for the Chlodovsky-Kantorovich polynomials Kn−1f follow immediately as a
special case α = 1.

2009 [27] The author estimate the rates of convergence of Chlodovsky-
Kantorovich polynomials in classes of locally integrable functions. Namely,

if f ∈ Lloc[0,∞) and if

lim
n→∞

bn∫
0

|f(u)| du exp(−σ
n

bn
) = 0 for each σ > 0,

then
lim

n→∞
(Knf) (x) = f(x) almost everywhere on [0,∞),

i.e. at every x > 0 at which F ′(x) = f(x).

Some modified Chlodovsky-Kantorovich operators are considered also in [14].

2009 [22] For f ∈ Xloc[0,∞) and α ≥ 1, we introduce the Bézier variant
of Chlodovsky-Durrmeyer operators Dn,α as follows:

(Dn,αf) (x) =
n + 1

bn

n∑
k=0

Q
(α)
n,k

(
x

bn

) bn∫
0

f(t)pk,n

(
t

bn

)
dt, 0 ≤ x ≤ bn, (2.6)

Obviously, Dn,α is a positive linear operator and Dn,α(1, x) = 1. Particularly,
when α = 1 the operators (2.6) reduce to the operators (2.1).

The paper is concerned with the rate of pointwise convergence of the opera-
tors (2.6) when f belong to Xloc[0,∞). By using the Chanturiya modulus of
variation we examine the rate of pointwise convergence of (Dn,αf) (x) at the
points of continuity and at the discontinuity points of the first kind of f .

It is necessary to point out that in the present paper we extend and improve
the earlier result of [13] for Chlodovsky-Durrmeyer operators.

At first, we give the following definition.

Definition. Let f be a bounded function on a compact interval I = [a, b]. The
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modulus of variation νn(f ; [a, b]) of the function f is defined for nonnegative
integers n as follows:

ν0(f ; [a, b]) = 0

and for n ≥ 1

νn(f ; [a, b]) = sup
Πn

n−1∑
k=0

|f(x2k+1)− f(x2k)| ,

where Πn is an arbitrary system of n disjoint intervals (x2k, x2k+1), where
k = 0, 1, ..., n− 1, i.e., a ≤ x0 < x1 ≤ x2 < x3... ≤ x2n−2 < x2n−1 ≤ b.

If f ∈ BVp(I), p ≥ 1, i.e., if f is of bounded pth power variation on I, then
for every k ∈ N,

νk(f ; I) ≤ k1−1/pVp(f, I),

where Vp(f, I) denotes the total pth power variation of f on I, defined as the

upper bound of the set of numbers

(∑
j

|f(kj)− f(lj)|p
)1/p

over all finite

systems of non-overlapping intervals (kj , lj) ⊂ I. We also consider the class
BV p

loc[0,∞), p ≥ 1, consisting of all functions of bounded pth power variation
on every compact interval I ⊂ [0,∞).

Theorem 2.1. Let f ∈ Xloc[0,∞) and assume that the one-sided limits f(x+),
f(x−) exist at a fixed point x ∈ (0,∞). Then, for all integers n such that
bn > 2x and 4bn ≤ n one has∣∣∣∣Dn,α(f ;x)− f(x+) + αf(x−)

α + 1

∣∣∣∣ ≤ 2ν1(gx;Hx(x
√

bn/n))

+
32α

x2

(
x

(
1− x

bn

)
+

bn

n

)m−1∑
j=1

νj(gx;Hx(jx
√

bn/n))
j3

+
νm(gx;Hx(x))

m2


+

2αcq

x2q
µ(bn; f)

(
bn

n

)q (
x

(
1− x

bn

)
+

bn

n

)q

+
2α |f(x+)− f(x−)|√

nx
bn

(
1− x

bn

) ,

where m := [
√

n/bn], Hx(u) = [x − u, x + u] for 0 ≤ u ≤ x, µ(b; f) :=
sup

0≤t≤b
|f(t)| ,

gx(t) :=

 f(t)− f(x+) if t > x,
0 if t = x,

f(t)− f(x−) if 0 ≤ t < x,

q is an arbitrary positive integer and cq is a positive constant depending only
on q.

From Theorem 2.1 we get
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Theorem 2.2. Let f ∈ BV p
loc[0,∞), p ≥ 1, and let x ∈ (0,∞). Then, for all

integers n such that bn > 2x and 4bn ≤ n we have∣∣∣∣Dn,α(f ;x)− f(x+) + αf(x−)
α + 1

∣∣∣∣ ≤ 2Vp(gx;Hx(x
√

bn/n))

+
27+1/pα

x2m1+1/p

(
x

(
1− x

bn

)
+

bn

n

) (m+1)2−1∑
k=1

Vp(gx;Hx( x√
k
))(√

k
)1−1/p

+
2αcq

x2q
µ(bn; f)

(
bn

n

)q (
x

(
1− x

bn

)
+

bn

n

)q

+
2α |f(x+)− f(x−)|√

nx
bn

(
1− x

bn

) .

So, we get the following approximation theorem.

Corollary 2.3. Suppose that f ∈ Xloc[0,∞) (in particular, f ∈ BV p
loc[0,∞),

p ≥ 1) and that there exists a positive integer q such that

lim
n→∞

(
bn

n

)q

µ(bn; f) = 0.

Then, at every point x ∈ (0,∞) at which the limits f(x+), f(x−) exist, we
have

lim
n→∞

Dn,α(f ;x) =
f(x+) + αf(x−)

α + 1
.

Obviously, the above relations hold true for every measurable function f
bounded on [0,∞), in particular for every function f of bounded pth power
variation (p ≥ 1) on the whole interval [0,∞).

2010 [10] In this paper, the author investigates convergence and approxi-
mation properties of a Chlodovsky type generalization of Stancu polynomials.

2010 [25] The authors estimate the rates of pointwise approximation
of certain King-type positive linear operators for functions with derivative of
bounded variation. We also extend our results to the statistical approximation
process via the concept of statistical convergence.

2010 [5] In this work, they state a Chlodovsky variant of a multivariate
beta operator to be called hereafter the multivariate beta-Chlodovsky opera-
tor. They show that the multivariate beta-Chlodovsky operator can preserve
properties of a general function of modulus of continuity and also the Lips-
chitz constant of a Lipschitz continuous function.

2010 [12] Another recent result concerning uniform approximation by
the Chlodovsky operators is due to A. Holhoş.
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2010 [21] Let Jn,k (t) =
n∑

j=k

pj,n (t) , t ∈ [0, 1], be the Bézier basis func-

tions. For f ∈ Xloc[0,∞) and α > 0, the Bézier modification Cn,αf of oper-
ators (1.1) is defined as

Cn,αf(x) =
n∑

k=0

f

(
kbn

n

)
Q

(α)
n,k

(
x

bn

)
for x ∈ [0, bn], (2.7)

where Q
(α)
n,k (t) = Jα

n,k (t)− Jα
n,k+1 (t) for t ∈ [0, 1] ( Jn,l (x) ≡ 0 if l > n ).

If α = 1, then Cn,αf reduce to the operators (1.1).

Recently, Karsli and Ibikli [17],[23] gave some estimates for the rates
of convergence of operators (1.1) and (2.7) (with α ≥ 1) for functions f ∈
BV [0,∞). In this paper:

1− we essentially improve those estimates,

2− we extend those results to some wider classes of functions, in par-
ticular for classes BV p[0,∞) with p > 1,

3− we extend them to all parameters α > 0.

If x ∈ (0,∞), the following intervals Hx(u) := [x − u, x + u] for 0 < u ≤ x
will be used.

Theorem 2.4. Let f ∈ Xloc[0,∞) and assume that the one-sided limits f(x+),
f(x−) exist at a fixed point x ∈ (0,∞). Then, for all integers n such that
bn > 2x and n/bn ≥ max {4, 21/x} we have∣∣∣∣Cn,αf(x)− 1

2α
f(x+)−

(
1− 1

2α

)
f(x−)

∣∣∣∣ ≤ 2ν1(gx;Hx(x
√

bn/n))

+
16λα

x2

(
x

(
1− x

bn

)
+

bn

n

)m−1∑
j=1

νj(gx;Hx(jx
√

bn/n))
j3

+
νm(gx;Hx(x))

m2


+κα

√
bn

n

√
bn

x (bn − x)

(
|f(x+)− f(x−)|+ |f(x)− f(x−)| en

(
x

bn

))

+4καM(bn; f) exp
(
−ρα

nx

4bn

)
,

where m := [
√

n/bn], κα = max {1, α} , ρα = min {1, α} , λα is a positive
constant depending only on α ( if α ≥ 1 then λα = α ), en(x/bn) = 1 if
there exists a k′ ∈ {0, 1, ..., n} such that nx = k′bn, en(x/bn) = 0 otherwise,
M(b; f) := sup

0≤t≤b
|f(t)| .

Here we note that, under the Chlodovsky condition (1.3), Theorem 2.4 is also
an approximation theorem. To see this we must verify that the right-hand
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side of the inequality given in this theorem converges to zero as n → ∞. In
view of (1.2) we have bn/n → 0 and m =

[√
n/bn

]
→∞ as n →∞. Clearly,

νm(gx;Hx(x))
m2

≤ 2
m

M(2x; f) → 0 as n →∞.

Therefore it is enough to consider only the term

Λm(x) :=
m−1∑
j=1

νj(gx;Hx(jxdn))
j3

where dn =
√

bn/n.

It is easy to see that

Λm(x) ≤
m−1∑
j=1

ν1(gx;Hx(jxdn))
j2

≤ 4dn

mdn∫
dn

ν1(gx;Hx(xt))
t2

dt

≤ 4dn

m+1∫
1

ν1

(
gx;Hx

(x

s

))
ds ≤ 4

m

m∑
k=1

ν1

(
gx;Hx

(x

k

))
.

Since the function gx is continuous at x and ν1(gx;Hx(x/k)) denotes the oscil-
lation of gx on the interval [x−x/k, x+x/k], we have lim

k→∞
ν1 (gx;Hx (x/k)) =

0. Consequently lim
m→∞

Λm(x) = 0, by the well-known theorem on the limit of
the sequence of arithmetic means. Hence we get the following

Corollary 2.5. Suppose that f ∈ Xloc[0,∞) and that the Chlodovsky condition
(1.3) is satisfied. Then

lim
n→∞

Cn,αf(x) =
1
2α

f(x+) +
(

1− 1
2α

)
f(x−) (2.8)

at every point x ∈ (0,∞) at which the limits f(x+), f(x−) exist.

Of course, relation (2.8) holds true for every function f bounded on the
interval [0,∞). In particular, if α = 1 and x is the point of continuity of f ,
our Corollary 2.5 coincides with the above mentioned theorem of Chlodovsky.

Retaining the symbols used in Theorem 2.4 we also get

Theorem 2.6. Let f ∈ BV p
loc[0,∞), p ≥ 1, and let x ∈ (0,∞). Then∣∣∣∣Cn,αf(x)− 1

2α
f(x+)−

(
1− 1

2α

)
f(x−)

∣∣∣∣ ≤ 2Vp(gx;Hx(x
√

bn/n))
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+
26+1/pλα

x2m1+1/p

(
x

(
1− x

bn

)
+

bn

n

) (m+1)2−1∑
k=1

Vp

(
gx;Hx

(
x√
k

))
(√

k
)1−1/p

+κα

√
bn

n

√
bn

x (bn − x)

(
|f(x+)− f(x−)|+ |f(x)− f(x−)| en

(
x

bn

))
+4καM(bn; f) exp

(
−ρα

nx

4bn

)
,

for all integers n such that bn > 2x and n/bn ≥ max {4, 21/x} .

It is easy to verify that, in view of continuity of gx at x,

lim
m→∞

1
m1+1/p

(m+1)2−1∑
k=1

1(√
k
)1−1/p

Vp

(
gx;Hx

(
x√
k

))
= 0.

Hence from Theorem 2.6 we have

Corollary 2.7. If f belongs to the class BV p
loc[0,∞), p ≥ 1, and if it satisfies

condition (1.3), the relation (2.8) holds true at every x ∈ (0,∞). In particu-
lar, (2.8) remains valid for every function f of class BV p[0,∞), p ≥ 1.

Corollary 2.8. Let us consider now the special case p = 1, α ≥ 1, and let us
suppose that f ∈ BV [0,∞). Then at every x > 0 and for all integers n such
that bn > 2x and n/bn ≥ 4, we have∣∣∣∣Cn,αf(x)− 1

2α
f(x+)−

(
1− 1

2α

)
f(x−)

∣∣∣∣ ≤ 2V (gx;Hx(x
√

bn/n))

+
29αbn

n

(
1
x
− 1

bn

) 2[n/bn]∑
k=1

V

(
gx;Hx

(
x√
k

))
+ 4αM exp

(
− nx

4bn

)

+α

√
bn

n

√
bn

x (bn − x)

(
|f(x+)− f(x−)|+ |f(x)− f(x−)| en

(
x

bn

))
,

where M = sup
0≤x<∞

|f(x)| and V (gx;H) denotes the Jordan variation of gx

on the interval H.

The above estimate is essentially better than the estimates presented in [17]
(α = 1) and [23] (α ≥ 1).
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14280, Gölköy-Bolu, Turkey
e-mail: karsli h@ibu.edu.tr


