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Stochastic simulation of the gradient process
in semi-discrete approximations of diffusion
problems

Flavius Guiaş

Abstract. We analyze a stochastic version of the so-called diffusion-
velocity method. For moving particles with velocities depending on the
gradient of their density function we introduce a stochastic scheme based
on the simulation of the gradient process where the values of the density
are recovered by a numerical integration method. We apply this method
to the diffusion equation and show a convergence result.
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1. Introduction

Numerical particle methods are suited to approximate the time evolution of
a density function by simulating trajectories of the (interacting) particles.
We assume that the velocity vector depends (linearly or nonlinearly) on the
gradient of this density function. For example in the so-called deterministic
diffusion of particles one assigns to every particle a velocity vector which
is proportional to the logarithmic derivative of the density function. This
principle can be derived as follows: consider in a volume element U ⊂ Rd the
continuity equation: ut = −∇· (uv), which describes the motion with velocity
v of a quantity with density function u. Pure formally, if we put v = −∇u

u we
obtain nothing else than the diffusion equation: ut = ∆u. This type of velocity
is often called in the physical literature as osmotic velocity. A discussion
of this deterministic particle method together with several applications is
presented in [4] and [5] and a rigorous convergence result is proved in [3].

Our goal is to construct an analogous scheme in a stochastic framework.
The main motivation is that this scheme may be used in combination with
usual Monte Carlo methods for kinetic equations in a spatially inhomogeneous
setting, with spatial motion and local interaction.
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After moving a particle from a location to another the density config-
uration changes, so one has also to update the corresponding values of the
gradient. In a stochastic framework for particle simulation, the use of stan-
dard discretization schemes for computing the gradient can lead to strong
oscillations in the density values. In order to avoid this problem we consider
the simulation of the gradient process. Given an initial data in terms of the
density, one computes the gradient by a usual discretization scheme (e.g. fi-
nite differences). The scheme follows then only the dynamics of the gradient
process which are derived from the original dynamics of the particle system.
The density is recovered by a numerical integration method.

In this paper we present an application of the principle described above
to the diffusion equation. By this example we intend also to develop a for-
malism and a methodology which can be applied in more general cases.

In Section 2 introduce the stochastic counterpart of the diffusion-
velocity method. We point out that this direct approach in the stochastic
framework leads to strong fluctuations of the density profile which we want
to approximate. In order to overcome this problem we introduce in Section
3 a stochastic scheme for the gradient process. Convergence results for the
density computed by numerical integration are presented in Section 4.

2. The diffusion-velocity method in a stochastic framework

In this section we will present an approach to approximate the diffusion
equation in the one-dimensional case, which can be extended easily to higher
dimensions. The goal is to approximate on the interval (0, 1) the solution of:

ut = uxx, with the boundary condition:

 u(0) = u(1) = 0 (D)
or

ux(0) = ux(1) = 0 (N)
(2.1)

and initial condition u(0, x) = u0(x) ∈ H1(0, 1) for all x ∈ [0, 1].
In this section we will assume that u0 ≥ 0. Let M be an integer, denote

ε = M−1 and consider the discrete set of sites Gε = {kε, k = 1,M − 1}.
Assume that we have N particles distributed in the locations of Gε, and
denote by nk(t) the number of particles present at the moment t in the
location kε. We introduce the scaling parameter h = M/N = ε−1N−1, which
means that h−1 is the average number of particles per site. The density
function corresponding to this particle system is defined in the points kε of
the discretization grid by uk(t) = hnk(t). In analogy to the formula v = −∇u

u

we assign to the particles located at kε, k = 1,M − 1, the velocity

vk(t) =
uk−1(t)− uk+1(t)

2εuk(t)
.

Sometimes we will consider formal function values at the boundary sites
0 and Mε = 1 (which contain no particles), in order to model the boundary
conditions. These values influence the transitions in the sites ε and (M −1)ε.
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Every particle situated at kε can jump one site to the left or to the right
(depending on the sign of the velocity). Our interest is however to follow the
time evolution of the density function and from this viewpoint all particles
present in the same location are indistinguishable. That is, if any particle
from the site kε jumps with the rate Mvk = ε−1|vk|, the density function in
the new state will be the same, independently on which particle jumped. We
can thus consider a single transition of this type and multiply the rate with
nk(t), i.e. with the number of particles present at time t at the site kε.

2.1. Construction of the Markov jump process

Based on the previous considerations, we will construct two RM−1-valued
Markov jump processes as follows. Given the time moment t and the state
u(t) = (uk(t))M−1

k=1 , we define

wk(t) = hnk(t) · vk(t) =
uk−1(t)− uk+1(t)

2ε
=: −∇εu

k(t) (2.2)

for k = 1,M − 1.
The transitions in the interior sites are given by:

u(t) → u(t)− hek + hek+ζ(wk) at rate h−1ε−1|wk(t)| (2.3)

where ei denotes the i-th unit vector in RM−1, while ζ(·) denotes the signum
function. This corresponds to the jump of a particle from the site k in the
site k + ζ(wk), for k = 1,M − 1.

The quantity wk(t) defined in (2.2) represents the discrete derivative of
the density function uk(t) and the transition (2.3) changes this function in
the locations k, k + ζ(wk), k + 2ζ(wk), k − ζ(wk) as follows:

wk → −ζ(wk)
uk+ζ(wk) + h− uk−ζ(wk)

2ε
= wk − h

2ε
ζ(wk) (2.4)

wk+ζ(wk) → −ζ(wk)
uk+2ζ(wk) − uk + h

2ε
= wk+ζ(wk) − h

2ε
ζ(wk)

wk+2ζ(wk) → −ζ(wk)
uk+3ζ(wk) − uk+ζ(wk) − h

2ε
= wk+2ζ(wk) +

h

2ε
ζ(wk)

wk−ζ(wk) → −ζ(wk)
uk − h− uk−2ζ(wk)

2ε
= wk−ζ(wk) +

h

2ε
ζ(wk)

at rate h−1ε−1|wk(t)|.
We will discuss next the situation at the boundary.
In the case of zero boundary conditions (D), we consider formally ui(t) =

0 for all i 6∈ {1, . . . ,M − 1} in all expressions from (2.3). This value does not
change after any possible transition, that is, the particle which leaves the
interior of the domain is ’killed’. Outside the range 1,M − 1 the function
w is not defined. Consider w1(t) = − 1

2εu
2(t) and wM−1(t) = 1

2εu
M−2(t).

Note that always holds w1 ≤ 0 and wM−1 ≥ 0. This implies that in the case
k = 1 or k = M − 1, the changes of wk−ζ(wk) are well defined in (2.4), while
wk+ζ(wk) and wk+2ζ(wk) are not present, the indices being out of range.
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In the case of Neumann boundary conditions (N) we take

w1(t) = wM−1(t) = 0.

2.2. Remarks

As the following considerations will show, the density function u may exhibit
strong oscillations. Suppose that we have an even number of interior loca-
tions {1, . . . , 2M}, while the sites 0 and 2M +1 correspond to the boundary.
Expressing u in terms of w in the case of 0 boundary conditions we obtain

u2k − u2k+1 = −2ε

(
k∑

i=1

w2i−1 +
M∑

i=k+1

w2i

)
. (2.5)

The value of the difference in (2.5) approaches the integral −
∫ 1

0
wdx.

Since the expected limits satisfy w = −ux, the difference will be close to
u(1)− u(0), up to a factor of O(ε). The same statement holds for Neumann
boundary conditions, where the computations are similar, but the expressions
for the values of u in the sites 2, 2M − 1 involve also the values of u1 and
u2M (which cannot be computed directly from w). In this situation, especially
in the case of asymmetric initial data, the value of the difference can be of
O(1). If the integral is nonzero, the difference u2k −u2k+1 will have basically
a constant sign, which means that one can observe a strongly oscillating
pattern. Only in the case that the integral vanishes (in our setting only for
zero boundary conditions or symmetric data) the oscillations have a smaller
amplitude. In this case, after some elementary computations, the difference
(2.5) can be estimated by ε(‖w‖∞ + 1

2‖w
′‖∞) +O(ε2).

3. The particle scheme for the gradient process

Based on the previous considerations, we will present next a particle scheme
for the one-dimensional diffusion equation. We consider a discretized version
of the initial condition u0 of the equation (2.1), from which we derive the
values of w(0) according to (2.2) and the settings at the boundary. In the
interior of the domain we simulate the time evolution of the gradient process
w according to (2.4). The state changes of the process which affect the values
of w at the ’near boundary’ sites are chosen such that for given ε, the de-
terministic difference equation obtained in the limit proves to be consistent
with the corresponding diffusion equation for w = ux, where u is a sufficiently
smooth solution of (2.1).

For zero boundary conditions (D) we construct the dynamics at the
’near-boundary’ sites ε and (M − 1)ε according to the following natural con-
servation principle. Since we expect w = −ux and thus∫ 1

0

w(x)dx = u(0)− u(1) = 0,
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we impose that
∑M−1

i=1 wi(t) = 0 for all t. That is, the total sum of the changes
after each transition should vanish. In the interior this condition is fulfilled
in all situations, as one can see from (2.4).

In order to construct the approximate solution for equation (2.1) we
have to perform a numerical integration. An accurate result is delivered for
example by the computation of

u(t, x) :=
1
2

(
−
∫ x

0

w(t, y)dy +
∫ 1

x

w(t, y)dy + u(t, 0) + u(t, 1)
)

(3.1)

with the trapezoidal rule.
For zero boundary conditions (D) we can compute u by knowing only

the gradient process w, since the density function vanishes at the bound-
ary. In order to perform the integration, we need the values of w in the
boundary sites 0 and Mε = 1. For zero boundary conditions we have (for-
mally): wx(t, 0) ≈ −uxx(t, 0) ≈ − d

dtu(t, 0) = 0. We take thus w(0) = w(ε)
and w(1) = w((M − 1)ε).

In the case of Neumann boundary conditions (N) we do not know the val-
ues u(t, 0) and u(t, 1) (except if we simulate also the density process). But we
can recover u by using the conservation property

∫ 1

0
u(t, x)dx =

∫ 1

0
u0(x)dx.

If we let f(t, x) = −
∫ x

0
w(t, y)dy +

∫ 1

x
w(t, y)dy, we then have

u(t, x) :=
1
2

(
f(t, x)−

∫ 1

0

f(t, y)dy
)

+
∫ 1

0

u0(x)dx.

By a discrete version of the above formula (computed by the trapezoidal rule)
we can recover the desired approximation for the solution of (2.1) by knowing
only the initial data and the time evolution of the gradient process w.

3.1. Dynamics in terms of the infinitesimal generator

We will express the dynamics of the Markov process w given by the transitions
(2.4) in terms of its generator, by using the characterization from [1], p.162 f.
If we have an E-valued Markov jump process with a set of transitions {x(·) →
y(·)} and the corresponding rates rx→y, the waiting time parameter function
λ(t) =

∑
rx→y is given by the sum of all possible transition rates. The

infinitesimal generator Λ is an operator acting on the bounded, measurable
functions on E and is given by (Λf)(x) =

∑
x→y(f(y)− f(x))rx→y.

We note that for fixedM andN the process w has bounded components,
i.e. there exists a constant LM,N such that max|wk| ≤ LM,N for all times.
The waiting time parameter function λ is also bounded, which implies that
the process is well-defined for all t, i.e. the jumps do not accumulate.

For a vector w ∈ RM−1 and 3 ≤ k ≤ M − 3 denote ηw
k := ek−ζ(wk) −

ek − ek+ζ(wk) + ek+2ζ(wk). In order to define the values in the sites near
the boundary, we take into account the requirements of conservation and
consistency.
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In the case of zero boundary condition (D) we define:

ηw
1 =

{
−e1 + e2 if w1 < 0
−e2 + e3 if w1 > 0 (3.2)

ηw
2 =

{
−e2 + e3 if w2 < 0

e1 − e2 − e3 + e4 if w2 > 0.

At the other end of the interval we define similarly ηw
M−i for i = 1, 2 by

replacing wi with −wM−i and ej with eM−j for j = 1 . . . 4.
For Neumann boundary condition (N) we consider ηw

1 = ηw
M−1 = 0 and

for k = 2, 3 (or k = M − 3,M − 2) we suppress the term e1 (respectively
eM−1) if it appears in the formula ηw

k = ek−ζ(wk)− ek− ek+ζ(wk) + ek+2ζ(wk).
Taking in account (2.4), the transitions of the process w are therefore

given by

w −→ w + ζ(wk)
h

2ε
ηw

k

at rate h−1ε−1|wk(t)|.
Define the linear operator ∆ζ(w)

ε φ by:

(∆ζ(w)
ε φ)k :=

1
2ε2

〈ηw
k , φ〉 (3.3)

for all φ ∈ RM−1, where 〈·, ·〉 denotes the scalar product on RM−1.
For 3 ≤ k ≤M − 3 we thus have

(∆ζ(w)
ε φ)k =

1
2ε2

[φk−ζ(wk) − φk − φk+ζ(wk) + φk+2ζ(wk)]. (3.4)

For a fixed element φ ∈ RM−1 consider on RM−1 a bounded smooth
function fφ which on the set {x : max|xk| ≤ LM,N} has the form fφ(x) =
〈x, φ〉 =

∑M−1
i=1 xiφi. Outside this set the values of the function are in our

case not of interest, only the boundedness is essential. From [1], p.162 we
have that the process w satisfies the identity

fφ(w(t)) = fφ(w(0)) +
∫ t

0

(Λwfφ)(w(s))ds+Mφ(t) (3.5)

where Mφ(·) is a martingale with respect to the filtration generated by the
process w and Λw is the infinitesimal generator. The value Λwfφ is given by

(Λwfφ)(w(t)) =
h

2ε

∑
k

〈ζ(wk)ηw
k , φ〉h−1ε−1|wk(t)|

=
1

2ε2
∑

k

[φk−ζ(wk) − φk − φk+ζ(wk) + φk+2ζ(wk)]wk(t)

= 〈∆ζ(w)
ε φ,w(t)〉. (3.6)

Equation (3.5) becomes thus

〈w(t), φ〉 = 〈w(0), φ〉+
∫ t

0

〈∆ζ(w)
ε φ,w(s)〉ds+Mw

φ (t). (3.7)



Stochastic simulation of the gradient process 399

3.2. The deterministic scheme as limit of the family of stochastic processes

By standard techniques as in [1] or [2] one can show that for fixed ε the
stochastic processes converge in probability for N →∞ to the solution of the
ODE-system obtained by suppressing the martingale term in (3.7). We may
note that the stochastic method proposed here delivers for fixed ε an approx-
imation of the solution of the ODE-system by computing all transitions of
the stochastic process at the ’microscopic level’. However, this ODE-system is
not meant to be approximated by a deterministic time-discretization scheme,
but its solution is approximated directly by the stochastic simulations. The
convergence for ε → 0 of the difference scheme provided by the spatially
discretized system to the solution of the corresponding spatially continuous
diffusion equation will be analyzed subsequently. The system of ODE’s which
is obtained for N →∞ and fixed ε is therefore given by:

〈vε(t), φ〉 = 〈vε(0), φ〉+
∫ t

0

〈∆ζ(vε)
ε φ, vε(s)〉ds (3.8)

for all φ ∈ RM−1, where for any w ∈ RM−1, ∆ζ(w)
ε φ was defined in (3.3)

as
(∆ζ(w)

ε φ)k :=
1

2ε2
〈ηw

k , φ〉.

The vectors ηw
k can be written in the more convenient form:

ηw
k = −ek−2ζ(wk ∧ 0) + ek−1ζ(wk)− ek − ek+1ζ(wk) + ek+2ζ(wk ∨ 0) (3.9)

for 3 ≤ k ≤M − 3 and, for zero boundary conditions,

ηw
2 = e1ζ(w2 ∨ 0)− e2 − e3ζ(w2) + e4ζ(w2 ∨ 0)
ηw
1 = e1ζ(w1 ∧ 0)− e2ζ(w1) + e3ζ(w1 ∨ 0).

By x∧0, x∨0 we denote respectively the minimum between x and 0 and the
maximum between x and 0. The terms ηw

M−1, η
w
M−2 are defined analogous to

ηw
1 and ηw

2 . With this form we obtain:

(∆ζ(w)
ε φ)k =

1
2ε2

[
−φk−2ζ(wk ∧ 0) + φk−1ζ(wk)− φk − φk+1ζ(wk)

+ φk+2ζ(wk ∨ 0)
]

for 3 ≤ k ≤M − 3 and

(∆ζ(w)
ε φ)2 =

1
2ε2

[
φ1ζ(w2 ∨ 0)− φ2 − φ3ζ(w2) + φ4ζ(w2 ∨ 0)

]
(∆ζ(w)

ε φ)1 =
1

2ε2
[
φ1ζ(w1 ∧ 0)− φ2ζ(w1) + φ3ζ(w1 ∨ 0)

]
.

An explicit form of the deterministic equations is given by letting φ = ei

in (3.8), for i = 1,M − 1. We obtain then the system

vi
ε(t) = vi

ε(0) +
∫ t

0

〈∆ζ(v)
ε ei, vε(s)〉ds (3.10)

= vi
ε(0) +

∫ t

0

F i
ε(vε(s))ds
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for i = 1,M − 1, where for 3 ≤ i ≤M − 3 we have the explicit form:

F i
ε(vε) =

1
2ε2

[
vi−2

ε ∨ 0− |vi−1
ε | − vi

ε + |vi+1
ε |+ vi+2

ε ∧ 0
]
.

The terms corresponding to the sites near the boundary are computed simi-
larly by using the corresponding values of ηw

k .

4. Convergence results

In this section we analyze the approximation properties of the diffusion equa-
tion in the case of zero boundary conditions (D) by the ODE system (3.10).

Set u0
ε = uM

ε = 0 and for i ∈ {1, . . . ,M − 1} define

ui
ε(t) = −ε

i∑
k=1

vk
ε (t). (4.1)

Note that this corresponds to a discrete integration scheme for computing
u(t, x) = −

∫ x

0
v(t, x)dx. For the sake of computations we will treat the theo-

retical estimates with this construction, but in practice we will use a scheme
for computing the integrals in (3.1), that is we integrate in both directions.

Define the piecewise linear function uε(t, ·) : [0, 1] → R by:

uε(t, x) := −vi+1
ε (t)(x− iε) + ui

ε(t) (4.2)

for x ∈ [iε, (i+1)ε]. We take u0
ε = uM

ε = vM
ε = 0. This is the linear interpolant

between the values ui
ε at the sites iε. Let us first show some properties of the

solutions vε of (3.10) and of uε defined in (4.1).

Lemma 4.1. (i) We have for all T > 0:

sup
t∈[0,T ]

M−1∑
i=1

(ui
ε(t))

2 ≤
M−1∑
i=1

(ui
ε(0))2.

(ii) Suppose vε(t) has the following properties for all t ∈ [0, T ]: v1
ε(t) ≤

0, vM−1
ε (t) ≥ 0 and if vi

ε(t) · vi+2
ε (t) ≥ 0 then we have also vi

ε(t) · vi+1
ε (t) ≥ 0.

Under these assumptions we have:

sup
t∈[0,T ]

M−1∑
i=1

(vi
ε(t))

2 ≤
M−1∑
i=1

(vi
ε(0))2.

Proof. We recall the form (3.8) of the deterministic equation system:

〈 d
dt
vε(t), φ〉 = 〈∆ζ(vε)

ε φ, vε(t)〉 (4.3)

which holds for all vectors φ = (φi)M−1
i=1 ∈ RM−1. In order to derive a similar

equation for uε, we take as test vectors φ = −εφ(i) := −ε(φi, φi, . . . φi, 0, . . . 0)
where the first i components are equal to φi and the rest are 0. We obtain
then:

d

dt
ui

ε(t)φ
i = −ε〈∆ζ(vε)

ε φ(i), vε(t)〉. (4.4)
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In particular, if we take φ = −εθ(i) := −ε(1, 1, . . . 1, 0, . . . 0) (the first i
components are equal to 1) we obtain:

d

dt
ui

ε(t) = −ε〈∆ζ(vε)
ε θ(i), vε(t)〉. (4.5)

For 3 ≤ i ≤M − 3 we have:

d

dt
ui

ε(t) = − 1
2ε

M−1∑
k=1

[θk−ζ(vk
ε )

(i) − θk
(i) − θ

k+ζ(vk
ε )

(i) + θ
k+2ζ(vk

ε )

(i) ]vk
ε . (4.6)

Taking in account the structure of θ(i) we can note that the terms in
the brackets vanish, except in the situation that i − 2 ≤ k ≤ i + 2. In this
case the values depend on the sign of the corresponding vk

ε , and we obtain
easily:

d

dt
ui

ε(t) =
1
2ε
[
(vi−1

ε ∨ 0) + (vi
ε ∧ 0)− (vi+1

ε ∨ 0)− (vi+2
ε ∧ 0)

]
. (4.7)

Let us consider further a general form for φ. By summing up the equa-
tions (4.4) with respect to i we obtain:

〈 d
dt
uε(t), φ〉 = −ε

M−1∑
i=1

〈∆ζ(vε)
ε φ(i), vε(t)〉. (4.8)

Let us compute the r.h.s. by rearranging the terms in a convenient form. We
have:
M−1∑
i=1

〈∆ζ(vε)
ε φ(i), vε(t)〉=

M−1∑
i=1

M−1∑
k=1

(∆ζ(vε)
ε φ(i))k ·vk

ε =
M−1∑
k=1

vk
ε ·

M−1∑
i=1

(∆ζ(vε)
ε φ(i))k.

Taking in account formula (3.10) we thus have for 3 ≤ k ≤M − 3:

(∆ζ(vε)
ε φ(i))k =

=
1

2ε2
[
−φk−2

(i) ζ(vk
ε ∧ 0) + φk−1

(i) ζ(vk
ε )− φk

(i) − φk+1
(i) ζ(vk

ε ) + φk+2
(i) ζ(vk

ε ∨ 0)
]
.

Since φ(i) = (φi, φi, . . . φi, 0, . . . 0), it follows imediately that the expression
vanishes for i < k−2 and i ≥ k+2. By analyzing all possibilities with respect
to the sign of vk

ε we obtain for 3 ≤ k ≤M − 3 the expression:
M−1∑
i=1

(∆ζ(vε)
ε φ(i))k =

1
2ε2

[
(φk−1 − φk+1)ζ(vk

ε ∨ 0) + (φk − φk−2)ζ(vk
ε ∧ 0)

]
.

(4.9)
In the case of the the terms corresponding to the sites near the boundary

we obtain similarly
M−1∑
i=1

(∆ζ(vε)
ε φ(i))1 =

1
2ε2

[−φ2ζ(v1
ε ∨ 0) + φ1ζ(v1

ε ∧ 0)]

and
M−1∑
i=1

(∆ζ(vε)
ε φ(i))2 =

1
2ε2

[(φ1 − φ3)ζ(v2
ε ∨ 0) + φ2ζ(v2

ε ∧ 0)].
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Similar equations are derived at the other end of the interval. We note that
these equations can be also reduced to the form (4.9) by setting φj = 0 if
j 6∈ {1, . . . ,M − 1}.

Since all computations are nothing more than rearrangements of the
terms, we can obtain the same results by multiplying the explicit equations
with time dependent test functions φ(t). We can take now φ = uε(t) and use
the corresponding φ(i). Note that uj−1

ε − uj+1
ε = ε(vj+1

ε + vj
ε) and that we

can set uj
ε = vj

ε = 0 if j 6∈ {1, . . . ,M − 1}, due to the considered boundary
conditions. We then have:

M−1∑
k=1

vk
ε

M−1∑
i=1

(∆ζ(vε)
ε φ(i))k =

=
1
2ε

M−1∑
k=1

vk
ε [(vk

ε + vk+1
ε )ζ(vk

ε ∨ 0)− (vk
ε + vk−1

ε )ζ(vk
ε ∧ 0)]

=
1
2ε

M−1∑
k=1

[(vk
ε )2 + vk

ε v
k+1
ε ζ(vk

ε ∨ 0)− vk
ε v

k−1
ε ζ(vk

ε ∧ 0)] =:
1
2ε

M−1∑
k=1

ak.

The terms ak have the form:

ak =

{
(vk

ε )2 + vk
ε v

k+1
ε if vk

ε > 0

(vk
ε )2 + vk

ε v
k−1
ε if vk

ε ≤ 0.

We claim that
∑

k ak ≥ 0. In order to show this, we proceed inductively.
Denote Sm =

∑m
k=1 ak. We have S1 = a1 = (v1

ε)2 + v1
εv

2
εζ(v

1
ε ∨ 0). If v1

ε ≤ 0
then S1 = (v1

ε)2 ≥ 0. If v1
ε ≥ 0 and v2

ε ≤ 0 then S2 = (v1
ε)2+2v1

εv
2
ε +(v2

ε)2 ≥ 0.
If v1

ε > 0, v2
ε > 0, . . . , vp−1

ε > 0, vp
ε ≤ 0, then we have a1+a2+· · ·+ap = (v1

ε)2+
v1

εv
2
ε + · · ·+(vp−1

ε )2+2vp
εv

p−1
ε +(vp

ε )2 ≥ 0. We have thus (Sp ≥ 0 and vp
ε ≤ 0).

The first step leads thus to a situation on the type (Sp ≥ 0 and vp
ε ≤ 0).

If p = M − 1 we are done. If not, we repeat the procedure. Suppose
that we have shown that (Sk−1 ≥ 0 and vk−1

ε ≤ 0). If vk
ε ≤ 0, then we have

ak = (vk
ε )2 + vk

ε v
k−1
ε ≥ 0 and thus (Sk ≥ 0 and vk

ε ≤ 0).
If vk

ε > 0 and vk+1
ε ≤ 0, then we have ak + ak+1 = (vk

ε )2 + 2vk
ε v

k+1
ε +

(vk+1
ε )2 ≥ 0. This implies (Sk+1 ≥ 0 and vk+1

ε ≤ 0).
If vk

ε > 0 and vk+1
ε > 0, . . . , vp−1

ε > 0, vp
ε ≤ 0, then we have ak + ak+1 +

· · · + ap = (vk
ε )2 + vk

ε v
k+1
ε + · · · + (vp−1

ε )2 + 2vp
εv

p−1
ε + (vp

ε )2 ≥ 0. We have
thus (Sp ≥ 0 and vp

ε ≤ 0).
If starting with some index j we have vk

ε ≥ 0 for k ≥ j, then we are done,
since we add only positive terms ak for k ≥ j. In the case of the last term
we have then only (vM−1

ε )2. The other alternative is to obtain the situation
(SM−1 ≥ 0 and vM−1

ε ≤ 0), when we are also done.
The fact that for φ = uε we have SM−1 ≥ 0, together with equation

(4.8) imply d
dt 〈uε(t), uε(t)〉 = 2〈 d

dtuε(t), uε(t)〉 = −SM−1 ≤ 0 which proves
the first part of the lemma.
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For the second part we take φ = vε(t) in (4.3) and we have to show that
〈∆ζ(vε)

ε vε(t), vε(t)〉 ≤ 0. This can be written also as
∑M−1

k=1 Tk ≤ 0, where

Tk = [−vk−2
ε ζ(vk

ε ∧ 0) + vk−1
ε ζ(vk

ε )− vk
ε − vk+1

ε ζ(vk
ε ) + vk+2ζ(vk

ε ∨ 0)] · vk
ε

if 3 ≤ k ≤M − 3, and

T1 = [v1
εζ(v

1
ε ∧ 0)− v2

εζ(v
1
ε) + v3

εζ(v
1
ε ∨ 0)] · v1

ε

T2 = [v1
εζ(v

2
ε ∨ 0)− v2

ε − v3
εζ(v

2
ε) + v4ζ(v2

ε ∨ 0)] · v2
ε ,

while TM−1, TM−2 are computed analogous to T1, T2. We will structure the
proof in an algorithmic fashion.

From the hypothesis we have that v1
ε ≤ 0. Define T := 0.

0. If we have v2
ε ≤ 0 let T := T1 + T2. We have thus

T = −(v1
ε)2 + v1

εv
2
ε − (v2

ε)2 + v2
εv

3
ε ≤ −1

2
(v2

ε)2 + v2
εv

3
ε .

Let q = 1 and GOTO 2.
1. Else, if we have v2

ε > 0, then the hypothesis implies that we have also
v3

ε ≥ 0. Let T := T1 + T2. We have thus

T = −(v1
ε)2 + 2v1

εv
2
ε − (v2

ε)2 − v2
εv

3
ε + v2

εv
4
ε ≤ −(v2

ε)2 + v2
εv

4
ε .

Let p = 2 and GOTO 3.
2. Suppose we have vq

ε ≤ 0, vq+1
ε ≤ 0, . . . vp−1

ε ≤ 0, vp
ε > 0 and

T ≤ −1
2
(vq+1

ε )2 + vq+1
ε vq+2

ε .

The hypothesis on vε implies that we must have also vp+1
ε ≥ 0. We

observe that for q+2 ≤ k ≤ p−1 in the sum Tk−1 +Tk appear the cancelling
terms −vk

ε v
k−1
ε ζ(vk−1

ε )+ vk
ε v

k−1
ε ζ(vk

ε ), since vk−1
ε and vk

ε have the same sign.
If p = q + 2 we do not have such terms. We thus have:

p∑
k=q+2

Tk = −
p∑

k=q+2

(vk
ε )2 +

p−1∑
k=q+2

vk
ε v

k−2
ε + 2vp−1

ε vp
ε − vp

εv
p+1
ε + vp

εv
p+2
ε

≤ −1
2
(vq+2

ε )2 · χ{p>q+2} − (vp
ε )2 + vp

εv
p+2
ε .

We grouped the terms in order to obtain nonpositive quantities like
[(−vk

ε )2 + 2vk
ε v

k−2
ε − (vk−2

ε )2]/2, together with 2vp−1
ε vp

ε and −vp
εv

p+1
ε which

are also ≤ 0.
Let T := T +

∑p
k=q+2 Tk. If p = q + 2 we obtain:

T ≤ −1
2
(vq+1

ε )2 + vq+1
ε vq+2

ε − (vq+2
ε )2 + vq+2

ε vq+4
ε ≤ −(vq+2

ε )2 + vq+2
ε vq+4

ε

since vq+1
ε vq+2

ε ≤ 0. If p > q + 2 we have:

T ≤ −1
2
(vq+1

ε )2 + vq+1
ε vq+2

ε − 1
2
(vq+2

ε )2 − (vp
ε )2 + vp

εv
p+2
ε ≤ −(vp

ε )2 + vp
εv

p+2
ε .

(stopping condition) If p = M − 2 we are done, since the term vp
εv

p+2
ε

does not appear, while TM−1 equals −(vM−1
ε )2 − vM−1

ε vM−2
ε , which can be
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grouped together with −(vM−2
ε )2 in order to obtain a nonpositive quantity.

If p = M − 1 we are also done.
3. Suppose we have vp

ε ≥ 0, vp+1
ε ≥ 0, . . . vq−1

ε ≥ 0, vq
ε ≤ 0 and

T ≤ −(vp
ε )2 + vp

εv
p+2
ε .

The hypothesis implies that we have vq+1
ε ≤ 0. Similarly as in 2. (drop-

ping nonpositive terms which are not needed and using the cancelling prop-
erty) we compute:

q+1∑
k=p+1

Tk =

= −
q+1∑

k=p+1

(vk
ε )2 +

q−1∑
k=p+1

vk
ε v

k+2
ε + vq

εv
q−2
ε + 2vq

εv
q−1
ε + vq+1

ε vq−1
ε + vq+1

ε vq+2
ε

≤ −1
2
(vp+2

ε )2 − 1
2
(vq

ε)2 − 1
2
(vq+1

ε )2 + vq
εv

q−2
ε + vq+1

ε vq+2
ε .

Let T := T +
∑q+1

k=p+1 Tk. If q = p+ 2 we obtain:

T ≤ −(vp
ε )2 + vp

εv
p+2
ε − (vp+2

ε )2 − 1
2
(vp+3

ε )2 + vp
εv

p+2
ε + vp+3

ε vp+4
ε

≤ −1
2
(vp+3

ε )2 + vp+3
ε vp+4

ε ,

since vp
εv

p+2
ε ≤ 0.

If q > p+ 2 we have:

T ≤ −(vp
ε )2 + vp

εv
p+2
ε − 1

2
(vp+2

ε )2 − 1
2
(vq

ε)2 − 1
2
(vq+1

ε )2 + vq
εv

q−2
ε + vq+1

ε vq+2
ε

≤ −1
2
(vq+1

ε )2 + vq+1
ε vq+2

ε ,

since vq
εv

q−2
ε ≤ 0. If q + 1 = M − 1 and vM−1

ε = 0 we don’t have the term
vq+1

ε vq+2
ε and we are done. Otherwise, since vM−1

ε ≥ 0, we cannot end in the
situation q = M − 2. Thus, GOTO 2.

The above algorithm clearly stops in step 2. arriving in the final situation
with T =

∑M−1
k=1 Tk ≤ 0. The proof is thus completed. �

Remark. The assumptions on vε in (ii) hold true, at least on a given time
interval, if vε(0) is constructed by taking the finite differences of a positive,
piecewise Lipschitz continuous function u0 and ε is chosen small enough. As it
will be shown further, for the convergence of the method we will need bounds
for
∑
ε(vk

ε (t))2 independent on ε. This condition is not fulfilled if we choose an
arbitrary initial data vε(0). Numerical computations show that the sum will
blow up in a short time if we take e.g. vk

ε (0) = (−1)k if k ∈ {1, . . . , 2M}\{M}
and vM

ε (0) = 2(−1)M . In general we cannot expect for vε a similar inequality
as for uε in (i), but in most practically relevant situations this property holds
true, as shown for example in (ii).
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Lemma 4.2. (Energy estimates). Assume that for all ε we have

‖uε(0, ·)‖H1
0 (0,1) ≤ C0‖u0‖H1

0 (0,1)

for a given function u0 ∈ H1
0 (0, 1), with a positive constant C0. Suppose

further that the functions vε(t) satisfy the inequality supt≤T

∑
k(vk

ε (t))2 ≤
C1

∑
k(vk

ε (0))2 with a positive constant C1, independent on ε (in particular,
if the assumption from Lemma 4.1 (ii) holds). Then there exists a constant
C > 0, independent on ε, such that:

sup
t∈[0,T ]

[
‖uε(t, ·)‖H1

0 (0,1) + ‖ d
dt
uε(t, ·)‖H−1(0,1)

]
≤ C‖u0‖H1

0 (0,1).

Proof. We have:

sup
t∈[0,T ]

[ ∫ 1

0

u2
ε(t, x)dx

]
= sup

t∈[0,T ]

[M−1∑
i=0

∫ (i+1)ε

iε

(
−vi+1

ε (t)(x− iε) + ui
ε(t)
)2
dx
]

≤ 2 sup
t∈[0,T ]

[M−1∑
i=0

∫ (i+1)ε

iε

(
(vi+1

ε (t))2(x− iε)2 + (ui
ε(t))

2
)
dx
]

= 2 sup
t∈[0,T ]

[M−1∑
i=0

( (vi+1
ε (t))2

3
(x− iε)3

∣∣∣(i+1)ε

iε
+ ε(ui

ε(t))
2
)]

= 2 sup
t∈[0,T ]

[M−1∑
i=0

(ε3
3

(vi+1
ε (t))2 + ε(ui

ε(t))
2
)]

≤ 2C1

M−1∑
i=0

(ε3
3

(vi+1
ε (0))2 + ε(ui

ε(0))2
)

= 2C1
ε2

3
‖(uε(0, ·))x‖2

L2(0,1) + 2C1‖uε(0, ·)‖2
L2(0,1).

We made use of Lemma 4.1 and on the hypothesis on vε. Using now the
estimate for uε(0, ·) from the hypothesis we obtain: supt∈[0,T ] ‖uε(t)‖2

L2(0,1) ≤
C ′‖u0‖2

H1 . Note that the equation for vε implies that we always have

sup
t∈[0,T ]

M−1∑
i=0

ε3(vi+1
ε (t))2 ≤ C(T )

M−1∑
i=0

ε(vi+1
ε (0))2.

We can show thus that supt∈[0,T ] ‖uε(t)‖L2(0,1) ≤ C ′‖u0‖H1 by using only the
H1-bounds for uε(0), independent on any additional assumptions on vε(t).
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We further have:

sup
t∈[0,T ]

∫ 1

0

(uε(t, x)x)2dx = sup
t∈[0,T ]

M−1∑
i=0

ε(vi+1
ε (t))2

≤ C1

M−1∑
i=0

ε(vi+1
ε (0))2 = C1‖(uε(0, ·))x‖2

L2(0,1) ≤ C1C0‖u0‖2
H1 .

In the previously used notation, where 〈·, ·〉 denotes the usual scalar
product on RM−1, we have for ψ ∈ C∞0 (0, 1) with ‖ψ‖H1

0
= 1:

sup
t∈[0,T ]

∫ 1

0

d

dt
uε(t, x)ψ(x)dx

= sup
t∈[0,T ]

M−1∑
i=0

∫ (i+1)ε

iε

(
− d

dt
vi+1

ε (t)(x− iε) +
d

dt
ui

ε(t)
)
ψ(x)dx

= sup
t∈[0,T ]

[−〈 d
dt
vε(t), Ψ̃1〉+ 〈 d

dt
uε(t), Ψ̃2〉]

where Ψ̃1, Ψ̃2 ∈ RM−1 are given by

(Ψ̃1)k =
∫ kε

(k−1)ε

(x− (k − 1)ε)ψ(x)dx

respectively

(Ψ̃2)k =
∫ (k+1)ε

kε

ψ(x)dx.

By (4.3) we have

〈 d
dt
vε(t), Ψ̃1〉 = 〈∆ζ(vε)

ε Ψ̃1, vε(t)〉

where ∆ζ(vε)
ε Ψ̃1 is computed like in (3.10) and has the form

(∆ζ(vε)
ε Ψ̃1)k =

1
2ε2

∑
j∈Ik

±(Ψ̃j+1
1 − Ψ̃j

1), (4.10)

since we always can group the terms which arise in the r.h.s. of (3.10) in pairs
with opposite signs. The index set Ik has two elements, except for sites kε
near the boundary, when we have only one element.

By partial integration we have:

Ψ̃j
1 =

∫ jε

(j−1)ε

(x−(j−1)ε)ψ(x)dx =
ε2

2
ψ(jε)− 1

2

∫ jε

(j−1)ε

(x−(j−1)ε)2ψ′(x)dx.

A similar formula holds also for Ψ̃j+1
1 . By substraction we obtain easily the

estimate

1
2ε2

|Ψ̃j+1
1 − Ψ̃j

1| ≤
1
4
(2
∫ (j+1)ε

jε

|ψ′(x)|dx+
∫ jε

(j−1)ε

|ψ′(x)|dx)
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≤ 1
2

∫ (j+1)ε

(j−1)ε

|ψ′(x)|dx,

which in conjunction with the Cauchy-Schwartz inequality implies:

Tj :=
1

4ε4
|Ψ̃j+1

1 − Ψ̃j
1|2 ≤

ε

2

∫ (j+1)ε

(j−1)ε

|ψ′(x)|2dx. (4.11)

Returning to (4.10), where the index j has at most two values, we thus have
the estimate: [(∆ζ(vε)

ε Ψ̃1)k]2 ≤ ε
∑

j∈Ik
Tj with Tj given in (4.11). It can be

readily seen that there exists a constant C ′ > 0 such that∑
k

∑
j∈Ik

Tj ≤ C ′‖ψ′‖2
L2(0,1) ≤ C ′,

since every index j appears in the above sums maximally a given number of
times. We thus have:

|〈 d
dt
vε(t), Ψ̃1〉|2 = |〈∆ζ(vε)

ε Ψ̃1, vε(t)〉|2 ≤
∑

k

(vk
ε (t))2

∑
k

[(∆ζ(vε)
ε Ψ̃1)k]2

≤ C ′
∑

k

ε(vk
ε (t))2 ≤ C ′C1

∑
k

ε(vk
ε (0))2 ≤ C ′C1C0‖u0‖2

H1 (4.12)

where the constants C ′, C1, C0 do not depend on ψ and on ε.
By (4.8) and the subsequent computations we have:

〈 d
dt
uε(t), Ψ̃2〉 = −ε

M−1∑
i=1

〈∆ζ(vε)
ε (Ψ̃2)(i), vε(t)〉 = −ε

M−1∑
k=1

vk
ε (t)T ′k

where from (4.9), we have that

T ′k :=
M−1∑
i=1

(∆ζ(vε)
ε (Ψ̃2)(i))k = ± 1

2ε2
(Ψ̃jk

2 − Ψ̃jk−2
2 )

with jk = k or jk = k + 1, depending on the sign on vk
ε (t).

By partial integration we have:

Ψ̃jk

2 =
∫ (jk+1)ε

jkε

ψ(x)dx = εψ((jk + 1)ε)−
∫ (jk+1)ε

jkε

(x− jkε)ψ′(x)dx

and for Ψ̃jk−2
2 we obtain a similar equation. Proceeding similarly as in the

case of Ψ̃1 we arrive at

ε(T ′k)2 ≤ 3
∫ (jk+1)ε

(jk−2)ε

|ψ′(x)|2dx

with
∑

k ε(T
′
k)2 ≤ C ′′‖ψ′‖2

L2(0,1) ≤ C ′′.
Similarly as in the previous computations we have:

|〈 d
dt
uε(t), Ψ̃2〉|2 ≤
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≤ (
M−1∑
k=1

|ε 1
2 vk

ε (t)||ε 1
2T ′k|)2 ≤

M−1∑
k=1

ε|vk
ε (t)|2 ·

M−1∑
k=1

ε(T ′k)2 ≤ C1C
′′C0‖u0‖2

H1 .

This completes the proof of the lemma. �

Theorem 4.3. If on the time interval [0, T ] the hypotheses of Lemma
4.2 hold, then the family uε(·, ·) has a weakly convergent subsequence in
L2(0, T ;H1

0 (0, 1))∩ H1(0, T ;H−1(0, 1)) and the limit function, denoted by
u, lies in C(0, T ;L2(0, 1)). Moreover, if we have ‖uε(0) − u0‖L2(0,1) → 0 as
ε→ 0, then u satisfies for all test functions φ ∈ C([0, T ]×[0, 1])∩C∞((0, T )×
(0, 1)) with suppφ ⊂ [0, T )× (0, 1) the equation:

−
∫ T

0

(u(t),
d

dt
φ(t))dt = (u0, φ(0))−

∫ T

0

(ux(t), φx(t))dt.

By (·, ·) we denote the usual duality pairing in the corresponding function
spaces.

Proof. The weak convergence property is implied by the apriori estimates
from Lemma 4.2. By a result from [6], p.379 we have further u ∈
C(0, T ;L2(0, 1)). We denote the convergent subsequence again by uε. For
a test function φ like in the hypothesis we have:

−
∫ T

0

(u(t),
d

dt
φ(t))dt− (u0, φ(0)) +

∫ T

0

(ux(t), φx(t))dt =

= −
∫ T

0

(u(t)− uε(t),
d

dt
φ(t))dt− (u0 − uε(0), φ(0)) +

+
∫ T

0

(ux(t)− (uε)x(t), φx(t))dt−
∫ T

0

(uε(t),
d

dt
φ(t))dt

−(uε(0), φ(0)) +
∫ T

0

((uε)x(t), φx(t))dt.

The first three terms converge to 0 as ε→ 0 due to the weak convergence
property. In order to prove the statement of the theorem, we will show that
the rest of the sum can be made arbitrarily small for ε small enough. For this
it suffices to show that the term

sup
t≤T

[(
d

dt
uε(t), φ(t)) + ((uε)x(t), φx(t))] (4.13)

can be proved to be arbitrarily small by taking ε small enough.
Similarly like in Lemma 4.2 we obtain:

(
d

dt
uε(t), φ(t)) + ((uε)x(t), φx(t)) = (4.14)

= −〈 d
dt
vε(t), Φ̃1(t)〉+ 〈 d

dt
uε(t), Φ̃2(t)〉+ 〈vε(t), Φ̃3(t)〉

= 〈vε(t),∆ζ(vε)
ε Φ̃1(t)〉+ 〈vε(t),∇ζ(vε)

ε Φ̃2(t)〉+ 〈vε(t), Φ̃3(t)〉
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where the vectors Φ̃i(t) ∈ RM−1 have the components

Φ̃k
1(t) =

∫ kε

(k−1)ε

(y − (k − 1)ε)φ(t, y)dy,

Φ̃k
2(t) =

∫ (k+1)ε

kε

φ(t, y)dy,

Φ̃k
3(t) =

∫ kε

(k−1)ε

φx(t, y)dy

and where

(∆ζ(vε)
ε Φ̃1(t))k =

1
2ε2

[−Φ̃k−2
1 ζ(vk

ε ∧ 0) + Φ̃k−1
1 ζ(vk

ε )− Φ̃k
1

−Φ̃k+1
1 ζ(vk

ε ) + Φ̃k+2
1 ζ(vk

ε ∨ 0)]

(∇ζ(vε)
ε Φ̃2(t))k =

1
2ε

[(Φ̃k−1
2 − Φ̃k+1

2 )ζ(vk
ε ∨ 0) + (Φ̃k

2 − Φ̃k−2
2 )ζ(vk

ε ∧ 0)].

By taking ε small enough, since φ has compact support in [0, T ) × (0, 1),
we may consider only indices k for which the above formulas hold for all
t, disregarding the sites near the boundary where φ vanishes. By the same
reason (neglecting the sites close to the boundary), we may note that for
i = 1, 2, 3 we can write (Φ̃i(t))k = Φi(t, kε) where the functions Φi are
defined on [0, T ]× (0, 1) by

Φ1(t, x) =
∫ x

x−ε

(y − x+ ε)φ(t, y)dy,

Φ2(t, x) =
∫ x+ε

x

φ(t, y)dy,

Φ3(t, x) =
∫ x

x−ε

φx(t, y)dy = φ(t, x)− φ(t, x− ε).

The derivatives with respect to x of these functions are given by

Φ1,x(t, x) = εφ(t, x)−
∫ x

x−ε

φ(t, y)dy,

Φ1,xx(t, x) = εφx(t, x)− φ(t, x) + φ(t, x− ε),

Φ2,x(t, x) = φ(t, x+ ε)− φ(t, x).

By the Taylor formula, using the form of Φi and the bounds of the derivatives
of second and third order of φ(t, ·) it is easy to see that if vk

ε > 0 we have:

(∆ζ(vε)
ε Φ̃1(t))k = Φ1,xx(t, kε) +O(ε2) (4.15)

(∇ζ(vε)
ε Φ̃2(t))k = −Φ2,x(t, kε) +O(ε2)

while for vk
ε < 0 we have:

(∆ζ(vε)
ε Φ̃1(t))k = Φ1,xx(t, (k − 1)ε) +O(ε2) (4.16)

(∇ζ(vε)
ε Φ̃2(t))k = −Φ2,x(t, (k − 1)ε) +O(ε2).
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Plugging (4.15), (4.16) together with the formulae for Φ3, Φ1,x, Φ1,xx,
Φ2,x into (4.14), we obtain:

(
d

dt
uε(t), φ(t)) + ((uε)x(t), φx(t)) =

∑
k

vk
ε (t)Uk(t) (4.17)

where for vk
ε (t) > 0 we have:

Uk(t) = εφx(t, kε)− φ(t, kε) + φ(t, (k − 1)ε)
−φ(t, (k + 1)ε) + φ(t, kε) + φ(t, kε)− φ(t, (k − 1)ε) +O(ε2)

= εφx(t, kε)− φ(t, (k + 1)ε) + φ(t, kε) +O(ε2)

= −ε
2

2
φxx(t, ξk) +O(ε2)

while for vk
ε (t) < 0 we have similarly Uk(t) = − ε2

2 φxx(t, ηk) +O(ε2).
The regularity of φ implies that if vk

ε (t) 6= 0 we have Uk(t) of magnitude
O(ε2), otherwise we have vk

ε (t)Uk(t) = 0. Using the L2-boundedness property
of vε(t) we conclude that the expression in (4.13) can be made thus arbitrary
small for ε small enough. The proof is completed. �
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