On some quadrature formulas on the real line with the higher degree of accuracy and its applications

Ioan Gavrea

Abstract. In this paper we study quadrature formulas with the higher degree of accuracy. We study the quasi-orthogonality of orthogonal polynomials and we give some results on the location of their zeros.

Mathematics Subject Classification (2010): 41A55, 42C05.

Keywords: Orthogonal polynomials, quasi-orthogonal polynomials, zeros, quadrature formulas.

1. Introduction

Let P_n be a polynomial of degree n such that

$$\int_{a}^{b} x^{k} P_{n}(x) w(x) dx = 0, \quad k = 0, 1, \dots, n-1,$$

where w is a positive weight function on the finite or infinite interval [a, b]. P_n is the polynomial of degree n belonging to the family of orthogonal polynomials on [a, b] with respect to the weight function w. It is well known that the zeros of P_n are all real and distinct and lie in (a, b).

Definition 1.1. Let R_n be a polynomial of exact degree $n, n \ge r, r$ being a fixed natural number. If R_n satisfies the conditions

$$\int_{a}^{b} x^{k} P_{n}(x) w(x) dx = \begin{cases} 0, & \text{for } k = 0, 1, \dots, n - r - 1\\ \neq 0, & \text{for } k = n - r \end{cases}$$
(1.1)

where w is a positive weight function on [a, b], then R_n is a quasi-orthogonal polynomial of order r on [a, b] with respect to w.

Remark 1.2. The quasi-orthogonal polynomials R_n are only defined for $n \ge r$.

If r = 0 then $R_n = \lambda P_n$ where λ is a real constant.

The following result can be found in [1].

Theorem 1.3. Let $\{P_n\}$ be the family of orthogonal polynomials on [a, b] with respect to a positive weight function w. A necessary and sufficient condition for a polynomial R_n of degree n to be quasi-orthogonal of order r on [a, b]with respect to w is that

$$R_n(x) = c_0 P_n(x) + c_1 P_{n-1}(x) + \ldots + c_r P_{n-r}(x)$$
(1.2)

where c_i 's are numbers which can depend on n and $c_0c_r \neq 0$.

If R_n is quasi-orthogonal of order r on [a, b], then at least n - r distinct zeros of R_n lie in the interval (a, b).

In [1] C. Brezinski, K. A. Driver, M. Redino-Zaglia consider quasiorthogonal polynomials of degree n - 1, n - 2:

$$R_n(x) = P_n(x) + a_n P_{n-1}(x), \quad a_n \neq 0$$
(1.3)

and

$$R_n(x) = P_n(x) + a_n P_{n-1}(x) + b_n P_{n-2}(x), \quad b_n \neq 0$$
(1.4)

and make a study of its zeros.

The following result is well known.

Theorem 1.4. The quadrature formula

$$\int_{a}^{b} f(x)w(x)dx = \sum_{i=1}^{n} A_{i,n}f(x_{i,n}) + R(f)$$
(1.5)

has the degree of exactness n + k if and only if it is of interpolatory type and the nodal polynomial

$$\Pi_n(x) = \prod_{i=1}^n (x - x_{i,n})$$

is quasi-orthogonal of order n - k - 1 in [a, b] with respect to w.

A. Bultheel, R. Cruz-Barroso and Marc Van Borel ([2]) consider an n point quadrature formula of Gauss-Radon type:

$$\int_{a}^{b} f(x)w(x)dx = A_{\alpha}f(\alpha) + \sum_{k=1}^{n-1} A_{k,n}f(x_{k,n}) + R(f)$$
(1.6)

where $\alpha \in [a, b]$ is a fixed point and the degree of exactness is 2n - 2.

Remark 1.5. If $P_n(\alpha) = 0$ then (1.6) is actually a Gaussian quadrature formula.

Remark 1.6. The coefficients of the quadrature formula (1.6) are positive.

In [2] the authors studied also Gauss-Lobatto-type quadrature formulas with two arbitrary prefixed nodes, α and β :

$$\int_{a}^{b} f(x)w(x)dx = A_{\alpha}f(\alpha) + A_{\beta}f(\beta) + \sum_{k=1}^{n-2} A_{k,n}f(x_{k,n}) + R_{n}(f) \qquad (1.7)$$

the degree of exactness being 2n - 3.

From Theorem 1.3, the nodes of such a rule will be the zeros of

$$R_n(x) = P_n(x) + a_n P_{n-1}(x) + b_n P_{n-2}(x).$$

2. $P_{n,k}$ -polynomials and its properties

Let w be a positive weight function on [a, b] $(a > -\infty)$, $n \in \mathbb{N}^*$, $k \in \mathbb{N}$ such that $k \leq n$.

We denote by ${\cal P}_{n,k}$ the polynomial of degree n which satisfies the following conditions:

$$\int_{a}^{b} (x-a)^{i} P_{n,k}(x) w(x) dx = \delta_{k,i}, \quad i = 0, 1, \dots, n.$$
(2.1)

In the following, without loss of generality, we will consider a = 0.

Remark 2.1. By (2.1) it follows that $P_{n,k}$ is a quasi-orthogonal polynomial of order n - k with respect to the weight function w.

Theorem 2.2. The zeros of $P_{n,k}$ are all real, distinct and lie in (0,b).

Proof. Let us denote by $0 < x_1 < \ldots < x_i < b$ the zeros of $P_{n,k}$ where it changes the sign. Obviously $i \geq k$. Suppose i < n. We have

$$\int_{0}^{b} (x - x_1) \dots (x - x_i) P_{n,k}(x) w(x) dx > 0.$$
(2.2)

Using the definition of $P_{n,k}$, from (2.2) we obtain

$$(-1)^{i-k}\sigma_{i-k} > 0, (2.3)$$

where $(-1)^{i-k}\sigma_{i-k}$ is the coefficient of x^k of the polynomial

$$(x-x_1)\ldots(x-x_i), \quad \sigma_{i-k}>0.$$

On the other hand we have:

$$\int_{0}^{b} x(x-x_{1})\dots(x-x_{i})P_{n,k}(x)w(x)dx > 0$$

or

$$(-1)^{i-k-1}\sigma_{i-k+1} > 0. (2.4)$$

The relations (2.3) and (2.4) are contradictory.

It is easy to see that the set $\{P_{n,k}\}_{k=0}^n$ forms a base in Π_n and for every $P \in \Pi_n$ we have:

$$P = \sum_{k=0}^{n} \langle e_k, P \rangle P_{n,k}$$
$$= \sum_{k=0}^{n} e_k \langle P_{n,k} P \rangle,$$

where $e_k : \mathbb{R} \to \mathbb{R}, e_k(x) = x^k$, and

$$\langle f,g\rangle = \int_a^b f(x)g(x)w(x)dx.$$

We denote by $K_n(x, y)$ the Christoffel-Darboux kernel

$$K_n(x,y) = \sum_{k=0}^n p_k(x)p_k(y)$$

where the set $\{p_k\}_{k=0}^n$ is an orthonormal set

$$\int_0^b p_k(x) p_i(x) w(x) dx = \delta_{k,i}, \quad k, i \in \{0, 1, \dots, n\}$$

The result from the following Theorem is easily verified.

Theorem 2.3. The following relations hold:

$$K_{n}(x,y) = \sum_{k=0}^{n} x^{k} P_{n,k}(y)$$

$$= \sum_{k=0}^{n} y^{k} P_{n,k}(x)$$

$$= \frac{1}{a_{n+1,n+1}} \cdot \frac{P_{n+1,n+1}(x) P_{n,n}(y) - P_{n,n}(x) P_{n+1,n+1}(y)}{x - y}$$
(2.5)

where $a_{n+1,n+1}$ is the coefficient of x^{n+1} from $P_{n+1,n+1}$.

3. Main results

Let P be a polynomial of degree n and let m_k be the moment of order k with respect to the weight function w,

$$m_k = \langle e_k, P \rangle = \int_0^b x^k P(x) w(x) dx, \quad k = 0, 1, \dots, n.$$

Then P can be written as

$$P(x) = \sum_{k=0}^{n} m_k P_{n,k}(x).$$

Theorem 3.1. If

 $(-1)^k m_k \ge 0, \quad k = 0, 1, 2, \dots, n$ (3.1)

then the zeros of P are all real, distinct and lie in (0, b).

Proof. By (3.1) it follows that there exist at least a point x_1 where P changes the sign.

Let x_1, \ldots, x_p be all the zeros where P changes its sign in the interval (0, b) and suppose that p < n.

So, the polynomial $(x - x_1) \dots (x - x_p) P(x)$ doesn't change the sign.

Suppose that

$$(x - x_1) \dots (x - x_p) P(x) \ge 0.$$
 (3.2)

From (3.2) we get:

$$\int_{0}^{b} (x - x_1) \dots (x - x_p) P(x) w(x) dx > 0$$
(3.3)

$$\int_0^b (x - x_1) \dots (x - x_p) P(x) w(x) dx = (-1)^p \sum_{i=0}^p (-1)^{p-i} m_{p-i} \sigma_i \qquad (3.4)$$

where σ_i are Vieta's sum of order *i* of the numbers x_1, \ldots, x_p .

On the other hand we have:

$$\int_{0}^{b} x(x-x_{1})\dots(x-x_{p})P(x)w(x)dx > 0$$
(3.5)

$$\int_{0}^{b} x(x-x_{1})\dots(x-x_{p})P(x)w(x)dx = (-1)^{p+1}\sum_{i=0}^{p} (-1)^{p-i+1}m_{p-i+1}\sigma_{i}.$$
(3.6)

From (3.4) and (3.6) it follows that the inequalities (3.3) and (3.4) are contradictory and so p = n.

Corollary 3.2. Let R_n be a quasi-orthogonal polynomial of order 1,

$$R_n(x) = P_{n,n-1}(x) - a_n P_{n,n}(x).$$

If $a_n > 0$ then the zeros of R_n are all real and distinct and lie in (0, b).

Remark 3.3. The condition $a_n > 0$ is only sufficient.

A necessary and sufficient condition is given by

$$(-1)^{n}(P_{n,n-1}(0) - a_{n}P_{n,n}(0))(P_{n,n-1}(b) - a_{n}P_{n,n}(b)) > 0.$$

Let $\alpha \in [0, b]$ be a fixed point and let us consider the quadrature formula

$$\int_{0}^{b} f(x)w(x)x = A_{\alpha}f(\alpha) + \sum_{k=1}^{n-1} A_{k,n}f(x_{k,n}) + R(f)$$
(3.7)

having the degree of exactness 2n-2.

This means that α is a root of polynomial R_n which is of the form

$$R_n(x) = P_{n,n-1}(x) + aP_{n,n}(x).$$

The coefficients A_{α} , $A_{k,n}$, k = 1, 2, ..., n-1 are positive and are given by

$$A_{k,n} = \frac{\int_0^b (x-\alpha)^2 l_k^2(x) w(x) dx}{(x_{k,n}-\alpha)^2}, \quad A_\alpha = \frac{\int_0^b l^2(x) w(x) dx}{l^2(\alpha)}$$

where

$$l(x) = \prod_{k=1}^{n-1} (x - x_{k,n}), \quad l_k(x) = \frac{l(x)}{(x - x_{k,n})l'(x_{k,n})}.$$

Theorem 3.4. The coefficients $A_{k,n}$, k = 1, ..., n-1 and A_{α} are given by

$$A_{k,n} = \frac{1}{K_{n-1}(x_{k,n}, x_{k,n})}, \quad k = 1, 2, \dots, n-1$$
$$A_{\alpha} = \frac{1}{K_{n-1}(\alpha, \alpha)}.$$

Proof. Let us denote by:

$$M_i = \int_0^b x^i (x - \alpha) l_k(x) w(x) dx.$$

We have

$$M_1 = x_{k,n} M_0$$

$$M_2 = x_{k,n}^2 M_0$$

$$\dots$$
(3.8)

$$M_{n-1} = x_{k,n}^{n-1} M_0$$

From (3.8) we get

$$(x - \alpha)l_k(x) = M_0 \sum_{i=0}^{n-1} x_{k,n}^i P_{n-1,i}(x).$$
(3.9)

By (3.9) we obtain

$$M_0 = \frac{x_{k,n} - \alpha}{K_{n-1}(x_{k,n}, x_{k,n})}$$

and so

$$A_{k,n} = \frac{1}{K_{n-1}(x_{k,n}, x_{k,n})}, \quad k = \overline{1, n-1}.$$

Similarly we get

$$A_{\alpha} = \frac{1}{K_{n-1}(\alpha, \alpha)}.$$

The proof of the theorem is finished.

Corollary 3.5. Let $P \in \prod_{2n-2}$, P(x) > 0, $\forall x \in \mathbb{R}$. Then

$$\int_0^b P(x)w(x)dx \geq \frac{1}{K_{n-1}(\alpha,\alpha)}P(\alpha), \ \forall \ \alpha \in \mathbb{R}.$$

Theorem 3.6. Let R_n be a quasi-orthogonal polynomial of order 1 with the weight function w having all its zeros lie in [0, b). Suppose that

$$R_n(x) = a_n x^n + \dots$$

Then for every continuous function $f, f : [a, b] \to \mathbb{R}$, the following equality holds:

$$\int_0^b w(x)f(x)dx - \sum_{k=1}^n A_k f(x_k) = \frac{1}{a_n} [x_1, x_2, \dots, x_n; [x, x_1, \dots, x_n; f]] \quad (3.10)$$

$$+\frac{1}{a_n^2}\int_0^b [x, x_1, x_2, \dots, x_n; [\cdot, x_1, \dots, x_n; f]]R_n^2(x)w(x)dx$$

where x_k , k = 1, 2, ..., n, are the zeros of R_n and $A_k = \frac{1}{K_{n-1}(x_k, x_k)}$.

Proof. The quadrature formula

$$\int_{0}^{b} w(x)f(x)dx = \sum_{k=1}^{n} A_{k}f(x_{k}) + R(f)$$
(3.11)

having degree of exactness 2n - 2 is a quadrature formula of interpolatory type, coefficients A_k , k = 1, 2, ..., n being given by

$$A_k = \int_0^b l_k(x)w(x)dx$$
$$= \frac{1}{K_{n-1}(x_k, x_k)}.$$

We have

$$f(x) - L_{n-1}(f; x_1, \dots, x_n)(x) = \frac{1}{a_n} R_n(x)[x, x_1, \dots, x_n; f]$$
(3.12)

where $L_{n-1}(f; x_1, \ldots, x_n)$ is Lagrange's polynomial of degree n-1 which interpolates the function f at the points $x_k, k = \overline{1, n}$.

 R_n is of the form:

$$R_n = P_{n,n-1} + \alpha P_{n,n}, \quad \alpha \in \mathbb{R}.$$

From (3.12) we obtain

$$\int_{0}^{b} f(x)R_{n}(x)w(x)dx - [x_{1}, x_{2}, \dots, x_{n}; f]$$

$$= \frac{1}{a_{n}} \int_{0}^{b} R_{n}^{2}(x)[x, x_{1}, x_{2}, \dots, x_{n}; f]w(x)dx$$
(3.13)

and

$$\int_{0}^{b} f(x)w(x)dx - \sum_{k=1}^{n} A_{k}f(x_{k}) = \frac{1}{a_{n}} \int_{0}^{b} R_{n}(x)[x, x_{1}, \dots, x_{n}; f]w(x)dx$$
(3.14)

From (3.13) and (3.14) we get (3.10).

Corollary 3.7. Let $f \in C^1[0,b]$. Then there exists $\theta \in [0,b]$ such that R(f) from (3.11) can be written in the following form

$$R(f) = \frac{1}{a_n} [x_1, x_2, \dots, x_n; [x, x_1, \dots, x_n; f]]$$

$$+ \frac{k_n}{a_n^2} [\theta, x_1, \dots, x_n; [x, x_1, \dots, x_n; f]]$$
(3.15)

where

$$k_n = \int_0^b R_n^2(x)w(x)dx.$$

Proof. Equation (3.15) follows from (3.13) if we put instead of f the divided difference $[x, x_1, \ldots, x_n; f]$.

Theorem 3.8. Let x_k , k = 1, 2, ..., n be the zeros of $P_{n,0}$ and w a positive weight such that

$$\int_0^b w(x)dx = 1.$$

Then, for every $P \in \prod_{n=1}$ we have:

$$\int_{0}^{b} P(x)w(x)dx = \sum_{k=1}^{n} \frac{P(x_{k})}{K_{n}(x_{k}, x_{k})} - \frac{1}{a_{n}} \left[x_{1}, \dots, x_{n}; \frac{P(x)}{x} \right]$$

where a_n is the coefficient of x^n from $P_{n,0}$.

Proof. Let us consider the quadrature formula

$$\int_{0}^{b} f(x)w(x)dx = \sum_{k=1}^{n} A_{k}f(x_{k}) + R(f).$$
(3.16)

The quadrature formula (3.16) has the degree of exactness n-1 and A_k , k = 1, 2, ..., n are given by

$$A_k = \int_0^b \frac{P_{n,0}(x)w(x)}{(x-x_k)P'_{n,0}(x_k)} dx.$$

Let us denote by M_i the moment of order i, i = 0, 1, ..., n of the polynomial

$$\frac{P_{n,0}(x)}{(x-x_k)P'_{n,0}(x_k)}$$

We get

$$M_1 - x_k M_0 = \frac{1}{P'_{n,0}(x_k)}$$

$$M_i = x_k^{i-1} M_1, \quad i = 2, 3, \dots, n.$$
(3.17)

 So

$$\frac{P_{n,0}(x)}{(x-x_k)P'_{n,0}(x)} = M_0 P_{n,0}(x) + M_1 P_{n,1}(x)$$

$$+ \frac{M_1}{x_k} (K_n(x,x_k) - P_{n,0}(x) - x_k P_{n,1}(x)).$$
(3.18)

For $x = x_k$ we get

$$1 = \frac{M_1}{x_k} K_n(x_k, x_k).$$
(3.19)

From (3.17) and (3.19) we obtain

$$M_0 = \frac{1}{K_n(x_k, x_k)} - \frac{1}{x_k P'_{n,0}(x_k)}.$$

On the other hand $M_0 = A_k$ and the quadrature formula (3.16) becomes:

$$\int_0^b f(x)w(x)dx = \sum_{k=1}^n \frac{f(x_k)}{K_n(x_k, x_k)} - \frac{1}{a_n} \left[x_1, \dots, x_n; \frac{f(x)}{x} \right] + R(f).$$

If $f \in \prod_{n-1}$, R(f) = 0 and the theorem is proved.

Corollary 3.9. If P(0) = 0 and $P \in \prod_{n=1} then$

$$\int_{0}^{b} P(x)w(x)dx = \sum_{k=1}^{n} \frac{P(x_{k})}{K_{n}(x_{k}, x_{k})}.$$

Acknowledgment. The author is extremely thankful to the referee for his valuable comments and suggestions, leading to a better presentation of the paper.

References

- Brezinski, C., Driver, K. A., Redino-Zaglia, M., Quasi-orthogonality with applications to some families of classical orthogonal polynomials, Appl. Numer. Math., 48(2004), 157-168.
- [2] Bultheel, A., Cruz-Barroso, R., Van Borel, M., On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line, Calcolo, 47(2010), 21-48, DOI 10.1007s 10092-009-0013-x.

Ioan Gavrea

Technical University of Cluj-Napoca Department of Mathematics 28 Memorandumului Street 400114 Cluj-Napoca, Romania e-mail: ioan.gavrea@math.utcluj.ro