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On some quadrature formulas on the real
line with the higher degree of accuracy and
its applications
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Abstract. In this paper we study quadrature formulas with the higher
degree of accuracy. We study the quasi-orthogonality of orthogonal poly-
nomials and we give some results on the location of their zeros.
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1. Introduction

Let Pn be a polynomial of degree n such that∫ b

a

xkPn(x)w(x)dx = 0, k = 0, 1, . . . , n− 1,

where w is a positive weight function on the finite or infinite interval [a, b].
Pn is the polynomial of degree n belonging to the family of orthogonal poly-
nomials on [a, b] with respect to the weight function w. It is well known that
the zeros of Pn are all real and distinct and lie in (a, b).

Definition 1.1. Let Rn be a polynomial of exact degree n, n ≥ r, r being a
fixed natural number. If Rn satisfies the conditions∫ b

a

xkPn(x)w(x)dx =
{

0, for k = 0, 1, . . . , n− r − 1
6= 0, for k = n− r

(1.1)

where w is a positive weight function on [a, b], then Rn is a quasi-orthogonal
polynomial of order r on [a, b] with respect to w.

Remark 1.2. The quasi-orthogonal polynomials Rn are only defined for n ≥ r.

If r = 0 then Rn = λPn where λ is a real constant.
The following result can be found in [1].
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Theorem 1.3. Let {Pn} be the family of orthogonal polynomials on [a, b] with
respect to a positive weight function w. A necessary and sufficient condition
for a polynomial Rn of degree n to be quasi-orthogonal of order r on [a, b]
with respect to w is that

Rn(x) = c0Pn(x) + c1Pn−1(x) + . . . + crPn−r(x) (1.2)

where ci’s are numbers which can depend on n and c0cr 6= 0.

If Rn is quasi-orthogonal of order r on [a, b], then at least n− r distinct
zeros of Rn lie in the interval (a, b).

In [1] C. Brezinski, K. A. Driver, M. Redino-Zaglia consider quasi-
orthogonal polynomials of degree n− 1, n− 2:

Rn(x) = Pn(x) + anPn−1(x), an 6= 0 (1.3)

and
Rn(x) = Pn(x) + anPn−1(x) + bnPn−2(x), bn 6= 0 (1.4)

and make a study of its zeros.
The following result is well known.

Theorem 1.4. The quadrature formula∫ b

a

f(x)w(x)dx =
n∑

i=1

Ai,nf(xi,n) + R(f) (1.5)

has the degree of exactness n + k if and only if it is of interpolatory type and
the nodal polynomial

Πn(x) =
n∏

i=1

(x− xi,n)

is quasi-orthogonal of order n− k − 1 in [a, b] with respect to w.

A. Bultheel, R. Cruz-Barroso and Marc Van Borel ([2]) consider an n
point quadrature formula of Gauss-Radon type:∫ b

a

f(x)w(x)dx = Aαf(α) +
n−1∑
k=1

Ak,nf(xk,n) + R(f) (1.6)

where α ∈ [a, b] is a fixed point and the degree of exactness is 2n− 2.

Remark 1.5. If Pn(α) = 0 then (1.6) is actually a Gaussian quadrature for-
mula.

Remark 1.6. The coefficients of the quadrature formula (1.6) are positive.

In [2] the authors studied also Gauss-Lobatto-type quadrature formulas
with two arbitrary prefixed nodes, α and β:∫ b

a

f(x)w(x)dx = Aαf(α) + Aβf(β) +
n−2∑
k=1

Ak,nf(xk,n) + Rn(f) (1.7)

the degree of exactness being 2n− 3.
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From Theorem 1.3, the nodes of such a rule will be the zeros of

Rn(x) = Pn(x) + anPn−1(x) + bnPn−2(x).

2. Pn,k-polynomials and its properties

Let w be a positive weight function on [a, b] (a > −∞), n ∈ N∗, k ∈ N such
that k ≤ n.

We denote by Pn,k the polynomial of degree n which satisfies the fol-
lowing conditions:∫ b

a

(x− a)iPn,k(x)w(x)dx = δk,i, i = 0, 1, . . . , n. (2.1)

In the following, without loss of generality, we will consider a = 0.

Remark 2.1. By (2.1) it follows that Pn,k is a quasi-orthogonal polynomial
of order n− k with respect to the weight function w.

Theorem 2.2. The zeros of Pn,k are all real, distinct and lie in (0, b).

Proof. Let us denote by 0 < x1 < . . . < xi < b the zeros of Pn,k where it
changes the sign. Obviously i ≥ k. Suppose i < n. We have∫ b

0

(x− x1) . . . (x− xi)Pn,k(x)w(x)dx > 0. (2.2)

Using the definition of Pn,k, from (2.2) we obtain

(−1)i−kσi−k > 0, (2.3)

where (−1)i−kσi−k is the coefficient of xk of the polynomial

(x− x1) . . . (x− xi), σi−k > 0.

On the other hand we have:∫ b

0

x(x− x1) . . . (x− xi)Pn,k(x)w(x)dx > 0

or
(−1)i−k−1σi−k+1 > 0. (2.4)

The relations (2.3) and (2.4) are contradictory. �

It is easy to see that the set {Pn,k}n
k=0 forms a base in Πn and for every

P ∈ Πn we have:

P =
n∑

k=0

〈ek, P 〉Pn,k

=
n∑

k=0

ek〈Pn,kP 〉,
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where ek : R → R, ek(x) = xk, and

〈f, g〉 =
∫ b

a

f(x)g(x)w(x)dx.

We denote by Kn(x, y) the Christoffel-Darboux kernel

Kn(x, y) =
n∑

k=0

pk(x)pk(y)

where the set {pk}n
k=0 is an orthonormal set∫ b

0

pk(x)pi(x)w(x)dx = δk,i, k, i ∈ {0, 1, . . . , n}.

The result from the following Theorem is easily verified.

Theorem 2.3. The following relations hold:

Kn(x, y) =
n∑

k=0

xkPn,k(y) (2.5)

=
n∑

k=0

ykPn,k(x)

=
1

an+1,n+1
· Pn+1,n+1(x)Pn,n(y)− Pn,n(x)Pn+1,n+1(y)

x− y

where an+1,n+1 is the coefficient of xn+1 from Pn+1,n+1.

3. Main results

Let P be a polynomial of degree n and let mk be the moment of order k with
respect to the weight function w,

mk = 〈ek, P 〉 =
∫ b

0

xkP (x)w(x)dx, k = 0, 1, . . . , n.

Then P can be written as

P (x) =
n∑

k=0

mkPn,k(x).

Theorem 3.1. If
(−1)kmk ≥ 0, k = 0, 1, 2, . . . , n (3.1)

then the zeros of P are all real, distinct and lie in (0, b).

Proof. By (3.1) it follows that there exist at least a point x1 where P changes
the sign.

Let x1, . . . , xp be all the zeros where P changes its sign in the interval
(0, b) and suppose that p < n.

So, the polynomial (x− x1) . . . (x− xp)P (x) doesn’t change the sign.
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Suppose that
(x− x1) . . . (x− xp)P (x) ≥ 0. (3.2)

From (3.2) we get:∫ b

0

(x− x1) . . . (x− xp)P (x)w(x)dx > 0 (3.3)

∫ b

0

(x− x1) . . . (x− xp)P (x)w(x)dx = (−1)p

p∑
i=0

(−1)p−imp−iσi (3.4)

where σi are Vieta’s sum of order i of the numbers x1, . . . , xp.
On the other hand we have:∫ b

0

x(x− x1) . . . (x− xp)P (x)w(x)dx > 0 (3.5)

∫ b

0

x(x− x1) . . . (x− xp)P (x)w(x)dx = (−1)p+1

p∑
i=0

(−1)p−i+1mp−i+1σi.

(3.6)
From (3.4) and (3.6) it follows that the inequalities (3.3) and (3.4) are

contradictory and so p = n. �

Corollary 3.2. Let Rn be a quasi-orthogonal polynomial of order 1,

Rn(x) = Pn,n−1(x)− anPn,n(x).

If an > 0 then the zeros of Rn are all real and distinct and lie in (0, b).

Remark 3.3. The condition an > 0 is only sufficient.
A necessary and sufficient condition is given by

(−1)n(Pn,n−1(0)− anPn,n(0))(Pn,n−1(b)− anPn,n(b)) > 0.

Let α ∈ [0, b] be a fixed point and let us consider the quadrature formula∫ b

0

f(x)w(x)x = Aαf(α) +
n−1∑
k=1

Ak,nf(xk,n) + R(f) (3.7)

having the degree of exactness 2n− 2.
This means that α is a root of polynomial Rn which is of the form

Rn(x) = Pn,n−1(x) + aPn,n(x).

The coefficients Aα, Ak,n, k = 1, 2, . . . , n− 1 are positive and are given
by

Ak,n =

∫ b

0

(x− α)2l2k(x)w(x)dx

(xk,n − α)2
, Aα =

∫ b

0

l2(x)w(x)dx

l2(α)
where

l(x) =
n−1∏
k=1

(x− xk,n), lk(x) =
l(x)

(x− xk,n)l′(xk,n)
.
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Theorem 3.4. The coefficients Ak,n, k = 1, . . . , n− 1 and Aα are given by

Ak,n =
1

Kn−1(xk,n, xk,n)
, k = 1, 2, . . . , n− 1

Aα =
1

Kn−1(α, α)
.

Proof. Let us denote by:

Mi =
∫ b

0

xi(x− α)lk(x)w(x)dx.

We have
M1 = xk,nM0

M2 = x2
k,nM0

. . .

Mn−1 = xn−1
k,n M0.

(3.8)

From (3.8) we get

(x− α)lk(x) = M0

n−1∑
i=0

xi
k,nPn−1,i(x). (3.9)

By (3.9) we obtain

M0 =
xk,n − α

Kn−1(xk,n, xk,n)
and so

Ak,n =
1

Kn−1(xk,n, xk,n)
, k = 1, n− 1.

Similarly we get

Aα =
1

Kn−1(α, α)
.

The proof of the theorem is finished. �

Corollary 3.5. Let P ∈ Π2n−2, P (x) > 0, ∀ x ∈ R. Then∫ b

0

P (x)w(x)dx ≥ 1
Kn−1(α, α)

P (α), ∀ α ∈ R.

Theorem 3.6. Let Rn be a quasi-orthogonal polynomial of order 1 with the
weight function w having all its zeros lie in [0, b). Suppose that

Rn(x) = anxn + . . .

Then for every continuous function f , f : [a, b] → R, the following equality
holds:∫ b

0

w(x)f(x)dx−
n∑

k=1

Akf(xk) =
1
an

[x1, x2, . . . , xn; [x, x1, . . . , xn; f ]] (3.10)



On some quadrature formulas on the real line 365

+
1
a2

n

∫ b

0

[x, x1, x2, . . . , xn; [·, x1, . . . , xn; f ]]R2
n(x)w(x)dx

where xk, k = 1, 2, . . . , n, are the zeros of Rn and Ak =
1

Kn−1(xk, xk)
.

Proof. The quadrature formula∫ b

0

w(x)f(x)dx =
n∑

k=1

Akf(xk) + R(f) (3.11)

having degree of exactness 2n − 2 is a quadrature formula of interpolatory
type, coefficients Ak, k = 1, 2, . . . , n being given by

Ak =
∫ b

0

lk(x)w(x)dx

=
1

Kn−1(xk, xk)
.

We have

f(x)− Ln−1(f ;x1, . . . , xn)(x) =
1
an

Rn(x)[x, x1, . . . , xn; f ] (3.12)

where Ln−1(f ;x1, . . . , xn) is Lagrange’s polynomial of degree n − 1 which
interpolates the function f at the points xk, k = 1, n.

Rn is of the form:

Rn = Pn,n−1 + αPn,n, α ∈ R.

From (3.12) we obtain∫ b

0

f(x)Rn(x)w(x)dx− [x1, x2, . . . , xn; f ] (3.13)

=
1
an

∫ b

0

R2
n(x)[x, x1, x2, . . . , xn; f ]w(x)dx

and∫ b

0

f(x)w(x)dx−
n∑

k=1

Akf(xk) =
1
an

∫ b

0

Rn(x)[x, x1, . . . , xn; f ]w(x)dx

(3.14)
From (3.13) and (3.14) we get (3.10). �

Corollary 3.7. Let f ∈ C1[0, b]. Then there exists θ ∈ [0, b] such that R(f)
from (3.11) can be written in the following form

R(f) =
1
an

[x1, x2, . . . , xn; [x, x1, . . . , xn; f ]] (3.15)

+
kn

a2
n

[θ, x1, . . . , xn; [x, x1, . . . , xn; f ]]

where

kn =
∫ b

0

R2
n(x)w(x)dx.
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Proof. Equation (3.15) follows from (3.13) if we put instead of f the divided
difference [x, x1, . . . , xn; f ]. �

Theorem 3.8. Let xk, k = 1, 2, . . . , n be the zeros of Pn,0 and w a positive
weight such that ∫ b

0

w(x)dx = 1.

Then, for every P ∈ Πn−1 we have:∫ b

0

P (x)w(x)dx =
n∑

k=1

P (xk)
Kn(xk, xk)

− 1
an

[
x1, . . . , xn;

P (x)
x

]
where an is the coefficient of xn from Pn,0.

Proof. Let us consider the quadrature formula∫ b

0

f(x)w(x)dx =
n∑

k=1

Akf(xk) + R(f). (3.16)

The quadrature formula (3.16) has the degree of exactness n − 1 and Ak,
k = 1, 2, . . . , n are given by

Ak =
∫ b

0

Pn,0(x)w(x)
(x− xk)P ′

n,0(xk)
dx.

Let us denote by Mi the moment of order i, i = 0, 1, . . . , n of the polynomial
Pn,0(x)

(x− xk)P ′
n,0(xk)

.

We get

M1 − xkM0 =
1

P ′
n,0(xk)

(3.17)

Mi = xi−1
k M1, i = 2, 3, . . . , n.

So
Pn,0(x)

(x− xk)P ′
n,0(x)

= M0Pn,0(x) + M1Pn,1(x) (3.18)

+
M1

xk
(Kn(x, xk)− Pn,0(x)− xkPn,1(x)).

For x = xk we get

1 =
M1

xk
Kn(xk, xk). (3.19)

From (3.17) and (3.19) we obtain

M0 =
1

Kn(xk, xk)
− 1

xkP ′
n,0(xk)

.

On the other hand M0 = Ak and the quadrature formula (3.16) becomes:∫ b

0

f(x)w(x)dx =
n∑

k=1

f(xk)
Kn(xk, xk)

− 1
an

[
x1, . . . , xn;

f(x)
x

]
+ R(f).
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If f ∈ Πn−1, R(f) = 0 and the theorem is proved. �

Corollary 3.9. If P (0) = 0 and P ∈ Πn−1 then∫ b

0

P (x)w(x)dx =
n∑

k=1

P (xk)
Kn(xk, xk)

.
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