On some quadrature formulas on the real line with the higher degree of accuracy and its applications

Ioan Gavrea

Abstract

In this paper we study quadrature formulas with the higher degree of accuracy. We study the quasi-orthogonality of orthogonal polynomials and we give some results on the location of their zeros. Mathematics Subject Classification (2010): 41A55, 42C05. Keywords: Orthogonal polynomials, quasi-orthogonal polynomials, zeros, quadrature formulas.

1. Introduction

Let P_{n} be a polynomial of degree n such that

$$
\int_{a}^{b} x^{k} P_{n}(x) w(x) d x=0, \quad k=0,1, \ldots, n-1
$$

where w is a positive weight function on the finite or infinite interval $[a, b]$. P_{n} is the polynomial of degree n belonging to the family of orthogonal polynomials on $[a, b]$ with respect to the weight function w. It is well known that the zeros of P_{n} are all real and distinct and lie in (a, b).

Definition 1.1. Let R_{n} be a polynomial of exact degree $n, n \geq r, r$ being a fixed natural number. If R_{n} satisfies the conditions

$$
\int_{a}^{b} x^{k} P_{n}(x) w(x) d x=\left\{\begin{array}{lll}
0, & \text { for } & k=0,1, \ldots, n-r-1 \tag{1.1}\\
\neq 0, & \text { for } & k=n-r
\end{array}\right.
$$

where w is a positive weight function on $[a, b]$, then R_{n} is a quasi-orthogonal polynomial of order r on $[a, b]$ with respect to w.

Remark 1.2. The quasi-orthogonal polynomials R_{n} are only defined for $n \geq r$.
If $r=0$ then $R_{n}=\lambda P_{n}$ where λ is a real constant.
The following result can be found in [1].

Theorem 1.3. Let $\left\{P_{n}\right\}$ be the family of orthogonal polynomials on $[a, b]$ with respect to a positive weight function w. A necessary and sufficient condition for a polynomial R_{n} of degree n to be quasi-orthogonal of order r on $[a, b]$ with respect to w is that

$$
\begin{equation*}
R_{n}(x)=c_{0} P_{n}(x)+c_{1} P_{n-1}(x)+\ldots+c_{r} P_{n-r}(x) \tag{1.2}
\end{equation*}
$$

where c_{i} 's are numbers which can depend on n and $c_{0} c_{r} \neq 0$.
If R_{n} is quasi-orthogonal of order r on $[a, b]$, then at least $n-r$ distinct zeros of R_{n} lie in the interval (a, b).

In [1] C. Brezinski, K. A. Driver, M. Redino-Zaglia consider quasiorthogonal polynomials of degree $n-1, n-2$:

$$
\begin{equation*}
R_{n}(x)=P_{n}(x)+a_{n} P_{n-1}(x), \quad a_{n} \neq 0 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{n}(x)=P_{n}(x)+a_{n} P_{n-1}(x)+b_{n} P_{n-2}(x), \quad b_{n} \neq 0 \tag{1.4}
\end{equation*}
$$

and make a study of its zeros.
The following result is well known.
Theorem 1.4. The quadrature formula

$$
\begin{equation*}
\int_{a}^{b} f(x) w(x) d x=\sum_{i=1}^{n} A_{i, n} f\left(x_{i, n}\right)+R(f) \tag{1.5}
\end{equation*}
$$

has the degree of exactness $n+k$ if and only if it is of interpolatory type and the nodal polynomial

$$
\Pi_{n}(x)=\prod_{i=1}^{n}\left(x-x_{i, n}\right)
$$

is quasi-orthogonal of order $n-k-1$ in $[a, b]$ with respect to w.
A. Bultheel, R. Cruz-Barroso and Marc Van Borel ([2]) consider an n point quadrature formula of Gauss-Radon type:

$$
\begin{equation*}
\int_{a}^{b} f(x) w(x) d x=A_{\alpha} f(\alpha)+\sum_{k=1}^{n-1} A_{k, n} f\left(x_{k, n}\right)+R(f) \tag{1.6}
\end{equation*}
$$

where $\alpha \in[a, b]$ is a fixed point and the degree of exactness is $2 n-2$.
Remark 1.5. If $P_{n}(\alpha)=0$ then (1.6) is actually a Gaussian quadrature formula.

Remark 1.6. The coefficients of the quadrature formula (1.6) are positive.
In [2] the authors studied also Gauss-Lobatto-type quadrature formulas with two arbitrary prefixed nodes, α and β :

$$
\begin{equation*}
\int_{a}^{b} f(x) w(x) d x=A_{\alpha} f(\alpha)+A_{\beta} f(\beta)+\sum_{k=1}^{n-2} A_{k, n} f\left(x_{k, n}\right)+R_{n}(f) \tag{1.7}
\end{equation*}
$$

the degree of exactness being $2 n-3$.

From Theorem 1.3, the nodes of such a rule will be the zeros of

$$
R_{n}(x)=P_{n}(x)+a_{n} P_{n-1}(x)+b_{n} P_{n-2}(x)
$$

2. $P_{n, k}$-polynomials and its properties

Let w be a positive weight function on $[a, b](a>-\infty), n \in \mathbb{N}^{*}, k \in \mathbb{N}$ such that $k \leq n$.

We denote by $P_{n, k}$ the polynomial of degree n which satisfies the following conditions:

$$
\begin{equation*}
\int_{a}^{b}(x-a)^{i} P_{n, k}(x) w(x) d x=\delta_{k, i}, \quad i=0,1, \ldots, n \tag{2.1}
\end{equation*}
$$

In the following, without loss of generality, we will consider $a=0$.
Remark 2.1. By (2.1) it follows that $P_{n, k}$ is a quasi-orthogonal polynomial of order $n-k$ with respect to the weight function w.

Theorem 2.2. The zeros of $P_{n, k}$ are all real, distinct and lie in $(0, b)$.
Proof. Let us denote by $0<x_{1}<\ldots<x_{i}<b$ the zeros of $P_{n, k}$ where it changes the sign. Obviously $i \geq k$. Suppose $i<n$. We have

$$
\begin{equation*}
\int_{0}^{b}\left(x-x_{1}\right) \ldots\left(x-x_{i}\right) P_{n, k}(x) w(x) d x>0 \tag{2.2}
\end{equation*}
$$

Using the definition of $P_{n, k}$, from (2.2) we obtain

$$
\begin{equation*}
(-1)^{i-k} \sigma_{i-k}>0 \tag{2.3}
\end{equation*}
$$

where $(-1)^{i-k} \sigma_{i-k}$ is the coefficient of x^{k} of the polynomial

$$
\left(x-x_{1}\right) \ldots\left(x-x_{i}\right), \quad \sigma_{i-k}>0 .
$$

On the other hand we have:

$$
\int_{0}^{b} x\left(x-x_{1}\right) \ldots\left(x-x_{i}\right) P_{n, k}(x) w(x) d x>0
$$

or

$$
\begin{equation*}
(-1)^{i-k-1} \sigma_{i-k+1}>0 . \tag{2.4}
\end{equation*}
$$

The relations (2.3) and (2.4) are contradictory.
It is easy to see that the set $\left\{P_{n, k}\right\}_{k=0}^{n}$ forms a base in Π_{n} and for every $P \in \Pi_{n}$ we have:

$$
\begin{aligned}
P & =\sum_{k=0}^{n}\left\langle e_{k}, P\right\rangle P_{n, k} \\
& =\sum_{k=0}^{n} e_{k}\left\langle P_{n, k} P\right\rangle,
\end{aligned}
$$

where $e_{k}: \mathbb{R} \rightarrow \mathbb{R}, e_{k}(x)=x^{k}$, and

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) w(x) d x
$$

We denote by $K_{n}(x, y)$ the Christoffel-Darboux kernel

$$
K_{n}(x, y)=\sum_{k=0}^{n} p_{k}(x) p_{k}(y)
$$

where the set $\left\{p_{k}\right\}_{k=0}^{n}$ is an orthonormal set

$$
\int_{0}^{b} p_{k}(x) p_{i}(x) w(x) d x=\delta_{k, i}, \quad k, i \in\{0,1, \ldots, n\} .
$$

The result from the following Theorem is easily verified.
Theorem 2.3. The following relations hold:

$$
\begin{align*}
K_{n}(x, y) & =\sum_{k=0}^{n} x^{k} P_{n, k}(y) \tag{2.5}\\
& =\sum_{k=0}^{n} y^{k} P_{n, k}(x) \\
& =\frac{1}{a_{n+1, n+1}} \cdot \frac{P_{n+1, n+1}(x) P_{n, n}(y)-P_{n, n}(x) P_{n+1, n+1}(y)}{x-y}
\end{align*}
$$

where $a_{n+1, n+1}$ is the coefficient of x^{n+1} from $P_{n+1, n+1}$.

3. Main results

Let P be a polynomial of degree n and let m_{k} be the moment of order k with respect to the weight function w,

$$
m_{k}=\left\langle e_{k}, P\right\rangle=\int_{0}^{b} x^{k} P(x) w(x) d x, \quad k=0,1, \ldots, n
$$

Then P can be written as

$$
P(x)=\sum_{k=0}^{n} m_{k} P_{n, k}(x)
$$

Theorem 3.1. If

$$
\begin{equation*}
(-1)^{k} m_{k} \geq 0, \quad k=0,1,2, \ldots, n \tag{3.1}
\end{equation*}
$$

then the zeros of P are all real, distinct and lie in $(0, b)$.
Proof. By (3.1) it follows that there exist at least a point x_{1} where P changes the sign.

Let x_{1}, \ldots, x_{p} be all the zeros where P changes its sign in the interval $(0, b)$ and suppose that $p<n$.

So, the polynomial $\left(x-x_{1}\right) \ldots\left(x-x_{p}\right) P(x)$ doesn't change the sign.

Suppose that

$$
\begin{equation*}
\left(x-x_{1}\right) \ldots\left(x-x_{p}\right) P(x) \geq 0 \tag{3.2}
\end{equation*}
$$

From (3.2) we get:

$$
\begin{gather*}
\int_{0}^{b}\left(x-x_{1}\right) \ldots\left(x-x_{p}\right) P(x) w(x) d x>0 \tag{3.3}\\
\int_{0}^{b}\left(x-x_{1}\right) \ldots\left(x-x_{p}\right) P(x) w(x) d x=(-1)^{p} \sum_{i=0}^{p}(-1)^{p-i} m_{p-i} \sigma_{i} \tag{3.4}
\end{gather*}
$$

where σ_{i} are Vieta's sum of order i of the numbers x_{1}, \ldots, x_{p}.
On the other hand we have:

$$
\begin{gather*}
\int_{0}^{b} x\left(x-x_{1}\right) \ldots\left(x-x_{p}\right) P(x) w(x) d x>0 \tag{3.5}\\
\int_{0}^{b} x\left(x-x_{1}\right) \ldots\left(x-x_{p}\right) P(x) w(x) d x=(-1)^{p+1} \sum_{i=0}^{p}(-1)^{p-i+1} m_{p-i+1} \sigma_{i} \tag{3.6}
\end{gather*}
$$

From (3.4) and (3.6) it follows that the inequalities (3.3) and (3.4) are contradictory and so $p=n$.

Corollary 3.2. Let R_{n} be a quasi-orthogonal polynomial of order 1 ,

$$
R_{n}(x)=P_{n, n-1}(x)-a_{n} P_{n, n}(x)
$$

If $a_{n}>0$ then the zeros of R_{n} are all real and distinct and lie in $(0, b)$.
Remark 3.3. The condition $a_{n}>0$ is only sufficient.
A necessary and sufficient condition is given by

$$
(-1)^{n}\left(P_{n, n-1}(0)-a_{n} P_{n, n}(0)\right)\left(P_{n, n-1}(b)-a_{n} P_{n, n}(b)\right)>0
$$

Let $\alpha \in[0, b]$ be a fixed point and let us consider the quadrature formula

$$
\begin{equation*}
\int_{0}^{b} f(x) w(x) x=A_{\alpha} f(\alpha)+\sum_{k=1}^{n-1} A_{k, n} f\left(x_{k, n}\right)+R(f) \tag{3.7}
\end{equation*}
$$

having the degree of exactness $2 n-2$.
This means that α is a root of polynomial R_{n} which is of the form

$$
R_{n}(x)=P_{n, n-1}(x)+a P_{n, n}(x)
$$

The coefficients $A_{\alpha}, A_{k, n}, k=1,2, \ldots, n-1$ are positive and are given by

$$
A_{k, n}=\frac{\int_{0}^{b}(x-\alpha)^{2} l_{k}^{2}(x) w(x) d x}{\left(x_{k, n}-\alpha\right)^{2}}, \quad A_{\alpha}=\frac{\int_{0}^{b} l^{2}(x) w(x) d x}{l^{2}(\alpha)}
$$

where

$$
l(x)=\prod_{k=1}^{n-1}\left(x-x_{k, n}\right), \quad l_{k}(x)=\frac{l(x)}{\left(x-x_{k, n}\right) l^{\prime}\left(x_{k, n}\right)}
$$

Theorem 3.4. The coefficients $A_{k, n}, k=1, \ldots, n-1$ and A_{α} are given by

$$
\begin{gathered}
A_{k, n}=\frac{1}{K_{n-1}\left(x_{k, n}, x_{k, n}\right)}, \quad k=1,2, \ldots, n-1 \\
A_{\alpha}=\frac{1}{K_{n-1}(\alpha, \alpha)} .
\end{gathered}
$$

Proof. Let us denote by:

$$
M_{i}=\int_{0}^{b} x^{i}(x-\alpha) l_{k}(x) w(x) d x
$$

We have

$$
\begin{align*}
& M_{1}=x_{k, n} M_{0} \\
& M_{2}=x_{k, n}^{2} M_{0} \tag{3.8}\\
& \ldots \\
& M_{n-1}=x_{k, n}^{n-1} M_{0}
\end{align*}
$$

From (3.8) we get

$$
\begin{equation*}
(x-\alpha) l_{k}(x)=M_{0} \sum_{i=0}^{n-1} x_{k, n}^{i} P_{n-1, i}(x) . \tag{3.9}
\end{equation*}
$$

By (3.9) we obtain

$$
M_{0}=\frac{x_{k, n}-\alpha}{K_{n-1}\left(x_{k, n}, x_{k, n}\right)}
$$

and so

$$
A_{k, n}=\frac{1}{K_{n-1}\left(x_{k, n}, x_{k, n}\right)}, \quad k=\overline{1, n-1} .
$$

Similarly we get

$$
A_{\alpha}=\frac{1}{K_{n-1}(\alpha, \alpha)}
$$

The proof of the theorem is finished.
Corollary 3.5. Let $P \in \Pi_{2 n-2}, P(x)>0, \forall x \in \mathbb{R}$. Then

$$
\int_{0}^{b} P(x) w(x) d x \geq \frac{1}{K_{n-1}(\alpha, \alpha)} P(\alpha), \forall \alpha \in \mathbb{R}
$$

Theorem 3.6. Let R_{n} be a quasi-orthogonal polynomial of order 1 with the weight function w having all its zeros lie in $[0, b)$. Suppose that

$$
R_{n}(x)=a_{n} x^{n}+\ldots
$$

Then for every continuous function $f, f:[a, b] \rightarrow \mathbb{R}$, the following equality holds:

$$
\begin{equation*}
\int_{0}^{b} w(x) f(x) d x-\sum_{k=1}^{n} A_{k} f\left(x_{k}\right)=\frac{1}{a_{n}}\left[x_{1}, x_{2}, \ldots, x_{n} ;\left[x, x_{1}, \ldots, x_{n} ; f\right]\right] \tag{3.10}
\end{equation*}
$$

$$
+\frac{1}{a_{n}^{2}} \int_{0}^{b}\left[x, x_{1}, x_{2}, \ldots, x_{n} ;\left[\cdot, x_{1}, \ldots, x_{n} ; f\right]\right] R_{n}^{2}(x) w(x) d x
$$

where $x_{k}, k=1,2, \ldots, n$, are the zeros of R_{n} and $A_{k}=\frac{1}{K_{n-1}\left(x_{k}, x_{k}\right)}$.
Proof. The quadrature formula

$$
\begin{equation*}
\int_{0}^{b} w(x) f(x) d x=\sum_{k=1}^{n} A_{k} f\left(x_{k}\right)+R(f) \tag{3.11}
\end{equation*}
$$

having degree of exactness $2 n-2$ is a quadrature formula of interpolatory type, coefficients $A_{k}, k=1,2, \ldots, n$ being given by

$$
\begin{aligned}
A_{k} & =\int_{0}^{b} l_{k}(x) w(x) d x \\
& =\frac{1}{K_{n-1}\left(x_{k}, x_{k}\right)}
\end{aligned}
$$

We have

$$
\begin{equation*}
f(x)-L_{n-1}\left(f ; x_{1}, \ldots, x_{n}\right)(x)=\frac{1}{a_{n}} R_{n}(x)\left[x, x_{1}, \ldots, x_{n} ; f\right] \tag{3.12}
\end{equation*}
$$

where $L_{n-1}\left(f ; x_{1}, \ldots, x_{n}\right)$ is Lagrange's polynomial of degree $n-1$ which interpolates the function f at the points $x_{k}, k=\overline{1, n}$.
R_{n} is of the form:

$$
R_{n}=P_{n, n-1}+\alpha P_{n, n}, \quad \alpha \in \mathbb{R} .
$$

From (3.12) we obtain

$$
\begin{align*}
& \int_{0}^{b} f(x) R_{n}(x) w(x) d x-\left[x_{1}, x_{2}, \ldots, x_{n} ; f\right] \tag{3.13}\\
& =\frac{1}{a_{n}} \int_{0}^{b} R_{n}^{2}(x)\left[x, x_{1}, x_{2}, \ldots, x_{n} ; f\right] w(x) d x
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{b} f(x) w(x) d x-\sum_{k=1}^{n} A_{k} f\left(x_{k}\right)=\frac{1}{a_{n}} \int_{0}^{b} R_{n}(x)\left[x, x_{1}, \ldots, x_{n} ; f\right] w(x) d x \tag{3.14}
\end{equation*}
$$

From (3.13) and (3.14) we get (3.10).
Corollary 3.7. Let $f \in C^{1}[0, b]$. Then there exists $\theta \in[0, b]$ such that $R(f)$ from (3.11) can be written in the following form

$$
\begin{align*}
R(f) & =\frac{1}{a_{n}}\left[x_{1}, x_{2}, \ldots, x_{n} ;\left[x, x_{1}, \ldots, x_{n} ; f\right]\right] \tag{3.15}\\
& +\frac{k_{n}}{a_{n}^{2}}\left[\theta, x_{1}, \ldots, x_{n} ;\left[x, x_{1}, \ldots, x_{n} ; f\right]\right]
\end{align*}
$$

where

$$
k_{n}=\int_{0}^{b} R_{n}^{2}(x) w(x) d x
$$

Proof. Equation (3.15) follows from (3.13) if we put instead of f the divided difference $\left[x, x_{1}, \ldots, x_{n} ; f\right]$.

Theorem 3.8. Let $x_{k}, k=1,2, \ldots, n$ be the zeros of $P_{n, 0}$ and w a positive weight such that

$$
\int_{0}^{b} w(x) d x=1
$$

Then, for every $P \in \Pi_{n-1}$ we have:

$$
\int_{0}^{b} P(x) w(x) d x=\sum_{k=1}^{n} \frac{P\left(x_{k}\right)}{K_{n}\left(x_{k}, x_{k}\right)}-\frac{1}{a_{n}}\left[x_{1}, \ldots, x_{n} ; \frac{P(x)}{x}\right]
$$

where a_{n} is the coefficient of x^{n} from $P_{n, 0}$.
Proof. Let us consider the quadrature formula

$$
\begin{equation*}
\int_{0}^{b} f(x) w(x) d x=\sum_{k=1}^{n} A_{k} f\left(x_{k}\right)+R(f) \tag{3.16}
\end{equation*}
$$

The quadrature formula (3.16) has the degree of exactness $n-1$ and A_{k}, $k=1,2, \ldots, n$ are given by

$$
A_{k}=\int_{0}^{b} \frac{P_{n, 0}(x) w(x)}{\left(x-x_{k}\right) P_{n, 0}^{\prime}\left(x_{k}\right)} d x
$$

Let us denote by M_{i} the moment of order $i, i=0,1, \ldots, n$ of the polynomial

$$
\frac{P_{n, 0}(x)}{\left(x-x_{k}\right) P_{n, 0}^{\prime}\left(x_{k}\right)} .
$$

We get

$$
\begin{gather*}
M_{1}-x_{k} M_{0}=\frac{1}{P_{n, 0}^{\prime}\left(x_{k}\right)} \tag{3.17}\\
M_{i}=x_{k}^{i-1} M_{1}, \quad i=2,3, \ldots, n
\end{gather*}
$$

So

$$
\begin{align*}
& \frac{P_{n, 0}(x)}{\left(x-x_{k}\right) P_{n, 0}^{\prime}(x)}=M_{0} P_{n, 0}(x)+M_{1} P_{n, 1}(x) \tag{3.18}\\
& +\frac{M_{1}}{x_{k}}\left(K_{n}\left(x, x_{k}\right)-P_{n, 0}(x)-x_{k} P_{n, 1}(x)\right)
\end{align*}
$$

For $x=x_{k}$ we get

$$
\begin{equation*}
1=\frac{M_{1}}{x_{k}} K_{n}\left(x_{k}, x_{k}\right) . \tag{3.19}
\end{equation*}
$$

From (3.17) and (3.19) we obtain

$$
M_{0}=\frac{1}{K_{n}\left(x_{k}, x_{k}\right)}-\frac{1}{x_{k} P_{n, 0}^{\prime}\left(x_{k}\right)} .
$$

On the other hand $M_{0}=A_{k}$ and the quadrature formula (3.16) becomes:

$$
\int_{0}^{b} f(x) w(x) d x=\sum_{k=1}^{n} \frac{f\left(x_{k}\right)}{K_{n}\left(x_{k}, x_{k}\right)}-\frac{1}{a_{n}}\left[x_{1}, \ldots, x_{n} ; \frac{f(x)}{x}\right]+R(f) .
$$

If $f \in \Pi_{n-1}, R(f)=0$ and the theorem is proved.
Corollary 3.9. If $P(0)=0$ and $P \in \Pi_{n-1}$ then

$$
\int_{0}^{b} P(x) w(x) d x=\sum_{k=1}^{n} \frac{P\left(x_{k}\right)}{K_{n}\left(x_{k}, x_{k}\right)}
$$

Acknowledgment. The author is extremely thankful to the referee for his valuable comments and suggestions, leading to a better presentation of the paper.

References

[1] Brezinski, C., Driver, K. A., Redino-Zaglia, M., Quasi-orthogonality with applications to some families of classical orthogonal polynomials, Appl. Numer. Math., 48(2004), 157-168.
[2] Bultheel, A., Cruz-Barroso, R., Van Borel, M., On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line, Calcolo, 47(2010), 21-48, DOI 10.1007s 10092-009-0013-x.

Ioan Gavrea
Technical University of Cluj-Napoca
Department of Mathematics
28 Memorandumului Street
400114 Cluj-Napoca, Romania
e-mail: ioan.gavrea@math.utcluj.ro

