Remark on Voronovskaja theorem for q-Bernstein operators

Zoltán Finta

Abstract

We establish quantitative Voronovskaja type theorems for the q-Bernstein operators introduced by Phillips in 1997. Our estimates are given with the aid of the first order Ditzian-Totik modulus of smoothness.

Mathematics Subject Classification (2010): 41A10, 41A25, 41A36.
Keywords: Voronovskaja theorem, q-integers, q-Bernstein operators, Kfunctional, first order Ditzian-Totik modulus of smoothness.

1. Introduction

Let $q>0$ and n be a non-negative integer. Then the q-integers $[n]_{q}$ and the q -factorials $[n]_{q}$! are defined by

$$
[n]_{q}=\left\{\begin{array}{rll}
1+q+\ldots+q^{n-1}, & \text { if } & n \geq 1 \\
0, & \text { if } & n=0
\end{array}\right.
$$

and

$$
[n]_{q}!=\left\{\begin{array}{rll}
{[1]_{q}[2]_{q} \ldots[n]_{q},} & \text { if } & n \geq 1 \\
1, & \text { if } & n=0
\end{array}\right.
$$

For integers $0 \leq k \leq n$, the q -binomial coefficients are defined by

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

The so-called q-Bernstein operators were introduced by G.M. Phillips [3] and they are defined by $B_{n, q}: C[0,1] \rightarrow C[0,1]$,

$$
\left(B_{n, q} f\right)(x) \equiv B_{n, q}(f, x)=\sum_{k=0}^{n} f\left(\frac{[k]_{q}}{[n]_{q}}\right) p_{n, k}(q, x)
$$

where

$$
p_{n, k}(q, x)=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{k}(1-x)(1-q x) \ldots\left(1-q^{n-k-1} x\right), \quad x \in[0,1]
$$

and an empty product denotes 1 . Note that for $q=1$, we recover the classical Bernstein operators. It is well-known that Voronovskaja's theorem [5] deals with the asymptotic behaviour of Bernstein operators. Then naturally raises the following question: can we state a similar Voronovskaja theorem for the q-Bernstein operators? The positive answer was given in [3] as follows.

Theorem 1.1. Let $q=q_{n}$ satisfy $0<q_{n}<1$ and let $q_{n} \rightarrow 1$ as $n \rightarrow \infty$. If f is bounded on $[0,1]$, differentiable in some neighborhood of x and has second derivative $f^{\prime \prime}(x)$ for some $x \in[0,1]$, then the rate of convergence of the sequence $\left\{\left(B_{n, q_{n}} f\right)(x)\right\}$ is governed by

$$
\begin{equation*}
\lim _{n \rightarrow \infty}[n]_{q_{n}}\left\{\left(B_{n, q_{n}} f\right)(x)-f(x)\right\}=\frac{1}{2} x(1-x) f^{\prime \prime}(x) \tag{1.1}
\end{equation*}
$$

In [4], the convergence (1.1) was given in quantitative form as follows.
Theorem 1.2. Let $q=q_{n}$ satisfy $0<q_{n}<1$ and let $q_{n} \rightarrow 1$ as $n \rightarrow \infty$. Then for any $f \in C^{2}[0,1]$ the following inequality holds
$\left|[n]_{q_{n}}\left\{\left(B_{n, q_{n}} f\right)(x)-f(x)\right\}-\frac{1}{2} x(1-x) f^{\prime \prime}(x)\right| \leq c x(1-x) \omega\left(f^{\prime \prime},[n]_{q_{n}}^{-1 / 2}\right)$,
where c is an absolute positive constant, $x \in[0,1], n=1,2, \ldots$ and ω is the first order modulus of continuity.

The goal of this note is to obtain new quantitative Voronovskaja type theorems for the q-Bernstein operators. Our results will be formulated with the aid of the first order Ditzian-Totik modulus of smoothness (see [1]), which is given for $f \in C[0,1]$ by

$$
\begin{equation*}
\omega_{\varphi}^{1}(f, \delta)=\sup _{0<h \leq \delta}\left\|\Delta_{h \varphi(\cdot)}^{1} f(\cdot)\right\|, \tag{1.2}
\end{equation*}
$$

where $\varphi(x)=\sqrt{x(1-x)}, x \in[0,1],\|\cdot\|$ is the uniform norm and $\Delta_{h \varphi(x)}^{1} f(x)=\left\{\begin{array}{rll}f\left(x+\frac{1}{2} h \varphi(x)\right)-f\left(x-\frac{1}{2} h \varphi(x)\right), & \text { if } & x \pm \frac{1}{2} h \varphi(x) \in[0,1] \\ 0, & \text { otherwise. }\end{array}\right.$

Further, the corresponding K-functional to (1.2) is defined by

$$
K_{1, \varphi}(f, \delta)=\inf \left\{\|f-g\|+\delta\left\|\varphi g^{\prime}\right\|: g \in W^{1}(\varphi)\right\}
$$

where $W^{1}(\varphi)$ is the set of all $g \in C[0,1]$ such that g is absolutely continuous on every interval $[a, b] \subset[0,1]$ and $\left\|\varphi g^{\prime}\right\|<+\infty$. Then, in view of [1, p.11], there exists $C>0$ such that

$$
\begin{equation*}
K_{1, \varphi}(f, \delta) \leq C \omega_{\varphi}^{1}(f, \delta) \tag{1.3}
\end{equation*}
$$

Here we mention that throughout this paper C denotes a positive constant independent of n and x, but it is not necessarily the same in different cases.

2. Main result

Our result is the following.
Theorem 2.1. Let $\left\{q_{n}\right\}$ be a sequence such that $0<q_{n}<1$ and $q_{n} \rightarrow 1$ as $n \rightarrow \infty$. Then for every $f \in C^{2}[0,1]$ the following inequalities hold

$$
\begin{align*}
& \left|[n]_{q_{n}}\left\{\left(B_{n, q_{n}} f\right)(x)-f(x)\right\}-\frac{1}{2} x(1-x) f^{\prime \prime}(x)\right| \\
& \quad \leq C \omega_{\varphi}^{1}\left(f^{\prime \prime}, \sqrt{[n]_{q_{n}}^{-1} x(1-x)}\right) \tag{2.1}\\
& \left|[n]_{q_{n}}\left\{\left(B_{n, q_{n}} f\right)(x)-f(x)\right\}-\frac{1}{2} x(1-x) f^{\prime \prime}(x)\right| \\
& \quad \leq C \sqrt{x(1-x)} \omega_{\varphi}^{1}\left(f^{\prime \prime}, \sqrt{[n]_{q_{n}}^{-1}}\right) \tag{2.2}
\end{align*}
$$

where $x \in[0,1]$ and $n=1,2, \ldots$
Proof. We recall some properties of the q-Bernstein operators (see [3]):

$$
\begin{equation*}
B_{n, q_{n}}(1, x)=1, B_{n, q_{n}}(t, x)=x, B_{n, q_{n}}\left(t^{2}, x\right)=x^{2}+[n]_{q_{n}}^{-1} x(1-x) \tag{2.3}
\end{equation*}
$$

and $B_{n, q_{n}}$ are positive.
Let $f \in C^{2}[0,1]$ be given and $t, x \in[0,1]$. Then, by Taylor's formula, $f(t)=f(x)+f^{\prime}(x)(t-x)+\int_{x}^{t} f^{\prime \prime}(u)(t-u) d u$. Hence

$$
\begin{aligned}
f(t) & -f(x)-f^{\prime}(x)(t-x)-\frac{1}{2} f^{\prime \prime}(x)(t-x)^{2} \\
& =\int_{x}^{t} f^{\prime \prime}(u)(t-u) d u-\int_{x}^{t} f^{\prime \prime}(x)(t-u) d u \\
& =\int_{x}^{t}\left[f^{\prime \prime}(u)-f^{\prime \prime}(x)\right](t-u) d u
\end{aligned}
$$

In view of (2.3), we obtain

$$
\begin{align*}
& \left|B_{n, q_{n}}(f, x)-f(x)-\frac{1}{2}[n]_{q_{n}}^{-1} x(1-x) f^{\prime \prime}(x)\right| \\
& \quad=\left|B_{n, q_{n}}\left(\int_{x}^{t}\left[f^{\prime \prime}(u)-f^{\prime \prime}(x)\right](t-u) d u, x\right)\right| \\
& \quad \leq B_{n, q_{n}}\left(\left|\int_{x}^{t}\right| f^{\prime \prime}(u)-f^{\prime \prime}(x)| | t-u|d u|, x\right) \tag{2.4}
\end{align*}
$$

In what follows we estimate $\left|\int_{x}^{t}\right| f^{\prime \prime}(u)-f^{\prime \prime}(x)| | t-u|d u|$. For $g \in$ $W^{1}(\varphi)$, we have

$$
\begin{align*}
& \left|\int_{x}^{t}\right| f^{\prime \prime}(u)-f^{\prime \prime}(x)| | t-u|d u| \\
\leq & \left|\int_{x}^{t}\right| f^{\prime \prime}(u)-g(u)| | t-u|d u|+\left|\int_{x}^{t}\right| g(u)-g(x)| | t-u|d u| \\
& +\left|\int_{x}^{t}\right| g(x)-f^{\prime \prime}(x)| | t-u|d u| \\
\leq & 2\left\|f^{\prime \prime}-g\right\|(t-x)^{2}+\left|\int_{x}^{t}\right| \int_{x}^{u}\left|g^{\prime}(v)\right| d v| | t-u|d u| \\
\leq & 2\left\|f^{\prime \prime}-g\right\|(t-x)^{2}+\left\|\varphi g^{\prime}\right\|\left|\int_{x}^{t}\right| \int_{x}^{u} \frac{d v}{\varphi(v)}| | t-u|d u| \\
\leq & 2\left\|f^{\prime \prime}-g\right\|(t-x)^{2} \\
& +\left\|\varphi g^{\prime}\right\|\left|\int_{x}^{t}\right| \int_{x}^{u} \frac{|u-x|^{1 / 2}}{\varphi(x)} \frac{d v}{|u-v|^{1 / 2}}| | t-u|d u| \\
= & 2\left\|f^{\prime \prime}-g\right\|(t-x)^{2}+2\left\|\varphi g^{\prime}\right\| \varphi^{-1}(x)\left|\int_{x}^{t}\right| u-x| | t-u|d u| \\
\leq & 2\left\|f^{\prime \prime}-g\right\|(t-x)^{2}+2\left\|\varphi g^{\prime}\right\| \varphi^{-1}(x)|t-x|^{3}, \tag{2.5}
\end{align*}
$$

where we have used the inequality $\frac{|u-v|}{\varphi^{2}(v)} \leq \frac{|u-x|}{\varphi^{2}(x)}, v$ is between u and x (see [1, p. 141]).

On the other hand, by [2, p. 440], we have the following property: for any $m=1,2, \ldots$ and $0<q<1$, there exists a constant $C(m)>0$ such that

$$
\begin{equation*}
\left|B_{n, q}\left((t-x)^{m}, x\right)\right| \leq C(m) \frac{\varphi^{2}(x)}{[n]_{q}^{\lfloor(m+1) / 2\rfloor}} \tag{2.6}
\end{equation*}
$$

where $\varphi(x)=\sqrt{x(1-x)}, x \in[0,1]$ and $\lfloor a\rfloor$ is the integer part of $a \geq 0$ (see also $[4,(4.2)$ and (5.6)]).

Now combining (2.4), (2.5), (2.6) and the Cauchy-Schwarz inequality, we find that

$$
\begin{align*}
& \left|\left(B_{n, q_{n}} f\right)(x)-f(x)-\frac{1}{2}[n]_{q_{n}}^{-1} x(1-x) f^{\prime \prime}(x)\right| \\
& \leq \\
& \leq 2\left\|f^{\prime \prime}-g\right\| B_{n, q_{n}}\left((t-x)^{2}, x\right)+2\left\|\varphi g^{\prime}\right\| \varphi^{-1}(x) B_{n, q_{n}}\left(|t-x|^{3}, x\right) \\
& \leq \\
& \quad 2\left\|f^{\prime \prime}-g\right\| B_{n, q_{n}}\left((t-x)^{2}, x\right) \\
& \quad \tag{2.7}\\
& \quad+2\left\|\varphi g^{\prime}\right\| \varphi^{-1}(x)\left(B_{n, q_{n}}\left((t-x)^{2}, x\right)\right)^{1 / 2}\left(B_{n, q_{n}}\left((t-x)^{4}, x\right)\right)^{1 / 2} \\
& \quad=\frac{C}{[n]_{q_{n}}}\left\{\left\|f^{\prime \prime}-g\right\| \frac{1}{[n]_{q_{n}}} \varphi^{2}(x)+\left\|\varphi g^{\prime}\right\| \varphi^{-1}(x) \frac{\varphi(x)}{[n]_{q_{n}}^{1 / 2}} \frac{\varphi(x)}{[n]_{q_{n}}}\right\}
\end{align*}
$$

Because $\varphi^{2}(x) \leq \varphi(x) \leq 1, x \in[0,1]$, we obtain, in view of (2.7),

$$
\begin{align*}
& \left|[n]_{q_{n}}\left\{\left(B_{n, q_{n}} f\right)(x)-f(x)\right\}-\frac{1}{2} x(1-x) f^{\prime \prime}(x)\right| \\
& \quad \leq C\left\{\left\|f^{\prime \prime}-g\right\|+\frac{\varphi(x)}{[n]_{q_{n}}^{1 / 2}}\left\|\varphi g^{\prime}\right\|\right\} \tag{2.8}
\end{align*}
$$

and

$$
\begin{align*}
& \left|[n]_{q_{n}}\left\{\left(B_{n, q_{n}} f\right)(x)-f(x)\right\}-\frac{1}{2} x(1-x) f^{\prime \prime}(x)\right| \\
& \quad \leq C \varphi(x)\left\{\left\|f^{\prime \prime}-g\right\|+\frac{1}{[n]_{q_{n}}^{1 / 2}}\left\|\varphi g^{\prime}\right\|\right\} \tag{2.9}
\end{align*}
$$

respectively. Taking the infimum on the right hand side of (2.8) and (2.9) over all $g \in W^{1}(\varphi)$, we obtain

$$
\left|[n]_{q_{n}}\left\{\left(B_{n, q_{n}} f\right)(x)-f(x)\right\}-\frac{1}{2} x(1-x) f^{\prime \prime}(x)\right| \leq\left\{\begin{array}{l}
C K_{1, \varphi}\left(f^{\prime \prime}, \varphi(x)[n]_{q_{n}}^{-1 / 2}\right) \\
C \varphi(x) K_{1, \varphi}\left(f^{\prime \prime},[n]_{q_{n}}^{-1 / 2}\right)
\end{array}\right.
$$

Hence, by (1.3), we find the estimates (2.1) and (2.2). Thus the theorem is proved.

References

[1] Ditzian, Z., Totik, V., Moduli of Smoothness, Springer, New York, 1987.
[2] Mahmudov, N., The moments for the q-Bernstein operators in the case $0<$ $q<1$, Numer. Algor., 53(2010), 439-450.
[3] Phillips, G.M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4(1997), 511-518.
[4] Videnskii, V.S., On some classes of q-parametric positive linear operators, Operator Theory, Advances and Applications, 158(2005), 213-222.
[5] Voronovskaja, E.V., Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de M. Bernstein, Dokl. Akad. Nauk SSSR, 4(1932), 86-92.

Zoltán Finta

"Babeş-Bolyai" University,
Faculty of Mathematics and Computer Sciences
1, Kogălniceanu Street,
400084 Cluj-Napoca,
Romania
e-mail: fzoltan@math.ubbcluj.ro

