Almost greedy uniformly bounded orthonormal bases in rearrangement invariant Banach function spaces

Ana Danelia and Ekaterine Kapanadze

Abstract. We construct uniformly bounded orthogonal almost greedy bases in rearrangement invariant Banach spaces.

Mathematics Subject Classification (2010): 41A17, 42C40. Keywords: Greedy algorithm, non-linear approximation.

1. Introduction

Let $\{x_n\}_{n\in\mathbb{N}}$ be a semi-normalized basis in a Banach space X. This means that $\{x_n\}_{n\in\mathbb{N}}$ is a Schauder basis and is semi-normalized i.e. $0 < \inf_{n\in\mathbb{N}} ||x_n|| \le \sup_{n\in\mathbb{N}} ||x_n|| < \infty$. For an element $x \in X$ we define the error of the best m-term approximation as follows

$$\sigma_m(x) = \inf\{\|x - \sum_{n \in A} \alpha_n x_n\|\},\$$

where the inf is taken over all subsets $A \subset \mathbb{N}$ of cardinality at most m and all possible scalars α_n . The main question in approximation theory concerns the construction of efficient algorithms for m-term approximation. A computationally efficient method to produce m-term approximations, which has been widely investigated in recent years, is the so called greedy algorithm. We define the greedy approximation of $x = \sum_n a_n x_n \in X$ as

$$\mathcal{G}_m(x) = \sum_{n \in A} a_n x_n,$$

where $A \subset \mathbb{N}$ is any set of the cardinality m in such a way that $|a_n| \geq |a_l|$ whenever $n \in A$ and $l \in A$. We say that a semi-normalized basis $\{x_n\}_{n \in \mathbb{N}}$ is

The authors was supported by grant GNSF/ST08/3-393.

greedy if there exists a constant C such that for all m = 1, 2, ... and all $x \in X$ we have

$$||x - \mathcal{G}_m(x)|| \le C\sigma_m(x).$$

This notion evolved in theory of non-linear approximation (see e.g.[1],[2]). A result of Konyagin and Temlyakov [3] characterizes greedy bases in a Banach spaces X as those which are unconditional and democratic, the latter meaning that for some constant C > 0

$$\left\|\sum_{\alpha \in A} \frac{x_{\alpha}}{\|x_{\alpha}\|}\right\| \le C \left\|\sum_{\alpha \in A'} \frac{x_{\alpha}}{\|x_{\alpha}\|}\right\|$$

holds for all finite sets of indices $A, A' \subset \mathbb{N}$ with the same cardinality.

Wavelet systems are well known examples of greedy bases for many function and distribution spaces. Indeed, Temlyakov showed in [1] that the Haar system is greedy in the Lebesgye spaces $L^p(\mathbb{R}^n)$ for 1 . Whenwavelets have sufficient smoothness and decay, they are also greedy bases forthe more general Sobolev and Tribel-Lizorkin classes (see e.g.[4-5]).

A bounded Schauder basis for a Banach space X is called quasi-greedy if there exists a constant C such that for $x \in X ||\mathcal{G}_m(x)|| \leq C ||x||$ for $m \geq 1$.

Wojtaszczyk [2] proved the following result which gives a more intuitive interpretation of quasi-greedy bases.

Theorem 1.1. A bounded Schauder basis for a Banach space X is quasi-greedy if and only if $\lim_{m\to\infty} ||x - \mathcal{G}_m(x)||_X = 0$ for every element $x \in X$.

A bounded Schauder basis for a Banach space X is almost greedy if there exists a constant C such that for $x \in X$, $||x - \mathcal{G}_m(x)|| \leq C \inf\{||x - \sum_{n \in A} < x, x_n > x_n|| : A \subset \mathbb{N}, |A| = m\}.$

It was proved in [6] that a basis is almost greedy if and only if it is quasi-greedy and democratic.

A Banach function space on [0, 1] is said to be a rearrangement invariant (r.i) space provided $f^*(t) \leq g^*(t)$ for every $t \in [0, 1]$ and $g \in X$ imply $f \in X$ and $||f||_X \leq ||g||_X$, where $f^*(t)$ denotes the decreasing rearrangement of |f|.

An r.i. space X with a norm $\|\cdot\|_X$ has the Fatou property if for any increasing positive sequence f_n in X with $\sup_n \|f_n\|_X < \infty$ we have that $\sup_n f_n \in X$ and $\|\sup_n f_n\|_X = \sup_n \|f_n\|_X$. We will assume that the r.i. space X has the Fatou property.

Given s > 0, the dilation operator σ_s given by

$$\sigma_s f(t) = f(t/s)\chi_{[0,1]}(t/s), t \in [0,1]$$

 $(\chi_A \text{ denotes the characteristic function of a measurable set } A \subset [0, 1])$ is well defined in every r.i. space X. The classical Boyd indices of X are defined by

$$p_X = \lim_{s \to \infty} \frac{\ln s}{\ln \|\sigma_s\|_{X \to X}}, \ q_X = \lim_{s \to 0+} \frac{\ln s}{\ln \|\sigma_s\|_{X \to X}}.$$

In general, $1 \le p_X \le q_X \le \infty$.

Any r.i. function space X on [0, 1] satisfies $L^{\infty}([0, 1]) \subset X \subset L^1([0, 1])$. If we have information on the Boyd indices of X then a stronger assertion is valid. Indeed for every $1 \leq p < p_X$ and $q_X < q < \infty$, we have

$$L^{q}([0,1]) \subset X \subset L^{p}([0,1])$$
(1.1)

with the inclusion maps being continuous. Let X' denote the associate Banach function space of X. Then X' is a r.i. Banach function space whose Boyd indices are defined as $1/p_X + 1/q_{X'} = 1$ and $1/q_X + 1/p_{X'} = 1$ (see [7]).

M. Nielsen in [8] proved that there exists a uniformly bounded orthonormal almost greedy basis in $L^p([0,1])$, 1 , that shows that it isnot possible to extend Orlicz's theorem, stating that there are no uniformly $bounded orthonormal unconditional bases for <math>L^p([0,1])$, $p \neq 2$, to the class of almost greedy bases.

The purpose of this paper is to study these problems in the r.i. function spaces. Namely, the following theorem is obtained.

Theorem 1.2. Let X be a separable r.i. Banach function space on [0,1] and $1 < p_X \le q_X < 2$ or $2 < p_X \le q_X < \infty$. Then there exists a uniformly bounded orthogonal almost greedy basis in X.

2. Proof of theorem

Let us construct some system in the following way. For k = 1, 2, ..., we define the $2^k \times 2^k$ Olevskii matrix $A^k = (a_{ij}^{(k)})_{i,j=1}^{2^k}$ by the following formulas

$$a_{i1}^k = 2^{-\frac{k}{2}}$$
 for $i = 1, 2, ..., 2^k$

and for $j = 2^{s} + \nu$, with $1 \le \nu \le 2^{s}$ and s = 0, 1, ..., k - 1, we let

$$a_{ij}^{(k)} = \begin{cases} 2^{\frac{s-k}{2}} & \text{for } (\nu-1)2^{k-s} < i \le (2\nu-1)2^{k-s-1} \\ -2^{\frac{s-k}{2}} & \text{for } (2\nu-1)2^{k-s-1} < i \le \nu 2^{k-s} \\ 0 & \text{otherwise.} \end{cases}$$

It is known [16] that A^k are orthogonal matrices and there exists a finite constant C such that for all i, k we have

$$\sum_{j=1}^{2^k} |a_{i,j}^{(k)}| \le C$$

Put $N_k = 2^{10^k}$ and define F_k such that $F_0 = 0$, $F_1 = N_1 - 1$ and $F_k - F_{k-1} = N_k - 1$, k = 1, 2, ... We consider the Walsh system $\mathcal{W} = \{W_n\}_{n=0}^{\infty}$ on [0, 1]. We split \mathcal{W} into two subsystems. The first subsystem $\mathcal{W}_1 = \{r_k\}_{k=1}^{\infty}$ is Rademacher functions with their natural ordering. The second subsystem $\mathcal{W}_2 = \{\phi_k\}_{k=1}^{\infty}$ is the collection of Walsh functions not in \mathcal{W}_1 with the ordering from \mathcal{W} . We now impose the ordering

$$\phi_1, r_1, r_2, \dots, r_{F_1}, \phi_2, r_{F_1+1}, \dots, r_{F_2}, \phi_3, r_{F_2+1}, \dots, r_{F_3}, \phi_4, \dots$$

The block $\mathcal{B}_k := \{\phi_k, r_{F_{k-1}+1}, ..., r_{F_k}\}$ has length N_k and we apply A^{10^k} to \mathcal{B}_k to obtain a new orthonormal system $\{\psi_i^{(k)}\}_{i=1}^{N_k}$ given by

$$\psi_i^{(k)} = \frac{\phi_k}{\sqrt{N_k}} + \sum_{j=2}^{N_k} a_{ij}^{(10^k)} r_{F_{k-1}+j-1}$$

The system ordered $\psi_1^{(1)}, ..., \psi_{N_1}^{(1)}, \psi_1^{(2)}, ..., \psi_{N_2}^{(2)}, ...$ will be denoted by $\mathcal{B} = \{\psi_k\}_{k=1}^{\infty}$. It is easy to verify that \mathcal{B} is an orthonormal basis for L_2 since each matrix A^{10^k} is orthogonal and it is uniformly bounded also.

Lemma 2.1. Let X be a r.i. Banach function space on [0,1] and $1 < p_X \le q_X < \infty$. The system $\mathcal{B} = \{\psi_k\}_{k=1}^{\infty}$ is democratic in X with

$$\|\sum_{k\in A}\psi_k\|_X\asymp |A|^{\frac{1}{2}}$$

Proof. Taking into account that fact that $B \| \cdot \|_{p_X} \leq \| \cdot \|_X \leq C \| \cdot \|_{q_X}$ and the estimate (see [8])

$$\|\sum_{k \in A} \psi_k\|_p \asymp |A|^{\frac{1}{2}} \text{ for any } 1$$

we obtain our result.

Lemma 2.2. (Khintchine's inequality)Suppose that X is a r.i. Banach function space on [0,1], $1 < p_X \le q_X < \infty$, and $r_k(t), k \ge 1$, are the Rademacher functions. Then there exist A, B such that for any sequence $\{a_k\}_{k>1}$,

$$A(\sum_{k} |a_{k}|^{2})^{\frac{1}{2}} \leq \|\sum_{k} a_{k} r_{k}(t)\|_{X} \leq B(\sum_{k} |a_{k}|^{2})^{\frac{1}{2}}$$

Proof. It is known that (see [10]) for $1 \le p < \infty$ there exist A_p, B_p such that for any sequence $\{a_k\}_{k\ge 1}$,

$$A_p(\sum_k |a_k|^2)^{\frac{1}{2}} \le \|\sum_k a_k r_k(t)\|_p \le B_p(\sum_k |a_k|^2)^{\frac{1}{2}}.$$

Taking into account that fact that $B \| \cdot \|_{q_X} \leq \| \cdot \|_X \leq C \| \cdot \|_{p_X}$ and the above inequality we obtain Lemma 2.2.

Lemma 2.3. Suppose that X is a r.i. Banach function space on [0,1], $1 < p_X \leq q_X < \infty$, and $r_k(t), k \geq 1$, are the Rademacher functions. Then for $f \in X$ we have

$$\left(\sum_{k=1}^{\infty} | < f, r_k > |^2\right)^{\frac{1}{2}} \le C ||f||_X.$$

Proof. For any $n \ge 1$ by the Hölder inequality and Khintchine's inequality we obtain

$$\sum_{k=1}^{n} |\langle f, r_k \rangle|^2 = \int_0^1 f(x) (\sum_{k=1}^{n} r_k(x) \langle f, r_k \rangle) dx \le 2\|\sum_{k=1}^{n} \langle f, r_k \rangle r_k\|_{X'} \|f\|_X \le C(\sum_{k=1}^{n} |\langle f, r_k \rangle|^2)^{1/2} \|f\|_X.$$

This implies

$$(\sum_{k=1}^{n} | < f, r_k > |^2)^{\frac{1}{2}} \le B ||f||_X$$

Now taking the limit when $n \to \infty$ we obtain our result.

Lemma 2.4. Let X be a separable r.i. Banach function space on [0,1] and $1 < p_X \le q_X < \infty$. Then the system $\mathcal{B} = \{\psi_k\}_{k=1}^{\infty}$ is a Schauder basis for X.

Proof. Notice that $span(\mathcal{B}) = span(\mathcal{W})$ by construction, so $span(\mathcal{B})$ is dense in X, since \mathcal{W} is a Schauder basis for X (see [11]).

Let $S_n(f) = \sum_{k=1}^n \langle f, \psi_k \rangle \psi_k$ be the partial sum operator. We need to prove that the family of operators $\{S_n\}_{n=1}^\infty$ is uniformly bounded on X. Let $f \in L^\infty([0,1]) \subset L^2([0,1])$. For $n \in \mathbb{N}$ we can find $L \ge 1$ and $1 \le m \le N_L$ such that

$$S_n(f) = \sum_{k=1}^n \langle f, \psi_k \rangle \psi_k = \sum_{k=1}^{L-1} \sum_{j=1}^{N_k} \langle f, \psi_j^{(k)} \rangle \psi_j^{(k)} + \sum_{k=1}^m \langle f, \psi_k^{(L)} \rangle \psi_k^{(L)}$$
$$:= T_1 + T_2.$$

Let us estimate T_1 . If L = 1 then $T_1 = 0$, so we may assume L > 1. The construction of \mathcal{B} shows that T_1 is the orthogonal projection of f onto

$$span\left(\bigcup_{k=1}^{L-1}\bigcup_{j=1}^{N_{k}}\psi_{k}^{(k)}\right) = span\{\{W_{0}, W_{1}, ..., W_{L-2}\} \cup \{r_{l_{0}}, r_{l_{0}+1}, ..., r_{F_{L-1}}\}\},$$
with $l_{0} = [\log_{2}(L)]$. It follows that we can rewrite T_{1} as

$$T_1 = \sum_{k=0}^{L-2} \langle f, W_k \rangle W_k + P_R(f),$$

where $P_R(f)$ is the orthogonal projection of f onto $span\{r_{l_0}, r_{l_0+1}, ..., r_{F_{L-1}}\}$. Thus, using the fact that \mathcal{W} is a Schauder basis for X, Khintchine's inequality and Lemma 2.3, we will have

$$||T_1||_X \le C ||f||_X.$$

Let us now estimate T_2 .

$$T_2 = \sum_{k=1}^{m} \langle f, \psi_k^{(L)} \rangle \psi_k^{(L)}$$

$$\begin{split} &= \sum_{k=1}^{m} < f, \frac{\phi_L}{\sqrt{N_L}} + \sum_{j=2}^{N_L} a_{kj}^{(10^L)} r_{F_{L-1}+j-1} > = \left(\frac{\phi_L}{\sqrt{N_L}} \phi_L + \sum_{t=2}^{N_L} a_{kt}^{(10^L)} r_{F_{L-1}+t-1}\right) \\ &= \frac{m}{N_L} < f, \phi_L > + \frac{\phi_L}{\sqrt{N_L}} \sum_{j=2}^{N_L} (\sum_{k=1}^m a_{kj}^{(10^L)}) < f, r_{F_{L-1}+j-1} > \\ &+ < f, \frac{\phi_L}{\sqrt{N_L}} > \sum_{j=2}^{N_L} (\sum_{k=1}^m a_{kj}^{(10^L)}) r_{F_{L-1}+j-1} \end{split}$$

$$+\sum_{k=1}^{m} \sum_{j=2}^{N_L} a_{kj}^{(10^L)} < f, r_{F_{L-1}+j-1} >] \sum_{t=2}^{N_L} a_{kt}^{(10^L)} r_{F_{L-1}+t-1}]$$
$$= G_1 + G_2 + G_3 + G_4.$$

Using that fact that $1 \leq m \leq N_L$ and Hölder inequality we obtain $||G_1||_X \leq C||f||_X$. Using the Hölder and Khintchine's inequality, the fact that matrices A^k are orthonormal and Lemma 2.3 we obtain $||G_i||_X \leq C||f||_X$ i = 2, 3, 4 for some constant C independent of $f \in L^{\infty}([0, 1])$. Consequently for some constant C independent on $f \in L^{\infty}([0, 1])$ we have $||S_nf||_X \leq C||f||_X$. Since $L^{\infty}([0, 1])$ is dense in X we deduce that $\{S_n\}_{n=1}^{\infty}$ is a uniformly bounded family of linear operators on X and the system B is a Schauder basis for X. \Box

Lemma 1.1 and Lemma 2.4 give the following

Theorem 2.5. Let X be a separable r.i. Banach function space on [0,1] and $1 < p_X \leq q_X < \infty$. Then there exists a uniformly bounded orthonormal democratic basis in X.

Lemma 2.6. Let X be a separable r.i. Banach function space on [0,1] and $1 < p_X \leq q_X < 2$ or $2 < p_X \leq q_X < \infty$. Then the system $\mathcal{B} = \{\psi_k\}_{k=1}^{\infty}$ is a quasi-greedy basis for X.

Proof. First we consider $2 < p_X \leq q_X < \infty$ case. Let $f \in X \subset L_2$. We have

$$f = \sum_{i=1}^{\infty} \langle f, \psi_i \rangle \psi_i$$

with $\|\{\langle f, \psi_i \rangle\}\|_{l_2} \leq \|f\|_2 \leq C\|f\|_X$. We must prove that $\mathcal{G}_m(f)$ is convergent in X.

Let us formally write

$$f = \sum_{k=1}^{\infty} \sum_{j=1}^{N_k} \langle f, \psi_j^{(k)} \rangle \psi_j^{(k)}$$
$$= \sum_{k=1}^{\infty} \sum_{j=1}^{N_k} \langle f, \psi_j^{(k)} \rangle \frac{\phi_k}{\sqrt{N_k}} + \sum_{k=1}^{\infty} \sum_{i=1}^{N_k} \langle f, \psi_i^{(k)} \rangle \sum_{j=2}^{N_k} a_{ij}^{(10^k)} r_{F_{k-1}+j-1}$$
$$= S_1 + S_2.$$

Consider $\varepsilon_i^k \subset \{0, 1\}$. By Kchintchine's inequality and the fact that each A^{10^k} is orthogonal we conclude that S_2 converges unconditionally in X. Indeed

$$\left\| \sum_{k=1}^{\infty} \sum_{j=2}^{N_k} \left(\sum_{i=1}^{N_k} \varepsilon_i^k < f, \psi_i^{(k)} > a_{ij}^{(10^k)} \right) r_{F_{k-1}+j-1} \right\|_X$$
$$\leq C \left(\sum_k \sum_{i=1}^{N_k} \varepsilon_i^k | < f, \psi_i^{(k)} > |^2 \right)^{1/2}.$$

The series defining S_2 converges unconditionally, so it suffices to prove that the series defining S_1 converges in X when the coefficients $\langle f, \psi \rangle$ are arranged in decreasing order. Let us consider the sets

$$\begin{split} \Lambda_k^1 &= \left\{ j: \frac{1}{N_k} < | < f, \psi_j^{(k)} > | < \frac{1}{N_k^{1/10}} \right\} \\ \Lambda_k^2 &= \left\{ j: | < f, \psi_j^{(k)} > | \le \frac{1}{N_k} \right\} \\ \Lambda_k^3 &= \left\{ j: | < f, \psi_j^{(k)} > | \ge \frac{1}{N_k^{1/10}} \right\}. \end{split}$$

Then

$$S_{1} = \sum_{k=1}^{\infty} \sum_{j \in \Lambda_{k}^{1}} \langle f, \psi_{j}^{(k)} \rangle \frac{\phi_{k}}{\sqrt{N_{k}}} + \sum_{k=1}^{\infty} \sum_{j \in \Lambda_{k}^{2}} \langle f, \psi_{j}^{(k)} \rangle \frac{\phi_{k}}{\sqrt{N_{k}}} + \sum_{k=1}^{\infty} \sum_{j \in \Lambda_{k}^{3}} \langle f, \psi_{j}^{(k)} \rangle \frac{\phi_{k}}{\sqrt{N_{k}}} = T_{1} + T_{2} + T_{3}.$$

By the construction of sets Λ_k^i we can conclude that the series defining T_2 and T_3 converges absolutely in X.

From the definition of Λ_k^1 we get

$$| < f, \psi_i^{(k)} > | > \frac{1}{N_k} \ge \frac{1}{N_{k+1}^{1/10}} \ge | < f, \psi_j^{(k+1)} > |,$$

 $i \in \Lambda_k^1$, $j \in \Lambda_{k+1}^1$, k = 1, 2, ... so when we arrange T_1 by decreasing order the rearrangement can only take place inside the blocks. From the estimate

$$\sum_{j \in \Lambda_k^1} \left\| < f, \psi_j^{(k)} > \frac{\phi_k}{\sqrt{N_k}} \right\|_X \le \left(\sum_{j \in \Lambda_k^1} | < f, \psi_j^{(k)} > |^2 \right)^{1/2} \frac{|\Lambda_k^1|^{1\backslash 2}}{\sqrt{N_k}}, \ k \ge 1$$

we obtain that the rearrangements inside blocks are well-behaved, and

$$\sum_{j \in \Lambda_k^1} \left\| < f, \psi_j^{(k)} > \frac{\phi_k}{\sqrt{N_k}} \right\|_X \to 0, \ k \to \infty.$$

We can conclude that $\mathcal{G}_m(f)$ is convergent in X.

Using Theorem 1.1 we conclude that \mathcal{B} is a quasi-greedy basis and consequently almost greedy in X.

Let $1 < p_X \leq q_X < 2$. By the results proved above it follows that the system \mathcal{B} is almost greedy in X. From [6, Theorem 5.4] we conclude that \mathcal{B} is quasi-greedy basis and consequently almost greedy in X. This completes the proof.

References

- Temlyakov, V.N., The best m-term approximation and greedy algorithms, Adv. Comput. Math., 8(1998), 249-265.
- [2] Wojtaszczyk, P., Greedy algorithm for general biorthogonal system, J. Approx. Theory, 107(2000), 293-314.
- [3] Konyagin, S.V., Temlyakov, V.N., A remark on greedy approximation in Banach spaces, East J. Approx., 5(1999), 1-15.
- [4] Garrigos, G., Hernandez, E., Sharp Jackson and Bernstein inequalities for N-term approximation in sequence spaces with applications, Indiana Univ. Math. J., 53(2004), 1739-1762.
- [5] Hsiao, C., Jawerth, B., Lucier, B.J., Yu, X.M., Near optimal compression of almost optimal wavelet expansions. Wavelets: mathematics and applications, Stud. Adv. Math., CRC, Boca Raton, FL, 1994, 425-446.
- [6] Dilworth, S.J., Kalton, N.J., Kutzarova, D., Temlyakov, V.N., The thresholding greedy algorithm, greedy bases and duality, Constr. Approx., 19(2003), no. 4, 575-597.
- [7] Krein, S., Petunin, J., Semenov, E., Interpolation of linear operators, Translations Math. Monographs, vol. 55, Amer. Math. Soc., Providence, RI, (1992).
- [8] Nielsen, M., An example of an almost greedy uniformly bounded orthonormal basis in L_p[0, 1], J. Approx. Theory, 149(2007), no. 2, 188-192.
- [9] Olevskii, A.M., Fourier series with respect to general orthogonal systems, Springer-Verlag, New York, 1975.
- [10] Kashin, B.S., Saakian, A.A., Orthogonal series, (in Russian), Moscow, 1999.
- [11] Lindenstraus, J., Tzafriri, L., Classical Banach spaces II, Springer-Verlag, Berlin, Heidelberg, New York, 1978.

Ana Danelia and Ekaterine Kapanadze Faculty of Exact and Natural Sciences I. Javakhshvili Tbilisi State University 2 University St., Tbilisi 0143 Georgia e-mail: a.danelia@math.sci.tsu.ge ekaterine_kapani@yahoo.com