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invariant Banach function spaces
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Abstract. We construct uniformly bounded orthogonal almost greedy
bases in rearrangement invariant Banach spaces.
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1. Introduction

Let {xn}n∈N be a semi-normalized basis in a Banach space X. This
means that {xn}n∈N is a Schauder basis and is semi-normalized i.e. 0 <
infn∈N ‖xn‖ ≤ supn∈N ‖xn‖ < ∞. For an element x ∈ X we define the error
of the best m−term approximation as follows

σm(x) = inf{‖x−
∑
n∈A

αnxn‖},

where the inf is taken over all subsets A ⊂ N of cardinality at most m and
all possible scalars αn. The main question in approximation theory concerns
the construction of efficient algorithms for m-term approximation. A com-
putationally efficient method to produce m-term approximations, which has
been widely investigated in recent years, is the so called greedy algorithm.
We define the greedy approximation of x =

∑
n anxn ∈ X as

Gm(x) =
∑
n∈A

anxn,

where A ⊂ N is any set of the cardinality m in such a way that |an| ≥ |al|
whenever n ∈ A and l∈A. We say that a semi-normalized basis {xn}n∈N is
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greedy if there exists a constant C such that for all m = 1, 2, ... and all x ∈ X
we have

‖x− Gm(x)‖ ≤ Cσm(x).

This notion evolved in theory of non-linear approximation (see e.g.[1],[2]). A
result of Konyagin and Temlyakov [3] characterizes greedy bases in a Banach
spacesX as those which are unconditional and democratic, the latter meaning
that for some constant C > 0∥∥∥∥∥∑

α∈A

xα

‖xα‖

∥∥∥∥∥ ≤ C

∥∥∥∥∥∑
α∈A′

xα

‖xα‖

∥∥∥∥∥
holds for all finite sets of indices A, A′ ⊂ N with the same cardinality.

Wavelet systems are well known examples of greedy bases for many
function and distribution spaces. Indeed, Temlyakov showed in [1] that the
Haar system is greedy in the Lebesgye spaces Lp(Rn) for 1 < p <∞. When
wavelets have sufficient smoothness and decay, they are also greedy bases for
the more general Sobolev and Tribel-Lizorkin classes (see e.g.[4-5]).

A bounded Schauder basis for a Banach space X is called quasi-greedy
if there exists a constant C such that for x ∈ X ‖Gm(x)‖ ≤ C‖x‖ for m ≥ 1.

Wojtaszczyk [2] proved the following result which gives a more intuitive
interpretation of quasi-greedy bases.

Theorem 1.1. A bounded Schauder basis for a Banach space X is quasi-greedy
if and only if limm→∞ ‖x− Gm(x)‖X = 0 for every element x ∈ X.

A bounded Schauder basis for a Banach spaceX is almost greedy if there
exists a constant C such that for x ∈ X, ‖x−Gm(x)‖ ≤ C inf{‖x−

∑
n∈A <

x, xn > xn‖ : A ⊂ N, |A| = m}.
It was proved in [6] that a basis is almost greedy if and only if it is

quasi-greedy and democratic.
A Banach function space on [0, 1] is said to be a rearrangement invariant

(r.i) space provided f∗(t) ≤ g∗(t) for every t ∈ [0, 1] and g ∈ X imply f ∈ X
and ‖f‖X ≤ ‖g‖X , where f∗(t) denotes the decreasing rearrangement of |f |.

An r.i. space X with a norm ‖ · ‖X has the Fatou property if for any
increasing positive sequence fn in X with supn ‖fn‖X < ∞ we have that
supn fn ∈ X and ‖ supn fn‖X = supn ‖fn‖X . We will assume that the r.i.
space X has the Fatou property.

Given s > 0, the dilation operator σs given by

σsf(t) = f(t/s)χ[0,1](t/s), t ∈ [0, 1]

(χA denotes the characteristic function of a measurable set A ⊂ [0, 1]) is well
defined in every r.i. space X. The classical Boyd indices of X are defined by

pX = lim
s→∞

ln s
ln ‖σs‖X→X

, qX = lim
s→0+

ln s
ln ‖σs‖X→X

.

In general, 1 ≤ pX ≤ qX ≤ ∞.



Almost greedy uniformly bounded orthonormal bases 329

Any r.i. function space X on [0, 1] satisfies L∞([0, 1]) ⊂ X ⊂ L1([0, 1]).
If we have information on the Boyd indices of X then a stronger assertion is
valid. Indeed for every 1 ≤ p < pX and qX < q <∞, we have

Lq([0, 1]) ⊂ X ⊂ Lp([0, 1]) (1.1)

with the inclusion maps being continuous. LetX ′ denote the associate Banach
function space of X. Then X ′ is a r.i. Banach function space whose Boyd
indices are defined as 1/pX + 1/qX′ = 1 and 1/qX + 1/pX′ = 1 (see [7]).

M. Nielsen in [8] proved that there exists a uniformly bounded orthonor-
mal almost greedy basis in Lp([0, 1]), 1 < p < ∞, that shows that it is
not possible to extend Orlicz’s theorem, stating that there are no uniformly
bounded orthonormal unconditional bases for Lp([0, 1]), p 6= 2, to the class
of almost greedy bases.

The purpose of this paper is to study these problems in the r.i. function
spaces. Namely, the following theorem is obtained.

Theorem 1.2. Let X be a separable r.i. Banach function space on [0, 1] and
1 < pX ≤ qX < 2 or 2 < pX ≤ qX < ∞. Then there exists a uniformly
bounded orthogonal almost greedy basis in X.

2. Proof of theorem

Let us construct some system in the following way. For k = 1, 2, ..., we define
the 2k × 2k Olevskii matrix Ak = (a(k)

ij )2
k

i,j=1 by the following formulas

ak
i1 = 2−

k
2 for i = 1, 2, ..., 2k,

and for j = 2s + ν, with 1 ≤ ν ≤ 2s and s = 0, 1, ..., k − 1, we let

a
(k)
ij =


2

s−k
2 for (ν − 1)2k−s < i ≤ (2ν − 1)2k−s−1

−2
s−k
2 for (2ν − 1)2k−s−1 < i ≤ ν2k−s

0 otherwise.

It is known [16] that Ak are orthogonal matrices and there exists a finite
constant C such that for all i, k we have

2k∑
j=1

|a(k)
i,j | ≤ C.

Put Nk = 210k

and define Fk such that F0 = 0, F1 = N1 − 1 and
Fk − Fk−1 = Nk − 1, k = 1, 2, .... We consider the Walsh system W =
{Wn}∞n=0 on [0, 1]. We split W into two subsystems. The first subsystem
W1 = {rk}∞k=1 is Rademacher functions with their natural ordering. The
second subsystem W2 = {φk}∞k=1 is the collection of Walsh functions not in
W1 with the ordering from W. We now impose the ordering

φ1, r1, r2, ..., rF1 , φ2, rF1+1, ..., rF2 , φ3, rF2+1, ..., rF3 , φ4, ...
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The block Bk := {φk, rFk−1+1, ..., rFk
} has length Nk and we apply A10k

to
Bk to obtain a new orthonormal system {ψ(k)

i }Nk
i=1 given by

ψ
(k)
i =

φk√
Nk

+
Nk∑
j=2

a
(10k)
ij rFk−1+j−1.

The system ordered ψ
(1)
1 , ..., ψ

(1)
N1
, ψ

(2)
1 , ..., ψ

(2)
N2
, ... will be denoted by B =

{ψk}∞k=1. It is easy to verify that B is an orthonormal basis for L2 since each
matrix A10k

is orthogonal and it is uniformly bounded also.

Lemma 2.1. Let X be a r.i. Banach function space on [0, 1] and 1 < pX ≤
qX <∞. The system B = {ψk}∞k=1 is democratic in X with

‖
∑
k∈A

ψk‖X � |A| 12 .

Proof. Taking into account that fact that B‖ · ‖pX
≤ ‖ · ‖X ≤ C‖ · ‖qX

and
the estimate (see [8])

‖
∑
k∈A

ψk‖p � |A| 12 for any 1 < p <∞

we obtain our result. �

Lemma 2.2. (Khintchine’s inequality )Suppose that X is a r.i. Banach func-
tion space on [0, 1], 1 < pX ≤ qX <∞,and rk(t), k ≥ 1, are the Rademacher
functions. Then there exist A,B such that for any sequence {ak}k≥1,

A(
∑

k

|ak|2)
1
2 ≤ ‖

∑
k

akrk(t)‖X ≤ B(
∑

k

|ak|2)
1
2 .

Proof. It is known that (see [10]) for 1 ≤ p <∞ there exist Ap, Bp such that
for any sequence {ak}k≥1,

Ap(
∑

k

|ak|2)
1
2 ≤ ‖

∑
k

akrk(t)‖p ≤ Bp(
∑

k

|ak|2)
1
2 .

Taking into account that fact that B‖ · ‖qX
≤ ‖ · ‖X ≤ C‖ · ‖pX

and the
above inequality we obtain Lemma 2.2. �

Lemma 2.3. Suppose that X is a r.i. Banach function space on [0, 1], 1 <
pX ≤ qX < ∞, and rk(t), k ≥ 1, are the Rademacher functions. Then for
f ∈ X we have

(
∞∑

k=1

| < f, rk > |2) 1
2 ≤ C‖f‖X .

Proof. For any n ≥ 1 by the Hölder inequality and Khintchine’s inequality
we obtain∑n

k=1 | < f, rk > |2 =
∫ 1

0
f(x)(

∑n
k=1 rk(x) < f, rk >)dx ≤

2‖
∑n

k=1 < f, rk > rk‖X′‖f‖X ≤ C(
∑n

k=1 | < f, rk > |2)1/2‖f‖X .
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This implies

(
n∑

k=1

| < f, rk > |2) 1
2 ≤ B‖f‖X .

Now taking the limit when n→∞ we obtain our result. �

Lemma 2.4. Let X be a separable r.i. Banach function space on [0, 1] and
1 < pX ≤ qX <∞. Then the system B = {ψk}∞k=1 is a Schauder basis for X.

Proof. Notice that span(B) = span(W) by construction, so span(B) is dense
in X, since W is a Schauder basis for X (see [11]).

Let Sn(f) =
∑n

k=1 < f, ψk > ψk be the partial sum operator. We need
to prove that the family of operators {Sn}∞n=1 is uniformly bounded on X.
Let f ∈ L∞([0, 1]) ⊂ L2([0, 1]). For n ∈ N we can find L ≥ 1 and 1 ≤ m ≤ NL

such that

Sn(f) =
n∑

k=1

< f, ψk > ψk =
L−1∑
k=1

Nk∑
j=1

< f, ψ
(k)
j > ψ

(k)
j +

m∑
k=1

< f, ψ
(L)
k > ψ

(L)
k

:= T1 + T2.

Let us estimate T1. If L = 1 then T1 = 0, so we may assume L > 1. The
construction of B shows that T1 is the orthogonal projection of f onto

span
(
∪L−1

k=1 ∪
Nk
j=1 ψ

(k)
k

)
= span{{W0,W1, ...,WL−2} ∪ {rl0 , rl0+1, ..., rFL−1}},

with l0 = [log2(L)]. It follows that we can rewrite T1 as

T1 =
L−2∑
k=0

< f,Wk > Wk + PR(f),

where PR(f) is the orthogonal projection of f onto span{rl0 , rl0+1, ..., rFL−1}.
Thus, using the fact thatW is a Schauder basis forX, Khintchine’s inequality
and Lemma 2.3, we will have

‖T1‖X ≤ C‖f‖X .

Let us now estimate T2.

T2 =
m∑

k=1

< f, ψ
(L)
k > ψ

(L)
k

=
m∑

k=1

< f,
φL√
NL

+
NL∑
j=2

a
(10L)
kj rFL−1+j−1 >= (

φL√
NL

φL +
NL∑
t=2

a
(10L)
kt rFL−1+t−1)

=
m

NL
< f, φL > +

φL√
NL

NL∑
j=2

(
m∑

k=1

a
(10L)
kj ) < f, rFL−1+j−1 >

+ < f,
φL√
NL

>

NL∑
j=2

(
m∑

k=1

a
(10L)
kj )rFL−1+j−1
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+
m∑

k=1

[
NL∑
j=2

a
(10L)
kj < f, rFL−1+j−1 >][

NL∑
t=2

a
(10L)
kt rFL−1+t−1]

= G1 +G2 +G3 +G4.

Using that fact that 1 ≤ m ≤ NL and Hölder inequality we obtain
‖G1‖X ≤ C‖f‖X . Using the Hölder and Khintchine’s inequality, the fact that
matrices Ak are orthonormal and Lemma 2.3 we obtain ‖Gi‖X ≤ C‖f‖X i =
2, 3, 4 for some constant C independent of f ∈ L∞([0, 1]). Consequently for
some constant C independent on f ∈ L∞([0, 1]) we have ‖Snf‖X ≤ C‖f‖X .
Since L∞([0, 1]) is dense inX we deduce that {Sn}∞n=1 is a uniformly bounded
family of linear operators on X and the system B is a Schauder basis for X. �

Lemma 1.1 and Lemma 2.4 give the following

Theorem 2.5. Let X be a separable r.i. Banach function space on [0, 1] and
1 < pX ≤ qX < ∞. Then there exists a uniformly bounded orthonormal
democratic basis in X.

Lemma 2.6. Let X be a separable r.i. Banach function space on [0, 1] and
1 < pX ≤ qX < 2 or 2 < pX ≤ qX < ∞. Then the system B = {ψk}∞k=1 is a
quasi-greedy basis for X.

Proof. First we consider 2 < pX ≤ qX <∞ case. Let f ∈ X ⊂ L2. We have

f =
∞∑

i=1

< f, ψi > ψi,

with ‖{< f,ψi >}‖l2 ≤ ‖f‖2 ≤ C‖f‖X . We must prove that Gm(f) is con-
vergent in X.

Let us formally write

f =
∞∑

k=1

Nk∑
j=1

< f, ψ
(k)
j > ψ

(k)
j

=
∞∑

k=1

Nk∑
j=1

< f, ψ
(k)
j >

φk√
Nk

+
∞∑

k=1

Nk∑
i=1

< f, ψ
(k)
i >

Nk∑
j=2

a
(10k)
ij rFk−1+j−1

= S1 + S2.

Consider εk
i ⊂ {0, 1}. By Kchintchine’s inequality and the fact that

each A10k

is orthogonal we conclude that S2 converges unconditionally in X.
Indeed ∥∥∥∥∥∥

∞∑
k=1

Nk∑
j=2

(
Nk∑
i=1

εk
i < f, ψ

(k)
i > a

(10k)
ij

)
rFk−1+j−1

∥∥∥∥∥∥
X

≤ C

(∑
k

Nk∑
i=1

εk
i | < f, ψ

(k)
i > |2

)1/2

.
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The series defining S2 converges unconditionally, so it suffices to prove
that the series defining S1 converges in X when the coefficients < f,ψ> are
arranged in decreasing order. Let us consider the sets

Λ1
k =

{
j :

1
Nk

< | < f, ψ
(k)
j > | < 1

N
1/10
k

}

Λ2
k =

{
j : | < f, ψ

(k)
j > | ≤ 1

Nk

}
Λ3

k =

{
j : | < f, ψ

(k)
j > | ≥ 1

N
1/10
k

}
.

Then

S1 =
∞∑

k=1

∑
j∈Λ1

k

< f, ψ
(k)
j >

φk√
Nk

+
∞∑

k=1

∑
j∈Λ2

k

< f, ψ
(k)
j >

φk√
Nk

+

∞∑
k=1

∑
j∈Λ3

k

< f, ψ
(k)
j >

φk√
Nk

= T1 + T2 + T3.

By the construction of sets Λi
k we can conclude that the series defining

T2 and T3 converges absolutely in X.
From the definition of Λ1

k we get

| < f, ψ
(k)
i > | > 1

Nk
≥ 1

N
1/10
k+1

≥ | < f, ψ
(k+1)
j > |,

i ∈ Λ1
k, j ∈ Λ1

k+1, k = 1, 2, ... so when we arrange T1 by decreasing order the
rearrangement can only take place inside the blocks. From the estimate

∑
j∈Λ1

k

∥∥∥∥< f, ψ
(k)
j >

φk√
Nk

∥∥∥∥
X

≤

∑
j∈Λ1

k

| < f, ψ
(k)
j > |2

1/2

|Λ1
k|1\2√
Nk

, k ≥ 1

we obtain that the rearrangements inside blocks are well-behaved, and∑
j∈Λ1

k

∥∥∥∥< f, ψ
(k)
j >

φk√
Nk

∥∥∥∥
X

→ 0, k →∞.

We can conclude that Gm(f) is convergent in X.
Using Theorem 1.1 we conclude that B is a quasi-greedy basis and con-

sequently almost greedy in X.
Let 1 < pX ≤ qX < 2. By the results proved above it follows that the

system B is almost greedy in X. From [6, Theorem 5.4] we conclude that B is
quasi-greedy basis and consequently almost greedy in X This completes the
proof. �
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