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Approximation by max-product Lagrange
interpolation operators
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Abstract. The aim of this note is to associate to the Lagrange interpola-
tory polynomials on various systems of nodes (including the equidistant
and the Jacobi nodes), continuous piecewise rational interpolatory op-
erators of the so-called max-product kind, uniformly convergent to the
function f , with Jackson-type rates of approximation.
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1. Introduction

Based on the Open Problem 5.5.4, pp. 324-326 in [12], in a series of recent
papers we have introduced and studied the so-called max-product operators
attached to the Bernstein polynomials and to other linear Bernstein-type op-
erators, like those of Favard-Szász-Mirakjan operators (truncated and non-
truncated case), see [3], Baskakov operators (truncated and nontruncated
case), Meyer-König and Zeller operators, see [4] and Bleimann-Butzer-Hahn
operators, see [5].

For example, in the two recent papers [1], [2], starting from the linear
Bernstein operators

Bn(f)(x) =
n∑

k=0

bn,k(x)f(k/n),

where bn,k(x) =
(
n
k

)
xk(1− x)n−k, written in the equivalent form

Bn(f)(x) =
∑n

k=0 bn,k(x)f(k/n)∑n
k=0 bn,k(x)
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and then replacing the sum operator Σ by the maximum operator
∨

, one
obtains the nonlinear Bernstein operator of max-product kind

B(M)
n (f)(x) =

n∨
k=0

bn,k(x)f
(

k
n

)
n∨

k=0

bn,k(x)

,

where the notation
∨n

k=0 bn,k(x) means max{bn,k(x); k ∈ {0, ..., n}} and sim-
ilarly for the numerator.

For this max-product operator nice approximation and shape preserving
properties were found in e.g. [2].

In other two recent papers [9] and [10], this idea is applied to the La-
grange interpolation based on the Chebyshev nodes of second kind plus the
endpoints, and to the Hermite-Fejér interpolation based on the Chebyshev
nodes of first kind respectively, obtaining max-product interpolation opera-
tors which, in general, (for example, in the class of positive Lipschitz func-
tions) approximates essentially better than the corresponding Lagrange and
Hermite-Fejér interpolation polynomials.

The aim of the present paper is to use the same idea (but slightly modi-
fied to simplify the calculation) in the case of the linear interpolation polyno-
mials of Lagrange type on general nodes. Applications to Lagrange interpola-
tion based on equidistant knots and on the roots of orthogonal polynomials,
including the Jacobi roots, are obtained.

Thus, let I ⊂ R be a bounded or unbounded interval, f : I → R,
xn,k ∈ I, k ∈ {0, ..., n}, xn,0 < xn,1 < ... < xn,n, and consider the La-
grange interpolation polynomial of degree ≤ n attached to f and to the
nodes (xn,k)k,

Pn(f)(x) =
n∑

k=0

pn,k(x)f(xn,k),

with

pn,k(x) =
(x− xn,0)...(x− xn,k−1)(x− xn,k+1)...(x− xn,n)

(xn,k − xn,0)...(xn,k − xn,k−1)(xn,k − xn,k+1)...(xn,k − xn,n)
.

It is well known that
∑n

k=0 pn,k(x) = 1, for all x ∈ R, which allows us to
write

Pn(f)(x) =
∑n

k=0 pn,k(x)f(xn,k)∑n
k=0 pn,k(x)

, for all x ∈ I.

Therefore, its corresponding max-product interpolation operator will be ob-
tained by replacing the sum operator Σ, by the maximum operator

∨
, that

is

P (M)
n (f)(x) =

n∨
k=0

pn,k(x)f (xn,k)

n∨
k=0

pn,k(x)

, x ∈ I.
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By the property pn,k(xn,j) = 1 if k = j and pn,k(xn,j) = 0 if k 6= j, we
immediately obtain that P

(M)
n (f)(xn,j) = f(xn,j), for all j ∈ {0, ..., n}.

But because this max-product operator seems to present some difficul-
ties in calculations, in this paper we deal with a simplified max-product op-
erator with good approximation properties and which keeps the interpolation
properties, given by

L(M)
n (f)(x) =

n∨
k=0

ln,k(x)f (xn,k)

n∨
k=0

ln,k(x)

, x ∈ I,

where

ln,k(x) = cn,k · pn,k(x) = (−1)n−kΠn
i=0(x− xn,i)/(x− xn,k) (1.1)

and

cn,k = (xn,k − xn,0)...(xn,k − xn,k−1)(xn,k+1 − xn,k)...(xn,n − xn,k) > 0.

The plan of the paper goes as follows. In Section 2 we present some
auxiliary results while in Section 3 we prove the approximation results for
the max-product Lagrange interpolation operators on equidistant and Jacobi
nodes.

2. Auxiliary results

Let us define the space

CB+(I) = {f : I → R+; f is continuous and bounded on I}.

Remark. Firstly, it is clear that L
(M)
n (f)(x) is a well-defined function for

all x ∈ R and it is continuous on R. Indeed, by
∑n

k=0 pn,k(x) = 1, for all
x ∈ R, for any x there exists an index k ∈ {0, ..., n} such that pn,k(x) > 0
(which implies that

∨n
k=0 pn,k(x) > 0), because contrariwise would follow

that pn,k(x) ≤ 0 for all k and therefore we would obtain the contradiction∑n
k=0 pn,k(x) ≤ 0. Therefore, as ln,k(x) = cn,k ·pn,k(x) with cn,k > 0, for this

k we also have
∨n

k=0 ln,k(x) > 0.
Also, by the obvious property ln,k(xn,j) = cn,j > 0 if k = j and

ln,k(xn,j) = 0 if k 6= j, we immediately obtain that L
(M)
n (f)(xn,j) = f(xn,j),

for all j ∈ {0, ..., n}. In addition, clearly we have L
(M)
n (e0)(x) = 1, where

e0(x) = 1, for all x ∈ I.
In what follows we will see that for f ∈ CB+[a, b], the L

(M)
n (f) operator

fulfils similar properties with those of the B
(M)
n (f) operator in [1].

Lemma 2.1. Let I ⊂ R be a bounded or unbounded interval.
(i) Then L

(M)
n : CB+(I) → CB+(I), for all n ∈ N :

(ii) If f, g ∈ CB+(I) satisfy f ≤ g then L
(M)
n (f) ≤ L

(M)
n (g) for all

n ∈ N ;
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(iii) L
(M)
n (f + g) ≤ L

(M)
n (f) + L

(M)
n (g) for all f, g ∈ CB+(I) ;

(iv) For all f, g ∈ CB+(I), n ∈ N and x ∈ I we have

|L(M)
n (f)(x)− L(M)

n (g)(x)| ≤ L(M)
n (|f − g|)(x);

(v) L
(M)
n is positive homogenous, that is L

(M)
n (λf) = λL

(M)
n (f) for all

λ ≥ 0 and f ∈ CB+(I).

Proof. (i) The continuity of L
(M)
n (f)(x) on I follows from the previous Re-

mark. Also, by the formula of definition for L
(M)
n (f)(x), if f is bounded on

I, then it easily follows that L
(M)
n is bounded on I. It remains to prove the

positivity of L
(M)
n (f). So let f : I → R+ and fix x ∈ I. Reasoning exactly

as in the above Remark, there exists k ∈ {0, 1, ..., n} such that ln,k(x) > 0.
Therefore, denoting I+

n (x) = {k ∈ {0, 1, ..., n}; ln,k(x) > 0}, clearly I+
n (x) is

nonempty and for f ∈ CB+(I) we get that

L(M)
n (f)(x) =

∨
k∈I+

n (x) ln,k(x)f(xn,k)∨
k∈I+

n (x) ln,k(x)
≥ 0. (2.1)

(ii) Let f, g ∈ CB+(I) be with f ≤ g and fix x ∈ I. Since I+
n (x)

is independent of f and g, by (2.1) we immediately obtain L
(M)
n (f)(x) ≤

L
(M)
n (g)(x).

(iii) By (2.1) and by the sublinearity of
∨

, it is immediate.
(iv) Let f, g ∈ CB+(I). We have f = f − g + g ≤ |f − g|+ g, which by

(i) − (iii) successively implies L
(M)
n (f)(x) ≤ L

(M)
n (|f − g|)(x) + L

(M)
n (g)(x),

that is L
(M)
n (f)(x)− L

(M)
n (g)(x) ≤ L

(M)
n (|f − g|)(x).

Writing now g = g−f+f ≤ |f−g|+f and applying the above reasonings,
it follows L

(M)
n (g)(x)−L

(M)
n (f)(x) ≤ L

(M)
n (|f − g|)(x), which combined with

the above inequality gives |L(M)
n (f)(x)− L

(M)
n (g)(x)| ≤ L

(M)
n (|f − g|)(x).

(v) By (2.1) it is immediate. �

Remark. By (2.1) it is easy to see that instead of (ii), L
(M)
n satisfies the

stronger condition

Ln(f ∨ g)(x) = Ln(f)(x) ∨ Ln(g)(x), f, g ∈ CB+(I).

Corollary 2.2. For all f ∈ CB+(I), n ∈ N and x ∈ I we have

|f(x)− L(M)
n (f)(x)| ≤

[
1
δ
L(M)

n (ϕx)(x) + 1
]

ω1(f ; δ)I ,

where δ > 0, ϕx(t) = |t−x| for all t ∈ I, x ∈ I and ω1(f ; δ)I = max{|f(x)−
f(y)|;x, y ∈ I, |x− y| ≤ δ}.

Proof. Indeed, denoting e0(x) = 1, from the identity

L(M)
n (f)(x)−f(x) = [L(M)

n (f)(x)−f(x)·L(M)
n (e0)(x)]+f(x)[L(M)

n (e0)(x)−1],

by Lemma 2.1 it easily follows

|f(x)− L(M)
n (f)(x)| ≤
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|L(M)
n (f(x))(x)− L(M)

n (f(t))(x)|+ |f(x)| · |L(M)
n (e0)(x)− 1| ≤

L(M)
n (|f(t)− f(x)|)(x) + |f(x)| · |L(M)

n (e0)(x)− 1|.
Now, since for all t, x ∈ I we have

|f(t)− f(x)| ≤ ω1(f ; |t− x|)I ≤
[
1
δ
|t− x|+ 1

]
ω1(f ; δ)I ,

replacing above and taking into account that L
(M)
n (e0) = 1, for all x ∈ I, we

immediately obtain the estimate in the statement. �

Remark. The results in Lemma 2.1 and Corollary 2.2 remain valid if we
replace the space CB+(I) by the space

C+(I) = {f : I → R+; f is continuous on I}.

3. Approximation results for max-product Lagrange
interpolation

In this section we study the approximation properties of the max-product
operators L

(M)
n .

It is clear that for the approximation purpose, in the case of the operator
L

(M)
n , from Corollary 2.2 it is enough to obtain a good estimate for the

expression

En(x) := L(M)
n (ϕx)(x) =

n∨
k=0

ln,k(x) |xn,k − x|

n∨
k=0

ln,k(x)

=

∨
k∈I+

n (x) ln,k(x)|xn,k − x|∨
k∈I+

n (x) ln,k(x)
.

We present the first main approximation result.

Theorem 3.1. Given the nodes −∞ < a ≤ xn,0 < xn,1 < ... < xn,n ≤ b < ∞,
f ∈ C+([a, b]) and denoting

dn = max{xn,0 − a,max{xn,k+1 − xn,k; k = 0, 1, ..., n− 1}, b− xn,n},
we have

|L(M)
n (f)(x)− f(x)| ≤ 2ω1(f ; dn)[a,b], for all x ∈ [a, b],

where ω1(f ; δ)[a,b] = sup{|f(x)− f(y)|;x, y ∈ [a, b], |x− y| ≤ δ}.

Proof. Firstly, because L
(M)
n (f)(xn,j) = f(xn,j), for all j ∈ {0, 1, ..., n}, in

all calculations and estimations we may suppose that x 6= xn,j , for all j ∈
{0, 1, ..., n}.

Denote Ωn(x) = Πn
i=0(x− xn,i). It is easy to see that for any x ∈ [a, b],

with x 6= xn,j , j ∈ {0, 1, ..., n}, we can write

En(x) =

∨
k∈I+

n (x) ln,k(x)|xn,k − x|∨
k∈I+

n (x) ln,k(x)
=

|Ωn(x)|∨
k∈I+

n (x) ln,k(x)
=

1∨
k∈I+

n (x)
1

|x−xn,k|
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= min{|x− xn,k|; k ∈ I+
n (x)}.

Denote xn,−1 := a and xn,n+1 := b and fix j ∈ {−1, 0, ..., n, n + 1}.
We have three possibilities : 1) j = −1 ; 2) 0 ≤ j ≤ n − 1 ; 3) j = n. Let
x ∈ (xn,j , xn,j+1).

Case 1). We may suppose that a < xn,0. We have ln,0(x) > 0 for all
x ∈ [a, xn,0). Indeed, by using (1.1) we easily get that for x ∈ [a, xn,0), we have
sign[ln,0(x)] = (−1)n · (−1)n = +1. Therefore 0 ∈ I+

n (x), for all x ∈ [a, xn,0).
We also get |x− xn,0| ≤ |x− xn,k|, for all k ∈ I+

n (x) and x ∈ [a, xn,0), which
implies En(x) = |x− xn,0| = xn,0 − x ≤ xn,0 − a ≤ dn, for all x ∈ [a, xn,0).

Case 2). We have ln,j(x) > 0 and ln,j+1(x) > 0 for all x ∈ (xn,j , xn,j+1).
Indeed, by using (1.1) we easily get that for x ∈ (xn,j , xn,j+1), we have
sign[ln,j(x)] = (−1)n−j · (−1)n−j = +1 and sign[ln,j+1(x)] = (−1)n−j−1 ·
(−1)n−j−1 = +1. Therefore j, j + 1 ∈ I+

n (x), for all x ∈ (xn,j , xn,j+1).
We also get |x − xn,j | ≤ |x − xn,k| for all k ∈ {0.1, ..., j} and |x −

xn,j+1| ≤ |x − xn,k| for all k ∈ {j + 1, j + 2, ..., n}, which implies En(x) =
min{|x− xn,j |, |x− xn,j+1|} ≤ dn

2 , for all x ∈ (xn,j , xn,j+1).
Case 3). We may suppose that xn,n < b. We have ln,n(x) > 0 for all

x ∈ (xn,n, b]. Indeed, by using (1.1) we easily get that for x ∈ (xn,n, b], we have
sign[ln,n(x)] = (−1)0 · (−1)0 = +1. Therefore n ∈ I+

n (x), for all x ∈ (xn,0, b].
We also get |x− xn,n| ≤ |x− xn,k|, for all k ∈ I+

n (x) and x ∈ (xn,n, b], which
implies En(x) = |x− xn,n| = x− xn,n ≤ b− xn,n ≤ dn, for all x ∈ (xn,n, b].

Collecting all the above estimates and applying Corollary 2.2, the the-
orem is proved. �

Remark. The order of approximation in terms of ω1(f ; dn)[a,b] in Theorem
3.1 cannot be improved, in the sense that it easily follows from the proof of
Theorem 3.1, that the estimate En(x) ≤ O(dn) cannot be improved.

As applications we obtain the following two results.

Corollary 3.2. (i) Let I = [a, b], f ∈ C+([a, b]) and the equidistant knots in
I = [a, b], xn,k = a + kh, k ∈ {0, ..., n}, with h = (b− a)/n. Then we have

|L(M)
n (f)(x)− f(x)| ≤ 2ω1

(
f ;

b− a

n

)
[a,b]

, for all x ∈ [a, b].

(ii) Let w(x) be a weight function on the finite interval I = [a, b], sat-
isfying w(x) ≥ ν > 0, for all x ∈ [a, b]. If a < xn,0 < xn,1 < ... < xn,n < b
are the the zeros of the associated orthonormal polynomial pn+1(x) of degree
≤ n + 1, then for any f ∈ C+([a, b]) we have

|L(M)
n (f)(x)− f(x)| ≤ Cω1

(
f ;

ln(n + 1)
n + 1

)
[a,b]

, for all x ∈ [a, b],

where C > 0 is a constant depending only on ν, a and b.
(iii) Let w(x) be a weight function on the interval I = [−1, 1], satisfying

A ≤
√

1− x2w(x) ≤ B, for all x ∈ [−1, 1], where A,B > 0 are constants.
If −1 < xn,0 < xn,1 < ... < xn,n < 1 are the the zeros of the associated or-
thonormal polynomial pn+1(x) of degree ≤ n+1, then for any f ∈ C+([−1, 1])
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we have

|L(M)
n (f)(x)− f(x)| ≤ Cω1

(
f ;

1
n + 1

)
[−1,1]

, for all x ∈ [−1, 1],

where C > 0 is a constant depending only on A and B.
(iv) If − 1

2 ≤ α ≤ + 1
2 , − 1

2 ≤ β ≤ + 1
2 and −1 < xn,0 < xn,1 < ... <

xn,n < 1 are the the zeros of the associated orthonormal Jacobi polynomial
Jn+1(x) of degree ≤ n + 1, associated to the weight w(x) = (1− x)α(1 + x)β,
then for any f ∈ C+([−1, 1]) we have

|L(M)
n (f)(x)− f(x)| ≤ Cω1

(
f ;

1
n + 1

)
[−1,1]

, for all x ∈ [−1, 1],

where C > 0 is a constant depending only on α and β.

Proof. (i) It is immediate from Theorem 3.1 for dn = b−a
n .

(ii) It follows from Theorem 3.1, taking into account that by Theorem
6.11.1, pp. 112-113 in [18], we have dn ≤ c ln(n+1)

n+1 , with c > 0 depending on
ν, a and b only.

(iii) It follows from Theorem 3.1, taking into account that by Theorem
6.11.2, p. 114 in [18], we have dn ≤ c 1

n+1 , with c > 0 depending on A and B
only.

(iv) It follows from Theorem 3.1, taking into account that by Theorem
6.3.1, p. 125 in [18], we have dn ≤ c 1

n+1 , with c > 0 depending on α and β
only. �

It is of interest to have a more explicit form for the operator Ln(f)(x)
in Theorem 3.1. In this sense we present the following.

Theorem 3.3. Given f ∈ C+([a, b]) and the nodes −∞ < a ≤ xn,0 < xn,1 <

... < xn,n ≤ b < ∞, the max-product operator L
(M)
n (f)(x) is continuous on

[a, b], L
(M)
n (f)(xn,j) = f(xn,j) for all j ∈ {0, 1, ..., n} and we can write :

L(M)
n (f)(x) =

n∨
k=0

(−1)k x− xn,0

x− xn,k
f(xn,k), for x ∈ [a, xn,0),

L(M)
n (f)(x)

=
n∨

k=0

(−1)j−k x− xn,j

x− xn,k
f(xn,k), x ∈ (xn,j , (xn,j + xn,j+1)/2], j = 0 ,n − 1 ,

L(M)
n (f)(x)

=
n∨

k=0

(−1)j+1−k x− xn,j+1

x− xn,k
f(xn,k), x ∈ [(xn,j + xn,j+1)/2, xn,j+1),

j = 0 ,n − 1 ,
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L(M)
n (f)(x) =

n∨
k=0

(−1)n−k x− xn,n

x− xn,k
f(xn,k), for x ∈ (xn,n, b].

Proof. The continuity and the interpolation properties were already estab-
lished by the Remark from the beginning of Section 2. In order to get the rest
of the statement in the theorem, it suffices to prove the following formulas :∨

k∈I+
n (x)

ln,k(x) = ln,0(x), for x ∈ [a, xn,0),

∨
k∈I+

n (x)

ln,k(x) = ln,j(x), for x ∈ (xn,j , (xn,j + xn,j+1)/2], j = 0, n− 1,

∨
k∈I+

n (x)

ln,k(x) = ln,j+1(x), for x ∈ [(xn,j + xn,j+1)/2, xn,j+1), j = 0, n− 1,

∨
k∈I+

n (x)

ln,k(x) = ln,n(x), for x ∈ (xn,n, b].

We have three cases : 1) x ∈ [a, xn,0) ; 2) x ∈ (xn,j , xn,j+1), j ∈ {0, 1, ..., n−1}
; 3) x ∈ (xn,n, b].

Case 1). By the proof of Theorem 3.1, Case 1), we have ln,0(x) > 0, for
x ∈ [a, xn,0). Also, for any k ∈ I+

n (x), we have

ln,0(x)
ln,k(x)

=
xn,k − x

xn,0 − x
≥ 1.

Case 2). Let j ∈ {0, 1, ..., n− 1} be fixed. By the proof of Theorem 3.1,
Case 2), we have ln,j(x) > 0 and ln,j+1(x) > 0, for x ∈ (xn,j , xn,j+1). We
have

ln,j(x)
ln,j+1(x)

=
xn,j+1 − x

x− xn,j
.

Therefore, for any x ∈ (xn,j , (xn,j + xn,j+1)/2] we have ln,j(x) ≥ ln,j+1(x)
and for any x ∈ [(xn,j + xn,j+1)/2, xn,j+1) we have ln,j+1(x) ≥ ln,j(x).

Let k ∈ I+
n (x). If k ≤ j then

ln,j(x)
ln,k(x)

=
x− xn,k

x− xn,j
≥ 1

and if k ≥ j + 1 then

ln,j+1(x)
ln,k(x)

=
xn,k − x

xn,j+1 − x
≥ 1.

Case 3). By the proof of Theorem 3.1, Case 3), we have ln,n(x) > 0, for
x ∈ (xn,n, b]. Also, in this case, for any k ∈ I+

n (x), we have

ln,n(x)
ln,k(x)

=
x− xn,k

x− xn,n
≥ 1

and the theorem is proved. �
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In what follows, would be of interest to compare the approximation re-
sults for the max-product Lagrange interpolation operators, with their linear
counterparts. Thus, in the case of Lagrange interpolatory polynomials, it is
well-known the fact that the divergence phenomenon is very pronounced.

In this sense, let us briefly recall some results (for details, see e.g.
Chapter 4 in the book Szabados-Vértesi [17]). Thus, Bernstein [6] proved
that for f(x) = |x|, the Lagrange interpolatory polynomials attached to
the system of equidistant nodes in [−1, 1] does not converge to f(x), for
any x ∈ (−1, 1) \ {0}. Grümwald [13] and independently Marcinkiewicz [15],
proved that when the system of interpolation nodes consists in the Cheby-
shev nodes of the first kind, there exists a function f ∈ C([−1, 1]) such
that for the attached Lagrange interpolatory polynomials Ln(f)(x), we have
lim supn→∞ |Ln(f)(x)| = +∞, for all x ∈ [−1, 1]. More general, a similar
result holds for the system of Jacobi nodes in [−1, 1] (see the book Szabados-
Vértesi [17], relationship (4.1), p. 126). For an arbitrary system of interpo-
lation nodes in [−1, 1], in Erdös-Vértesi [11] it is proved that there exists
a function f ∈ C([−1, 1]), such that for the attached Lagrange interpola-
tory polynomials we have lim supn→∞ |Ln(f)(x)| = +∞, almost everywhere
x ∈ [−1, 1]. By using the condensation singularities principle in Functional
Analysis, Muntean [16], Cobzas-Muntean [8] proved that for any system of
nodes in [0, 1], there exists a superdense subset X0 ⊂ C([0, 1]), such that for
any f ∈ X0, the subset of divergence points in [0, 1] for the attached Lagrange
interpolatory polynomials Ln(f)(x), is superdense in [0, 1] (a countable inter-
section of open subsets which, in addition, is infinite, uncountable and dense
subset, is called superdense).

In contrast with these results, the results in Theorem 3.1 and Corollary
3.2 show that for the max-product interpolatory operator L

(M)
n (f)(x), the

situation is essentially better, having uniform convergence with good rates of
convergence for some of the most important systems of interpolation nodes.

Let us note that on the other hand, in Hermann-Vértesi [14], starting
from a Lagrange interpolatory process (convergent or not)

Pn(f)(x) =
n∑

k=0

pn,k(x)f(xn,k),

with

pn,k(x) =
(x− xn,0)...(x− xn,k−1)(x− xn,k+1)...(x− xn,n)

(xn,k − xn,0)...(xn,k − xn,k−1)(xn,k − xn,k+1)...(xn,k − xn,n)
,

new linear interpolatory rational operators are constructed, of the form

Rn(f)(x) =
∑n

k=0 f(xn,k)|pn,k(x)|r∑n
k=0 f(xn,k)|pn,k(x)|r

,

are constructed, for which in the case when r > 2 and xn,k are some Jacobi
knots, the Jackson-type order of approximation

‖Rn(f)− f‖ ≤ Cω1(f ; 1/n),
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is obtained (see Theorem 3.2 in Hermann-Vértesi [14]).
In other words, for the linear rational construction Rn(f)(x), we get the

same order of approximation as for the interpolatory rational max-product
operator in Theorem 3.1 of the form

L(M)
n (f)(x) =

n∨
k=0

pn,k(x)f (xn,k)

n∨
k=0

pn,k(x)

.

Clearly that with respect to Rn(f)(x), the max-product rational operator
L

(M)
n (f)(x) present the advantage that it provides an estimate in terms of

ω1(f ; 1/n) for any kind of interpolatory systems of points, with the properties
that the distance between two consecutive nodes converges to zero as n →∞.

But still it is an interesting open problem, a comparison from computa-
tional point of view, between a rational max-product type product like that
given by Theorem 3.1 (that is of the form L

(M)
n (f)(x)) and the linear rational

one like Rn(f)(x) mentioned above.
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