On the Szasz-Inverse Beta operators

Cristina S. Cismaşiu

Abstract

In this paper, we consider a probabilitistic representation of the Szasz-Inverse Beta operators, which are an mixed summationintegral type operators, and we study some approximation properties using probabilistic methods.

Mathematics Subject Classification (2010): 41A35, 41A36, 41A25,42A61. Keywords: Szasz-Inverse Beta operators, Szasz-Mirakjan operators, Inverse Beta operators, Phillips operators, modified Szasz-Inverse Beta operators, estimates.

1. Probabilistic representation of the Szasz-Inverse Beta operators

In this paper we consider a probabilistic representation of the Szasz-Inverse Beta operators and study some approximation properties, using probabilistic methods. These operators were defined by (1.1)-(1.5) and were investigated by Gupta V., Noor M. A., [11] and some iterative constructions of these operators were studied recently by Finta Z., Govil N. K., Gupta V. [10]:

$$
\begin{align*}
L_{t}(f ; x) & =e^{-t x} f(0)+\sum_{k=1}^{\infty} s_{t, k}(x) \int_{0}^{\infty} b_{t, k}(u) f(u) d u \tag{1.1}\\
& =\int_{0}^{\infty} J_{t}(u ; x) f(u) d u, x \geq 0
\end{align*}
$$

with

$$
\begin{gather*}
s_{t, k}(x)=e^{-t x} \frac{(t x)^{k}}{k!}, t>0, x \geq 0, k \in \mathbb{N} \cup\{0\} \tag{1.2}\\
b_{t, k}(u)=\frac{1}{B(k, t+1)} \cdot \frac{u^{k-1}}{(1+u)^{t+k+1}}, t>0, u>0 \tag{1.3}
\end{gather*}
$$

$$
\begin{equation*}
B(k, t+1)=\int_{0}^{\infty} \frac{u^{k-1}}{(1+u)^{t+k+1}} d u \tag{1.4}
\end{equation*}
$$

being Inverse-Beta function

$$
\begin{equation*}
J_{t}(u ; x)=e^{-t x} \delta(u)+\sum_{k=1}^{\infty} s_{t, k}(x) b_{t, k}(u) \tag{1.5}
\end{equation*}
$$

$\delta(u)$ being the Dirac's delta function, for which $\int_{0}^{\infty} \delta(u) f(u) d u=f(0)$.
Using same ideea as Adell J. A., De la Cal J., [2], these operators can be represented as the mean value of the random variable $f\left(\frac{U_{N(t x)}}{V_{t+1}}\right)$ which has the probability density function $J_{t}(\cdot ; x)$:

$$
\begin{equation*}
L_{t}(f ; x)=E\left[f\left(Z_{t x}\right)\right]=E\left[f\left(\frac{U_{N(t x)}}{V_{t+1}}\right)\right], t>0, x \geq 0 \tag{1.6}
\end{equation*}
$$

with $\{N(t): t \geq 0\}$ a standard Poisson process and $\left\{U_{t}: t \geq 0\right\},\left\{V_{t}: t \geq 0\right\}$ two mutually independent Gamma processes defined all on the same probability space.

Note that, the Poisson process is a stochastic process starting at the origin, having stationary independent increments with probability

$$
\begin{equation*}
P(N(t)=k)=\frac{e^{-t} t^{k}}{k!}, t \geq 0, k \in \mathbb{N} \cup\{0\} \tag{1.7}
\end{equation*}
$$

and the Gamma process is a stochastic process starting at the origin $\left(U_{0}=0, V_{0}=0\right)$, having stationary independent increments and such that for $t>0, U_{t}, V_{t}$ have the Gamma probability density function

$$
\rho_{t}(u)= \begin{cases}\frac{u^{t-1} e^{-u}}{\Gamma(t)} & , t>0, u>0 \tag{1.8}\\ 0 & , u=0\end{cases}
$$

and without loss of generality [17] it can be assumed that $\left\{U_{t}: t \geq 0\right\}$, $\left\{V_{t}: t \geq 0\right\}$ for each $t>0$ has a.s. no decreasing right-continuous paths.

Indeed, in our paper [4] we showed that

$$
\begin{aligned}
& E\left[f\left(\frac{U_{N(t x)}}{V_{t+1}}\right)\right]=\int_{0}^{\infty} f(u)\left(\int_{0}^{\infty} y \rho_{U_{N(t x)}}(y u) \rho_{V_{t+1}}(y) d y\right) d u \\
& =\int_{0}^{\infty} f(u)\left(\int_{0}^{\infty} y \sum_{k=0}^{\infty} \frac{e^{-t x}(t x)^{k}}{k!} \rho_{U_{k}}(y u) \rho_{V_{t+1}}(y) d y\right) d u \\
& =e^{-t x} f(0)+ \\
& \quad+\sum_{k=1}^{\infty} s_{t, k}(x) \int_{0}^{\infty} f(u)\left(\int_{0}^{\infty} \frac{y^{k+t}}{\Gamma(k)} \cdot \frac{u^{k-1}}{\Gamma(t+1)} e^{-y(u+1)} d y\right) d u
\end{aligned}
$$

$$
\begin{aligned}
= & e^{-t x} f(0)+ \\
+ & \sum_{k=1}^{\infty} s_{t, k}(x) \int_{0}^{\infty} f(u)\left(\int_{0}^{\infty} \frac{\left(\frac{v}{u+1}\right)^{k+t}}{\Gamma(k)} \cdot \frac{u^{k-1}}{\Gamma(t+1)} e^{-v} \frac{d v}{u+1}\right) d u \\
= & e^{-t x} f(0)+ \\
& +\sum_{k=1}^{\infty} s_{t, k}(x) \int_{0}^{\infty} f(u) \frac{b_{t, k}(u)}{\Gamma(k+t+1)}\left(\int_{0}^{\infty} v^{k+t} e^{-v} d v\right) d u \\
= & e^{-t x} f(0)+\sum_{k=1}^{\infty} s_{t, k}(x) \int_{0}^{\infty} f(u) b_{t, k}(u) d u=L_{t}(f ; x) .
\end{aligned}
$$

On the other hand, the Szasz-Inverse Beta operators (1.1)-(1.5) can be represented as the composition between Szasz-Mirakjan operators and Inverse-Beta operators:

$$
\begin{equation*}
L_{t}(f ; x)=\left(S_{t} \circ T_{t}\right)(f ; x)=S_{t}\left(T_{t}\right)(f ; x), t>0, x \geq 0 \tag{1.9}
\end{equation*}
$$

with the Szasz-Mirakjian operators

$$
\begin{equation*}
S_{t}(f ; x)=E\left[f\left(\frac{N_{t x}}{t}\right)\right]=\sum_{k=0}^{\infty} s_{t, k}(x) f\left(\frac{k}{t}\right) \text { with (1.2) } \tag{1.10}
\end{equation*}
$$

and the Inverse-Beta operators or the Stancu operators of second kind [19]:

$$
\left\{\begin{align*}
T_{t}(f ; x) & =E\left[f\left(W_{t x, t+1}\right)\right] \tag{1.11}\\
& =\frac{1}{B(t x, t+1)} \int_{0}^{\infty} \frac{u^{t x-1}}{(1+u)^{t x+t+1}} f(u) d u \\
& =\int_{0}^{\infty} f(u) b_{t x, t+1}(u) d u, t>0, x>0 \\
T_{t}(f ; 0) & =f(0)
\end{align*}\right.
$$

with $W_{t x, t+1}$ a random variable having the Inverse-Beta distribution with probability density function as

$$
\begin{equation*}
b_{t x, t+1}(u)=\frac{1}{B(t x, t+1)} \cdot \frac{u^{t x-1}}{(1+u)^{t x+t+1}}, t>0, x>0, u>0 \tag{1.12}
\end{equation*}
$$

and $B(t x, t+1)=\int_{0}^{\infty} \frac{u^{t x-1}}{(1+u)^{t x+t+1}} d u, t>0, x>0$.
It is known [16. IV.10.(3)] that, if we consider two independent random variables $U_{t x}, V_{t+1}$ having Gamma distribution with probability density function (1.8) for $t:=t x$ respectively $t:=t+1$, then the probability density function of the ratio $\frac{U_{t x}}{V_{t+1}}$ is $b_{t x, t+1}(u)=\int_{0}^{\infty} y \rho_{U_{t x}}(u y) \rho_{V_{t+1}}(y) d y$ a InverseBeta probability density function as (1.12).

Remark 1.1. The Inverse-Beta probability density function can be represented with a negative binomial probability for $t>0$ and with convention $\binom{t}{k}=\frac{t(t-1)(t-2) \cdots(t-k+1)}{k!}, t>0, k \in \mathbb{N}$, we have

$$
\begin{align*}
p_{t, k-1}(u) & =\binom{t+k}{k-1}\left(\frac{u}{1+u}\right)^{k-1}\left(\frac{1}{1+u}\right)^{t+2} \tag{1.13}\\
& =\binom{t+k}{k-1} \cdot \frac{u^{k-1}}{(1+u)^{t+k+1}}
\end{align*}
$$

$t>0, u>0, k \in \mathbb{N}$, for which $\int_{0}^{\infty} p_{t, k-1}(u) d u=\frac{1}{t+1}$ and so

$$
\begin{align*}
b_{t, k}(u) & =\frac{1}{B(k, t+1)} \cdot \frac{u^{k-1}}{(1+u)^{t+k+1}} \tag{1.14}\\
& =(t+1) p_{t, k-1}(u)=\frac{p_{t, k-1}(u)}{\int_{0}^{\infty} p_{t, k-1}(u) d u}
\end{align*}
$$

The probability density function (1.5) becomes the kernel:

$$
\begin{aligned}
J_{t}(u ; x) & =e^{-t x} \delta(u)+\sum_{k=1}^{\infty} s_{t, k}(x) b_{t, k}(u) \\
& =e^{-t x} \delta(u)+(t+1) \sum_{k=1}^{\infty} s_{t, k}(x) p_{t, k-1}(u)
\end{aligned}
$$

and the operators (1.1) have a Durrmeyer-type construction

$$
\begin{align*}
L_{t}(f ; x) & =e^{-t x} f(0)+\sum_{k=1}^{\infty} s_{t, k}(x) \frac{\int_{0}^{\infty} p_{t, k-1}(u) f(u) d u}{\int_{0}^{\infty} p_{t, k-1}(u) d u} \tag{1.15}\\
& =e^{-t x} f(0)+(t+1) \sum_{k=1}^{\infty} s_{t, k}(x) \int_{0}^{\infty} p_{t, k-1}(u) f(u) d u
\end{align*}
$$

Using the representation (1.9) and the images of the test functions $e_{i}(x)=x^{i}, i=0,1,2, x \geq 0$ with these operators (1.10) and (1.11)-(1.12), it is easy to prove that

$$
\begin{align*}
L_{t}\left(e_{i} ; x\right) & =e_{i}(x), i=\overline{0,1}, x \geq 0 \tag{1.16}\\
L_{t}\left(e_{2} ; x\right) & =\frac{t}{t-1} x^{2}+\frac{2}{t-1} x, t>1, x \geq 0 \\
L_{t}\left(e_{2}-x^{2} ; x\right) & =L_{t}\left(\left(e_{1}-x\right)^{2} ; x\right)=D^{2}\left[\frac{U_{N(t x)}}{V_{t+1}}\right] \\
& =E\left[\left(\frac{U_{N(t x)}}{V_{t+1}}-x\right)^{2}\right]=\frac{x(2+x)}{t-1}, t>1, x \geq 0
\end{align*}
$$

2. Approximation properties of Szasz-Inverse Beta operators

In view of (1.9) because a part of the properties of Szasz-Inverse Beta operators depends on the same properties of Szasz-Mirakjan operators (1.10) and of the Inverse-Beta operators (1.11)-(1.12), next time, using a probabilistic method which was presented in [1], we studied [4] the monotonic convergence under convexity for the Szasz-Inverse Beta operators (1.1)-(1.5):

Theorem 2.1. Let $t>1$ be fixed. For the Szasz-Inverse Beta operators (1.1)(1.5) following:

1. $L_{t}\left(e_{i} ; x\right)=e_{i}(x), i=\overline{0,1}$;
2. $L_{t}\left(e_{2} ; x\right)=\frac{t}{t-1} x^{2}+\frac{2}{t-1} x$;
3. If f is a convex function on $(0,+\infty)$ then $L_{t} f$ is convex too and in addition, f is nondecreasing then for $1<r<s, L_{r} f \geq L_{s} f \geq f$;
4. If $f \in \operatorname{Lip}_{(0,+\infty)}(C, \alpha), \alpha \in(0,1]$ then $L_{t} f \in \operatorname{Lip}_{(0,+\infty)}(C, \alpha), \alpha \in$ $(0,1]$.

The proof is immediately [4] using the following two lemmas:
Lemma 2.2. If $\left(U_{t x}\right)_{t>0, x \geq 0},\left(V_{t+1}\right)_{t>0}$ are two independent Gamma processes defined on the same probability space, then for all $1<r \leq s$ and $x>0$ we have

$$
E\left(\left.\frac{U_{r x}}{V_{r+1}} \right\rvert\, \frac{U_{s x}}{V_{s+1}}\right)=\frac{U_{s x}}{V_{s+1}} \text { a.s. }
$$

Lemma 2.3. Let $t>1$ be fixed. For the Inverse-Beta operators (1.11)-(1.12) following:

1. If f is a real convex function on $(0,+\infty)$ then $T_{t} f$ is convex too.
2. If f is a nondecreasing and convex function on $(0,+\infty)$ and $1<r<s$ then $T_{r} f \geq T_{s} f \geq f$.
3. If $f \in \operatorname{Lip}_{(0,+\infty)}(C, \alpha), \alpha \in(0,1]$ then $T_{t} f \in \operatorname{Lip}_{(0,+\infty)}(C, \alpha), \alpha \in(0,1]$

Theorem 2.4. For any function $f \in \mathbf{C}_{B}[0,+\infty)$ and for any compact set $K \subset[0,+\infty)$ we have $\lim _{t \rightarrow \infty} L_{t}(f)=f$ uniform on K.

Proof. It follows from the Bohmann-Korovkin's theorem and from Theorem 2.1.

In the next theorem we give in 1 and 2 an approximation using the modulus of continuity of f and of derivative f^{\prime} and in 3 an asymptotic approximation of Voronovskaja type.

Theorem 2.5. 1. If $f \in \mathbf{C}_{B}[0,+\infty)$, then for every $x \in[0,+\infty)$

$$
\left|L_{t}(f ; x)-f(x)\right| \leq(1+\sqrt{x(2+x)}) \omega\left(f ; \frac{1}{\sqrt{t-1}}\right), t>1
$$

2. If $f^{\prime} \in \mathbf{C}_{B}[0,+\infty)$, then for every $x \in[0,+\infty)$

$$
\begin{aligned}
& \left|L_{t}(f ; x)-f(x)\right| \leq \\
& \leq \sqrt{\frac{x(2+x)}{t-1}}(1+\sqrt{x(2+x)}) \omega\left(f^{\prime} ; \frac{1}{\sqrt{t-1}}\right), t>1 .
\end{aligned}
$$

3. If f is bounded on $[0,+\infty)$, differentiable in some neighborhood of x and has second derivative f " for some $x \in[0,+\infty)$, then for $t>1$

$$
\lim _{t \rightarrow \infty}(t-1)\left[L_{t}(f ; x)-f(x)\right]=\frac{x(2+x)}{2} f^{\prime \prime}(x)
$$

If $f \in \mathbf{C}^{2}[0,+\infty)$, then the convergence is uniform on any compact $K \subset[0,+\infty)$.
Proof. For 1 and 2 see (1.16) and a result of Shisha O., Mond B., [18] and for 3 see Cismaşiu C. [3].

Remark 2.6. An interesting result which was obtained by De la Cal J., Carcamo J., $[7]$ for the operators of Bernstein-type which preserves the affine functions, namely centered Bernstein-type operators, can be used for SzaszInverse Beta operators (1.1)-(1.5) :
Theorem 2.7 (De la Cal J., Carcamo J., [7]). If $L_{1}=L_{2} \circ L_{3}$, where L_{1}, L_{2}, L_{3} are centered Bernstein-type operators $\left(L f(x)=E\left[f\left(Y_{x}\right)\right], x \in\right.$ $I \subset \mathbb{R}, L_{1}(x)=E\left[Y_{x}\right]=x$) over the same interval I and if $\mathbf{L}_{c x}$ is the set of all convex functions in the domain of the three operators, then $L_{1} f \geq L_{2} f, f \in \mathbf{L}_{c x}$.

If, in addition L_{3} preserves convexity, then $L_{1} f \geq L_{2} f \vee L_{3} f, f \in \mathbf{L}_{c x}$ where $f \vee g$ denotes the maximum of f and g.

In view of this result and using the representation (1.9) for Szasz-Inverse-Beta operators, we have $L_{t} f \geq S_{t} f, f \in \mathbf{L}_{c x}[0,+\infty)$ and $L_{t} f \geq$ $S_{t} f \vee T_{t} f, f \in \mathbf{L}_{c x}[0,+\infty)$, where S_{t} are the Szasz-Mirakjan operators (1.10), T_{t} are the Inverse-Beta operators (1.11)-(1.12) and L_{t} are the Szasz-Inverse Beta operators (1.1)-(1.5).

An estimate of the difference $\left|L_{t}(f ; x)-S_{t}(f, x)\right|$ was given by us in [6]:
Theorem 2.8. If $f \in \mathbf{C}_{B}[0,+\infty) \cap \mathbf{L}_{c x}[0,+\infty)$ then for every $x \in[0,+\infty)$ and $t>1$

$$
\left|L_{t}(f ; x)-S_{t}(f, x)\right| \leq\left(1+\delta^{-2}\left(\frac{x(x+1)}{t-1}+\frac{x}{t(t-1)}\right)\right) \omega(f, \delta)
$$

with $\omega(f, \delta)=\sup \{|f(x)-f(y)|: x, y \geq 0,|x-y| \leq \delta\}$ the modulus of continuity of f.

Using the probabilistic representation of these operators, result for $t>1$, $\delta>0$

$$
\begin{aligned}
& \left|E\left[f\left(\frac{U_{N(t x)}}{V_{t+1}}\right)\right]-E\left[f\left(\frac{N(t x)}{t}\right)\right]\right| \leq \\
& \leq\left(1+\delta^{-2}\left(D^{2}\left(\frac{U_{t x}}{V_{t+1}}\right)+\frac{1}{t-1} D^{2}\left(\frac{N(t x)}{t}\right)\right)\right) \omega(f, \delta)
\end{aligned}
$$

3. Approximating Phillips operators by modified Szasz-Inverse Beta operators

Using the same ideea as De la Cal J., Luquin F. [8] or as Adell J. A., De la Cal J. [2], we consider a new operator defined as the aid of Szasz-Inverse Beta operator (1.1)-(1.5) for $r>0, t>0, x \geq 0$:

$$
\begin{align*}
\Theta_{r, t}(f ; x) & =L_{r t}\left(f(t u) ; \frac{x}{t}\right)=\int_{0}^{\infty} \frac{1}{t} J_{r t}\left(\frac{u}{t} ; \frac{x}{t}\right) f(u) d u \tag{3.1}\\
& =\int_{0}^{\infty} \frac{1}{t}\left[e^{-r x} \delta\left(\frac{u}{t}\right)+\sum_{k=1}^{\infty} s_{r t, k}\left(\frac{x}{t}\right) b_{r t, k}\left(\frac{u}{t}\right)\right] f(u) d u \\
& =e^{-r x} f(0)+\sum_{k=1}^{\infty} s_{r, k}(x) \int_{0}^{\infty} \frac{1}{t} b_{r t, k}\left(\frac{u}{t}\right) f(u) d u
\end{align*}
$$

where f is any real function defined on $[0, \infty)$ such that $\left.\Theta_{r, t}(|f|) ; x\right)<\infty$.
We obtain for the operators (3.1) a Durrmeyer-type construction in a similar way as for representation (1.15) with (1.14) for the Szasz-Inverse Beta operators (1.1)-(1.5):

$$
\begin{align*}
\Theta_{r, t}(f ; x)= & L_{r t}\left(f(t u) ; \frac{x}{t}\right)=\int_{0}^{\infty} \frac{1}{t} J_{r t}\left(\frac{u}{t} ; \frac{x}{t}\right) f(u) d u \tag{3.2}\\
= & \int_{0}^{\infty} \frac{1}{t}\left[e^{-r x} \delta\left(\frac{u}{t}\right)+\sum_{k=1}^{\infty} s_{r t, k}\left(\frac{x}{t}\right) b_{r t, k}\left(\frac{u}{t}\right)\right] f(u) d u \\
= & e^{-r x} f(0)+ \\
& +\left(r+\frac{1}{t}\right) \sum_{k=1}^{\infty} s_{r, k}(x) \int_{0}^{\infty} p_{r t, k-1}\left(\frac{u}{t}\right) f(u) d u .
\end{align*}
$$

and a probabilistic representation

$$
\begin{equation*}
\Theta_{r, t}(f ; x)=L_{r t}\left(f(t u) ; \frac{x}{t}\right)=E\left[f\left(t \frac{U_{N(r x)}}{V_{r t+1}}\right)\right] \tag{3.3}
\end{equation*}
$$

These operators $\Theta_{r, t}(f ; \cdot)$ approximate the Phillips' operators [14] defined as

$$
\begin{align*}
P_{r}(f ; x) & =E\left[f\left(\frac{U_{N(r x)}}{r}\right)\right] \tag{3.4}\\
& =e^{-r x} f(0)+r \sum_{k=1}^{\infty} s_{r, k}(x) \int_{0}^{\infty} s_{r, k-1}(u) f(u) d u \\
& =\int_{0}^{\infty} H_{r}(u ; x) f(u) d u, r>0, x \geq 0
\end{align*}
$$

with $s_{r, k}(x)$ as (1.2),

$$
\begin{equation*}
H_{r}(u ; x)=e^{-r x} \delta(u)+r \sum_{k=1}^{\infty} s_{r, k}(x) s_{r, k-1}(u) \tag{3.5}
\end{equation*}
$$

$x \geq 0, k \in \mathbb{N} \cup\{0\}, r>0, \delta$ the Dirac's Delta function and for $f:[0, \infty) \longrightarrow \mathbb{R}$ any integrabile function, such that $P_{r}(|f| ; x)<\infty$.

The Phillips operators (3.4)-(3.5) were studied by several authors (see $[9],[12],[13],[14])$ and are considered "the genuine Durrmeyer-Szasz-Mirakjan operators". A generalization of these operators, using two continuous parameters was obtained by Păltănea R. [15].

Theorem 3.1. Let $x \geq 0, r, t, u>0$ be. If, f is a real bounded function on $[0, \infty)$ then

$$
\begin{aligned}
\left|\Theta_{r, t}(f ; x)-P_{r}(f ; x)\right| & =\left|L_{r t}\left(f(t u) ; \frac{x}{t}\right)-P_{r}(f ; x)\right| \\
& \leq\|f\| \cdot \frac{r^{2} x^{2}+4 r x+2}{r t+1}
\end{aligned}
$$

and we have uniform convergence as $t \rightarrow \infty$ on every bounded interval $[0, a], a>0$.
Proof. We presented in detail the proof in [5] and we gave a bound for the total variation distance between the probability distributions of the random variables $t \frac{U_{N(r x)}}{V_{r t+1}}$ and $\frac{U_{N(r x)}}{r}$, respectively between $\left|\frac{1}{t} b_{r t, k}\left(\frac{u}{t}\right)-r s_{r, k-1}(u)\right|$.

References

[1] Adell, J., De la Cal, J., San Miguel, M., Inverse Beta and generalized Bleimann Butzer-Hahn operators, J. Approx. Theory, 76(1994), 54-64.
[2] Adell, J.A., De la Cal, J., Bernstein-Durrmeyer operators, Computers Math. Applic., 30(1995), no. 3-6, 3-6.
[3] Cismaşiu, S.C., Probabilistic interpretation of Voronovskaja's theorem, Bull. Univ. Brasov, Seria C, XXVII(1985), 7-12.
[4] Cismaşiu, C., Szasz-inverse Beta operators revisited (to appear).
[5] Cismaşiu, S.C., Approximating Phillips operators by modified Szasz-Inverse Beta operators, Bull. of the Transilvania Univ., Braşov, 3(2010), Series Mathematics, Informatics, Physics, 19-26.
[6] Cismaşiu, S.C., An estimate of difference between the Szasz-Inverse Beta operators and the Szasz-Mirakjian operators, Rev. of the Air Force Academy, Brasov, 17(2010), no. 2, 67-70.
[7] De la Cal, J., Carcamo, J., On the approximation of convex functions by Bernstein-type operators, J. Math. Anal. Appl., 334(2007), 1106-1115.
[8] De la Cal, J., Luquin, F., Approximation Szasz and Gamma operators by Baskakov operators, J. Math. Anal. Appl., 184(1994), 585-593.
[9] Finta, Z., Gupta, V., Direct and inverse estimates for Phillips type operators, J. Math. Anal. Appl., 303(2005), no. 2, 627-642.
[10] Finta, Z., Govil, N.K., Gupta, V., Some results on modified Szasz-Mirakjan operators, J. Math. Anal. Appl., 327(2007), 1284-1296.
[11] Gupta, V., Noor, M.A., Convergence of derivatives for certain mixed SzaszBeta operators, J. Math. Anal. Appl., 321(2006), no. 1, 1-9.
[12] Mazhar, S.M., Totik, V., Approximation by modified Szasz operator, Acta Sci. Math., 49(1985), 257-263.
[13] May, C.P., On Phillips operators, J. Approx. Theory, 20(1977), no. 4, 315-332.
[14] Phillips, R.S, An inversion formula for Laplace transforms and semi-groups of operators, Annals of Mathmatics, Second Series, 59(1954), 325-356.
[15] Păltănea, R., Modified Szasz-Mirakjan operators of integral form, Carpathian J. Math., 24(2008), no. 3, 378-385.
[16] Renyi, A., Probability theory, Akad. Kiado, Budapest, 1970.
[17] Skorohod, A.V., Random processes with independent increments, Kluwer, London, 1986.
[18] Shisha, O., Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A., 60(1968), 1196-1200.
[19] Stancu, D.D., On the Beta-approximating operators of second kind, Revue d'Analyse Num. et de Theorie de l'Approx., 24(1995), no. 1-2, 231-239.

Cristina S. Cismaşiu
"Transilvania" University
Department of Mathematics
Eroilor 29, 500 036, Braşov, Romania
e-mail: ccismasiu@yahoo.com

