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Abstract. In this paper we deepen the study of a sequence of positive
linear operators acting on L1([0, 1]N ), N ≥ 1, that have been introduced
in [3] and that generalize the multidimensional Kantorovich operators
(see [15]). We show that particular iterates of these operators converge
on C ([0, 1]N ) to a Markov semigroup and on Lp([0, 1]N ), 1 ≤ p < +∞, to
a positive contractive C0-semigroup (that is an extension of the previous
one). The generators of these C0-semigroups are the closures of some
partial differential operators that belong to the class of Fleming-Viot
operators arising in population genetics.
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1. Introduction

In the paper [3] we introduced and studied a sequence (Cn)n≥1 of positive
linear operators on L1([0, 1]N ), N ≥ 1, that are a generalization of the mul-
tidimensional Kantorovich operators, first introduced in [15], and that also
extend to a multidimensional setting another sequence of positive linear op-
erators on L1([0, 1]) studied in [5] and [6].

The operators Cn, n ≥ 1, offer the advantage to reconstruct any
Lebesgue-integrable function on [0, 1]N by means of its mean values on a
finite numbers of sub-cells of [0, 1]N that do not constitute a subdivision of
[0, 1]N .

Both in [6] and in [11] particular iterates of the (generalized) Kan-
torovich operators have been also investigated in connection with the exis-
tence of related C0-semigroups of operators on C ([0, 1]) and on L1([0, 1]).
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Then, it seemed quite natural to tackle similar problems in a multidimen-
sional setting and for the operators Cn, n ≥ 1.

By using different methods from those employed in [6] and [11], in fact
we first show that there exists a Markov semigroup (T (t))t≥0 on C ([0, 1]N )
such that

T (t)(f) = lim
n→∞

Cρn
n (f) in C ([0, 1]N ) (1.1)

for any f ∈ C ([0, 1]N ), t ≥ 0 and for any sequence (ρn)n≥1 of positive integers
such that ρn/n→ t as n→∞.

The generator (A,D(A)) of the Markov semigroup is determined on a
core of D(A), namely on C 2([0, 1]N ), where it coincides with the second-order
elliptic differential operator

Vl(u)(x) :=
1
2

N∑
i=1

xi(1− xi)
∂2u

∂x2
i

(x) +
N∑

i=1

(
l

2
− xi

)
∂u

∂xi
(x)

(u ∈ C 2([0, 1]N ), x = (xi)1≤i≤N ∈ [0, 1]N ), where l ∈ [0, 2].
Accordingly, formula (1.1) provides a constructive approximation of the

solutions to the abstract Cauchy problem
∂u

∂t
(x, t) = A(u(·, t))(x) x ∈ [0, 1]N , t ≥ 0,

u(x, 0) = u0(x) u0 ∈ D(A), x ∈ [0, 1]N ,

that, as it is well-known, are given by u(x, t) = T (t)(u0)(x) (x ∈ [0, 1]N , t ≥
0).

The differential operator Vl falls in a class of Fleming-Viot operators
arising in population genetics (see [2], [7], [10] for some additional references).

In addition, we also show that the subspace of all polynomials with a
given degree and the subspace of all Hölder continuous functions on [0, 1]N are
invariant under (T (t))t≥0. In some particular cases we finally show that the
semigroup (T (t))t≥0 can be extended to a positive contractive C0-semigroup
on Lp([0, 1]N ) for every 1 ≤ p < +∞ and this semigroup can be equally
approximated in the Lp-norm by iterates of the operators Cn, as in formula
(1.1).

2. Preliminary results

Throughout this paper [0, 1]N denotes the canonical hypercube in RN ,N ≥ 1,
i.e.,

[0, 1]N := {(xi)1≤i≤N ∈ RN | 0 ≤ xi ≤ 1 for every i = 1, . . . , N}.

As usual we denote by C ([0, 1]N ) the space of all real valued continuous
functions on [0, 1]N and by C 2([0, 1]N ) the space of all real valued continuous
functions on [0, 1]N which are twice continuously differentiable in the interior
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of [0, 1]N and whose partial derivatives up to the order two can be contin-
uously extended on [0, 1]N . The space C ([0, 1]N ), endowed with the natural
(pointwise) ordering and the sup-norm ‖ · ‖∞, is a Banach lattice.

We also denote by 1 the constant function of constant value 1 on [0, 1]N .
For a given i ∈ {1, . . . , N}, the symbol pri stands for the ith coordinate
function on [0, 1]N , i.e., pri(x) := xi (x = (xi)1≤i≤N ∈ [0, 1]N ). Moreover,
fixed x ∈ [0, 1]N , we denote by Ψx the function defined as Ψx(y) = y − x
for every y ∈ [0, 1]N (whenever N = 1 we use the symbol ψx) and by dx the
function defined by

dx(y) := ‖y − x‖2 (y ∈ [0, 1]N ), (2.1)

where ‖ · ‖2 stands for the Euclidean norm on RN , i.e., ‖x‖2 :=
(

N∑
i=1

x2
i

)1/2

(x = (xi)1≤i≤N ∈ RN ).
We note that, given x = (xi)1≤i≤N ∈ [0, 1]N and i ∈ {1, . . . , N},

pri ◦Ψx = pri − xi1, (2.2)

and hence

(pri ◦Ψx)2 = pr2i − 2xipri + x2
i 1. (2.3)

Moreover,

d2
x =

N∑
i=1

(pri ◦Ψx)2 (2.4)

and

d4
x =

N∑
i=1

(pri ◦Ψx)4 + 2
∑

1≤i<j≤N

(pri ◦Ψx)2(prj ◦Ψx)2. (2.5)

Given 1 ≤ p < +∞, the symbol Lp([0, 1]N ) stands for the spaces of all
(equivalence classes of) Borel measurable functions f defined on [0, 1]N such
that

‖f‖p :=

(∫
[0,1]N

|f |p dx

)1/p

< +∞.

In [3] we introduced and studied a new sequence of positive linear op-
erators acting on L1([0, 1]N ), that will be also the object of interest of this
paper.

More precisely, let (an)n≥1 and (bn)n≥1 be two sequences of real num-
bers such that 0 ≤ an < bn ≤ 1 for every n ≥ 1.

If n ≥ 1 and h = (hi)1≤i≤N ∈ {0, . . . , n}N , set

Qan,bn

n,h :=
N∏

i=1

[
hi + an

n+ 1
,
hi + bn
n+ 1

]
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and consider the positive linear operator Cn :L1([0, 1]N ) −→ C ([0, 1]N ) de-
fined by setting, for any f ∈ L1([0, 1]N ) and x = (xi)1≤i≤N ∈ [0, 1]N ,

Cn(f)(x) =
∑

h∈{0,...,n}N

Pn,h(x)
(

n+ 1
bn − an

)N ∫
Qan,bn

n,h

f(t) dt

=
∑

h=(hi)1≤i≤N
hi∈{0,...,n}

Pn,h(x)
(

n+ 1
bn − an

)N∫ h1+bn
n+1

h1+an
n+1

· · ·
∫ hN +bn

n+1

hN +an
n+1

f(t1, . . . , tN ) dt1 · · · dtN ,

(2.6)

where

Pn,h(x) :=
N∏

i=1

pn,hi(xi) =
N∏

i=1

(
n

hi

)
xhi

i (1− xi)n−hi (2.7)

for every x = (xi)1≤i≤N ∈ [0, 1]N and h = (hi)1≤i≤N ∈ {0, . . . , n}N .
Note that Cn is positive and continuous and that, as an operator from

C ([0, 1]N ) into itself, its norm is ||Cn|| = 1, since Cn(1) = 1 for any n ≥ 1.
We point out that the sequence (Cn)n≥1 represents a generalization of

Kantorovich operators on [0, 1]N , that were introduced and studied by Zhou
in [15] and that can be obtained from (2.6) by setting, for any n ≥ 1, an = 0
and bn = 1.

On the other hand, the Cn’s generalize to the multidimensional case a
class of operators first studied in [5, Examples 1.2, 1] and defined by

Kn(f)(x) =
n∑

h=0

pn,h(x)
n+ 1
bn − an

∫ h+bn
n+1

h+an
n+1

f(t) dt (2.8)

for every n ≥ 1, f ∈ L1([0, 1]) and x ∈ [0, 1], where, as above, pn,h(x) :=(
n
h

)
xh(1− x)n−h.

A possible interest in the study of the sequence (Cn)n≥1 lies in the fact
that it allows to reconstruct a Lebesgue-integrable function by means of its
mean values on the sets Qan,bn

n,h which are smaller than the corresponding
ones considered in [15]. In fact, the following result holds (see [3, Theorems
2.2 and 2.5]).

Proposition 2.1. For every f ∈ C ([0, 1]N ),

lim
n→∞

Cn(f) = f uniformly on [0, 1]N . (2.9)

Moreover, for every n ≥ 1 and p ∈ [1,+∞[, the operator Cn is contin-
uous from Lp([0, 1]N ) into itself and

‖Cn‖Lp,Lp ≤ 1
(bn − an)N/p

. (2.10)

Finally, if sup
n≥1

1/(bn − an) < +∞, then, for every f ∈ Lp([0, 1]N ),

lim
n→∞

Cn(f) = f in Lp([0, 1]N ). (2.11)
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In [3, Propositions 2.4, 2.6 and 2.7] estimates of the rate of convergence
in the previous approximation formulae are also given.

The main aim of this paper is to show that suitable iterates of the oper-
ators Cn converge to a positive C0-semigroup of operators both in C ([0, 1]N )
and in Lp([0, 1]N ), p ≥ 1.

To this end, first of all we recall some properties of the operators Kn

defined in (2.8), that will be useful in the sequel (for a proof see [6, Section
2]).

Lemma 2.2. For every n ≥ 1, let Kn be the positive linear operator defined
by (2.8) and, for every 0 ≤ x ≤ 1, consider the functions ψx(y) = y − x
(y ∈ [0, 1]). Then

(i) lim
n→∞

Kn(ψ2
x)(x) = 0 uniformly on [0, 1];

(ii) lim
n→∞

nKn(ψ2
x)(x) = x(1− x) uniformly on [0, 1];

(iii) lim
n→∞

nKn(ψ4
x)(x) = 0 uniformly on [0, 1].

As regards the operators Cn, we have the following result (see [3, Lemma
2.1]).

Lemma 2.3. Given n ≥ 1 and i ∈ {1, . . . , N}, then

Cn(1) = 1, (2.12)

Cn(pri) =
n

n+ 1
pri +

an + bn
2(n+ 1)

1 (2.13)

and

Cn(pr2i ) =
1

(n+ 1)2
{
n2pr2i + npri(1− pri) + n(an + bn)pri

+
1
3
(a2

n + anbn + b2n)1
}
.

(2.14)

Further, the following equalities will be useful (see [3, Lemma 2.1]).

Proposition 2.4. For every x = (xi)1≤i≤N ∈ [0, 1]N and n ≥ 1,

Cn(pri ◦Ψx)(x) = − 1
n+ 1

xi +
an + bn
2(n+ 1)

, (2.15)

Cn((pri ◦Ψx)2)(x) =
1

(n+ 1)2
{
x2

i + nxi(1− xi)− (an + bn)xi

+
a2

n + anbn + b2n
3

}
,

(2.16)

Cn(d2
x)(x) =

1
(n+ 1)2

{
(1− n)‖x‖2

2 + (n− an − bn)
N∑

i=1

xi

+N
a2

n + anbn + b2n
3

} (2.17)
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and

Cn(d4
x)(x) =

N∑
i=1

Kn(ψ4
xi

)(xi) + 2
∑

1≤i<j≤N

Kn(ψ2
xi

)(xi)Kn(ψ2
xj

)(xj), (2.18)

where, for any n ≥ 1, the operator Kn is defined by (2.8) and, for a given
i ∈ {1, . . . , N}, ψxi

(ti) = ti − xi (t = (ti)1≤i≤N ∈ [0, 1]N ).

Proof. Formulae (2.15)-(2.17) are a direct consequence of Lemma 2.3 and
formulas (2.2)-(2.4). Taking both definition (2.6) of Cn’s and formulae (2.2)
and (2.5) into account, we obtain

Cn(d4
x)(x) =

∑
h∈{0,...,n}N

Pn,h(x)
(

n+ 1
bn − an

)N ∫
Qan,bn

n,h

d4
x(t) dt

=
∑

h∈{0,...,n}N

Pn,h(x)
(

n+ 1
bn − an

)N ∫
Qan,bn

n,h

N∑
i=1

(ti − xi)4(t) dt

+
∑

h∈{0,...,n}N

Pn,h(x)
(

n+ 1
bn − an

)N ∫
Qan,bn

n,h

2
∑

1≤i<j≤N

(ti − xi)2(tj − xj)2 dt

=
∑

h=(hi)1≤i≤N
hi∈{0,...,n}

Pn,h(x)
(

n+ 1
bn − an

)N ∫ h1+bn
n+1

h1+an
n+1

· · ·
∫ hN +bn

n+1

hN +an
n+1

N∑
i=1

ψ4
xi

(ti) dt1 · · · dtN

+2
∑

h=(hi)1≤i≤N
hi∈{0,...,n}

Pn,h(x)
(
n+ 1
bn − an

)N∫ h1+bn
n+1

h1+an
n+1

· · ·
∫ hN +bn

n+1

hN +an
n+1

∑
1≤i<j≤N

ψ2
xi

(ti)ψ2
xj

(tj)dt1· · ·dtN

=
∑

h=(hi)1≤i≤N
hi∈{0,...,n}

Pn,h(x)
(

n+ 1
bn − an

) N∑
i=1

∫ hi+bn
n+1

hi+an
n+1

ψ4
xi

(ti) dti

+ 2
∑

h=(hi)1≤i≤N
hi∈{0,...,n}

Pn,h(x)
(

n+ 1
bn − an

)2 ∑
1≤i<j≤N

∫ hi+bn
n+1

hi+an
n+1

∫ hj+bn

n+1

hj+an

n+1

ψ2
xi

(ti)ψ2
xj

(tj) dti dtj .

Now keeping (2.7) in mind and using the identities

n∑
hk=0

pn,hk
(xk) = 1 for every k ∈ {1, . . . , N},
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we have

Cn(d4
x)(x) =

N∑
i=1

n∑
hi=0

pn,hi
(xi)

(
n+ 1
bn − an

)∫ hi+bn
n+1

hi+an
n+1

ψ4
xi

(ti) dti

+ 2
∑

1≤i<j≤N

n∑
hi=0

pn,hi(xi)
(

n+ 1
bn − an

)∫ hi+bn
n+1

hi+an
n+1

ψ2
xi

(ti) dti

×
n∑

hj=0

pn,hj
(xj)

(
n+ 1
bn − an

)∫ hj+bn

n+1

hj+an

n+1

ψ2
xj

(tj) dtj ,

and hence formula (2.18) follows. �

Remark 2.5. A more explicit expression of (2.18) can be obtained using some
computations contained in the proof of [6, Theorem 2.2].

Another useful result is shown below.

Proposition 2.6. Under each of the following sets of conditions:

(a) an = 0 and bn = 1 for every n ≥ 1,

or

(b) (i) 0 < bn − an < 1 for every n ≥ 1;
(ii) there exist lim

n→∞
an = 0 and lim

n→∞
bn = 1;

(iii) M1 := supn≥1 n(1− (bn − an)) < +∞,

for every p ≥ 1 there exists ωp ≥ 0 such that, for every k ≥ 1 and n ≥ 1,

‖Ck
n‖Lp,Lp ≤ e

k
n ωp , (2.19)

where Ck
n denotes the iterate of Cn of order k.

Proof. Fix p ≥ 1. Under assumption (a), on account of (2.10), the result
obviously follows with ωp = 0.

Assume that conditions (i), (ii) and (iii) of (b) hold true; since

lim
n→∞

log(bn − an)
1− (bn − an)

= −1,

there exists

M2 := sup
n≥1

− log(bn − an)
1− (bn − an)

> 0. (2.20)

By means of (2.10), we then get

‖Ck
n‖Lp,Lp ≤ 1

(bn − an)kN/p
= e−

kN
p log(bn−an)

= e
k
n (−N

p n(1−(bn−an))
log(bn−an)
1−(bn−an) ) ≤ e

k
n ωp ,

where ωp := NM1M2/p, and this completes the proof of (2.19). �
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We also point out that, as in the one-dimensional case (see [5, formula
(4.2)]), the operators Cn are closely related to the Bernstein operators on
[0, 1]N that are defined by

Bn(f)(x) :=
∑

h=(hi)1≤i≤N
hi∈{0,...,N}

Pn,h(x)f
(
h1

n
, . . . ,

hN

n

)
(2.21)

(f ∈ C ([0, 1]N ), x = (xi)1≤i≤N ∈ [0, 1]N , n ≥ 1), Pn,h(x) being defined by
(2.7).

More precisely, for every f ∈ L1([0, 1]N ), considering the function

Fn(f)(x) :=
(

n+ 1
bn − an

)N ∫ nx1+bn
n+1

nx1+an
n+1

dt1 · · ·
∫ nxN +bn

n+1

nxN +an
n+1

f(t1, . . . , tN ) dtN

=
∫ 1

0

dt1 · · ·
∫ 1

0

f

(
(bn − an)t1 + an+nx1

n+ 1
, . . . ,

(bn − an)tN +an+ nxN

n+ 1

)
dtN

(2.22)

(x = (xi)1≤i≤N ∈ [0, 1]N ), n ≥ 1), it turns out that

Cn(f)(x) = Bn(Fn(f))(x) (2.23)

(f ∈ L1([0, 1]N ), x = (xi)1≤i≤N ∈ [0, 1]N , n ≥ 1).
Formula (2.23) allows us to easily determine some subsets of C ([0, 1]N )

that are invariant under the operators Cn, n ≥ 1.
Given any m ∈ N, we shall denote by Pm the linear subspace of the

(restrictions to [0, 1]N of the) polynomials of degree no greater than m.
Finally, given M ≥ 0 and 0 < α ≤ 1, the symbol Lip1

Mα stands for the
subset of all functions f ∈ C ([0, 1]N ) such that, for every x, y ∈ [0, 1]N ,

|f(x)− f(y)| ≤M‖x− y‖α
1 ,

where ‖ · ‖1 denotes the l1-norm on RN , i.e., ‖z‖1 :=
N∑

i=1

|zi| for every z =

(zi)1≤i≤N ∈ RN .

Proposition 2.7. The subsets Pm, m ≥ 1, and Lip1
Mα are invariant under the

operators Cn, n ≥ 1, i.e.,
Cn(Pm) ⊂ Pm (2.24)

and
Cn(Lip1

Mα) ⊂ Lip1
Mα. (2.25)

Proof. Both the subsets Pm and Lip1
Mα are invariant under the operators

Bn, n ≥ 1 (see, respectively, [1, Section 6.3.12, condition (6.2.18) and the
proof of Theorem 6.2.6, p. 441] and [1, Corollary 6.1.22 and Section 6.3.12,
p. 476]).

Therefore, on account of (2.23), it suffices to show that Fn(f) ∈ Pm

(resp., Fn(f) ∈ Lip1
Mα) provided that f ∈ Pm or f ∈ Lip1

Mα, respectively,
and this can be easily verified by virtue of (2.22). �
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3. The C0-semigroups associated with the operators Cn

In this section we shall prove that suitable iterates of the operators Cn con-
verge on C ([0, 1]N ) to a Markov semigroup and on Lp([0, 1]N ), 1 ≤ p < +∞,
to a positive contractive C0-semigroup (that is an extension of the previous
one).

From now on we assume that there exists

l := lim
n→∞

(an + bn) ∈ R. (3.1)

Clearly, 0 ≤ l ≤ 2.
Under this assumption we shall prove that the sequence (Cn)n≥1 satisfies

an asymptotic formula with respect to the elliptic second order differential
operator Vl : C 2([0, 1]N ) −→ C ([0, 1]N ) defined by setting

Vl(u)(x) :=
1
2

N∑
i=1

xi(1− xi)
∂2u

∂x2
i

(x) +
N∑

i=1

(
l

2
− xi

)
∂u

∂xi
(x), (3.2)

for every u ∈ C 2([0, 1]N ) and x = (xi)1≤i≤N ∈ [0, 1]N .

Theorem 3.1. Under assumption (3.1), for every u ∈ C 2([0, 1]N ),

lim
n→∞

n(Cn(u)− u) = Vl(u) (3.3)

uniformly on [0, 1]N and hence in Lp([0, 1]N ).

Proof. According to [4, Theorem 3.5], the claim will be proved after showing
that, for every i ∈ {1, . . . , N},

(a) lim
n→∞

[nCn(pri ◦Ψx)(x)− (l/2− xi)] = 0 uniformly on [0, 1]N ,

(b) lim
n→∞

[nCn((pri ◦Ψx)2)(x)− xi(1− xi)] = 0 uniformly on [0, 1]N ,

(c) sup
n≥1

x∈[0,1]N

nCn(d2
x)(x) < +∞

and

(d) lim
n→∞

nCn(d4
x)(x) = 0 uniformly on [0, 1]N ,

where dx is defined by (2.1).
We proceed to verify (a). According to formula (2.15) we get that, for

every i = 1, . . . , N,∣∣∣∣nCn(pri ◦Ψx)(x)−
(
l

2
− xi

)∣∣∣∣ ≤ 1
n+ 1

|xi|+
∣∣∣∣ n

n+ 1
an + bn

2
− l

2

∣∣∣∣
≤ 1
n+ 1

+
∣∣∣∣ n

n+ 1
an + bn

2
− l

2

∣∣∣∣ ;
hence the required assertion follows from (3.1).
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To prove statement (b) we preliminary notice that, by virtue of formula
(2.16), for every i = 1, . . . , N,

nCn((pri ◦Ψx)2)(x)− xi(1− xi)

=
[

n2

(n+ 1)2
− 1
]
xi(1− xi)+

n

(n+ 1)2

{
x2

i −(an+bn)xi +
a2

n+anbn+b2n
3

}
;

therefore

|nCn((pri ◦Ψx)2)(x)− xi(1− xi)|

≤
∣∣∣∣ n2

(n+ 1)2
− 1
∣∣∣∣xi(1− xi)+

n

(n+ 1)2

(
x2

i +(an+bn)xi+
a2

n + anbn + b2n
3

)
≤ 2n+ 1

4
1

(n+ 1)2
+

4n
(n+ 1)2

and this completes the proof of (b).
As regards conditions (c) and (d), from (2.17) we achieve that, for every

x ∈ [0, 1]N ,

Cn(d2
x)(x) ≤ N

n+ 1
,

and hence condition (c) follows. Finally, condition (d) is a consequence of
(2.18) and Lemma 2.2. �

We recall that a Markov semigroup on C ([0, 1]N ) is a C0-semigroup
(T (t))t≥0 of positive linear operators on C ([0, 1]N ) such that T (t)(1) = 1 for
every t ≥ 0 (for more details on the theory of C0-semigroups of operators we
refer, e.g., to [8], [9] and [12]). In particular, we refer to [8, Section 13.6] for
some remarkable aspects concerning Markov semigroups (see also [1, Section
1.6]).

We also recall that, given a Banach space (E, ‖ · ‖), a core for a linear
operator A : D(A) −→ E, defined on a linear subspace D(A) of E, is a linear
subspace D0 of E that is dense in D(A) with respect to the graph norm
‖u‖A := ‖u‖+ ‖A(u)‖ (u ∈ D(A)).

If (A,D(A)) is the generator of a C0-semigroup (T (t))t≥0 of operators
on E, then a dense (in E) linear subspace D0 of D(A) that is invariant under
(T (t))t≥0, i.e., T (t)(D0) ⊂ D0 for every t ≥ 0, is a core for (A,D(A)) (see,
e.g., [9, Chapter II, Proposition 1.7]). Moreover, if D0 is a core for (A,D(A)),
then (A,D(A)) is the closure of (A,D0) as well.

As in Section 2, given any m ∈ N, we denote by Pm the linear sub-
space of the (restrictions to [0, 1]N of the) polynomials on RN of degree no

greater than m. Thus P :=
+∞⋃
m=0

Pm is the subalgebra of all the (restrictions

to [0, 1]N of the) polynomials on RN and it is dense in C ([0, 1]N ) by the
Stone-Weierstrass theorem.

Fix 0 ≤ l ≤ 2 and consider the differential operator Vl : C 2([0, 1]N ) −→
C ([0, 1]N ) defined by (3.2). This operator falls in the class of Fleming-Viot op-
erators arising in population genetics, that are usually studied in the setting
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of the multidimensional simplex. However, in the framework of hypercubes
they have been investigated in [2], [7], [10].

Theorem 3.2. There exists a Markov semigroup (Tl(t))t≥0 on C ([0, 1]N ) sat-
isfying the following properties:
(1) If (an)n≥1 and (bn)n≥1 are two sequences of real numbers satisfying

0 ≤ an < bn ≤ 1 for every n ≥ 1 and lim
n→∞

(an + bn) = l, then for

every t ≥ 0 and for every sequence (ρn)n≥1 of positive integers such
that lim

n→∞
ρn/n = t

lim
n→∞

Cρn
n (f) = Tl(t)(f) uniformly on [0, 1]N (3.4)

for every f ∈ C ([0, 1]N ), where each Cρn
n denotes the iterate of Cn of

order ρn. In particular,

lim
n→∞

C [nt]
n (f) = Tl(t)(f) uniformly on [0, 1]N (3.5)

for every f ∈ C ([0, 1]N ), where [nt] stands for the integer part of nt.
(2) Denoted by (Al, D(Al)) the generator of the semigroup (Tl(t))t≥0, then

C 2([0, 1]N ) is a core for (Al, D(Al)), so that (Al, D(Al)) is the closure
of (Vl,C 2([0, 1]N )).

(3) The subalgebra P is a core for (Al, D(Al)) and Tl(t)(Pm) ⊂ Pm for every
t ≥ 0 and m ≥ 0.

(4) Tl(t)(Lip1
Mα) ⊂ Lip1

Mα for every t ≥ 0, M ≥ 0 and 0 < α ≤ 1.

Proof. The proof is similar in spirit to the one of Theorem 4.1 of [2]. Consider
two sequences (an)n≥1 and (bn)n≥1 of real numbers satisfying 0 ≤ an < bn ≤
1 for every n ≥ 1 and lim

n→∞
(an + bn) = l, and denote by (Cn)n≥1 the relevant

operators defined by (2.6).
Moreover, consider the linear operator B : D(B) −→ C ([0, 1]N ) defined

by
B(u) := lim

n→∞
n(Cn(u)− u) (u ∈ D(B)),

where

D(B) :=
{
u ∈ C ([0, 1]N ) | there exists lim

n→∞
n(Cn(u)− u) in C ([0, 1]N )

}
.

By Theorem 3.1, C 2([0, 1]N ) ⊂ D(B) and B = Vl on C 2([0, 1]N ). In
particular, each Pm is contained in D(B), it is finite dimensional and in-
variant under the operators Cn by virtue of Proposition 2.7. By a result of
Schnabl ([14]; see also [13] or [1, Theorem 1.6.8]) the operator (B,D(B)) is
then closable in C ([0, 1]N ) and its closure, that we denote by (Al, D(Al)), is
the generator of a positive C0-semigroup (Tl(t))t≥0 of linear contractions of
C ([0, 1]N ), satisfying (3.4) and (3.5).

Since Cn(1) = 1 for any n ≥ 1, from (3.5) it follows that Tl(t)(1) = 1
for every t ≥ 0. Moreover, each Pm is closed in C ([0, 1]N ) and it is invariant
under the Cn’s. Therefore, iterating and passing to the limit, we obtain that
Tl(t)(Pm) ⊂ Pm for every t ≥ 0.
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Accordingly, we get that Tl(t)(P) ⊂ P for any t ≥ 0 and hence P is a
core for (Al, D(Al)). In particular, C 2([0, 1]N ) is a core for (Al, D(Al)) as
well and Al = B = Vl on C 2([0, 1]N ), which implies that (Al, D(Al)) is the
closure of (Vl,C 2([0, 1]N )), too.

This last statement shows, indeed, that the generator (Al, D(Al)) is
independent on the sequence (Cn)n≥1 and hence on the sequences (an)n≥1

and (bn)n≥1. On the other hand, the generator (Al, D(Al)) determines the
generated semigroup uniquely (see [9, Chapter II, Theorem 1.4]) and so the
semigroup (Tl(t))t≥0 does not depend on the particular sequences (an)n≥1

and (bn)n≥1, as well.
Finally, statement (4) follows from formula (2.25) of Proposition 2.7 and

from the fact that Lip1
Mα is closed under the pointwise (and hence under the

uniform) convergence on [0, 1]N . �

Remarks 3.3.

1. Let us now consider the abstract Cauchy problem associated with
(Al, D(Al)), i.e.,

∂u

∂t
(x, t) = Al(u(·, t))(x) x ∈ [0, 1]N , t ≥ 0,

u(x, 0) = u0(x) u0 ∈ D(Al), x ∈ [0, 1]N .

Since (Al, D(Al)) generates a C0-semigroup, the above Cauchy prob-
lem admits a unique solution u : [0, 1]N × [0,+∞[→ R given by u(x, t) =
Tl(t)(u0)(x) for every x ∈ [0, 1]N and t ≥ 0 (see, e.g., [12, Chapter A-II]).
Hence, by Theorem 3.2, it is possible to approximate such solutions by means
of iterates of the Cn’s, i.e.,

u(x, t) = Tl(t)(u0)(x) = lim
n→∞

C [nt]
n (u0)(x),

the limit being uniform with respect to x ∈ [0, 1]N .
Moreover, since Al coincides with the elliptic second-order differential

operator Vl defined by (3.2) on Pm, m ≥ 1, if u0 ∈ Pm, then u(x, t) is the
unique solution to the Cauchy problem

∂u

∂t
(x, t) =

1
2

N∑
i=1

xi(1− xi)
∂2u(x, t)
∂x2

i

+
N∑

i=1

(
l

2
− xi

)
∂u(x, t)
∂xi

x ∈ [0, 1]N ,

t ≥ 0,

u(x, 0) = u0(x) x ∈ [0, 1]N

and u(·, t) ∈ Pm for every t ≥ 0 (see statement (3) of Theorem 3.2).
Finally, according to statement (4) of Theorem 3.2, if u0 ∈ D(Al) ∩

Lip1
Mα (M ≥ 0, 0 < α ≤ 1), then u(·, t) ∈ Lip1

Mα for every t ≥ 0.
2. Theorem 3.2 extends Theorem 3.3 of [6] from the one-dimensional
case to a multidimensional context. However, there an explicit description of
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the generator (Al, D(Al)) is given, namely

D(Al) :=

{
u ∈ C ([0, 1]) | u ∈ C 2(]0, 1[) and lim

x→0+
x→1−

Al(u)(x) ∈ R

}
(3.6)

and

Al(u)(x) :=


x(1− x)

2
u′′(x) +

(
l

2
− x

)
u′(x) if 0 < x < 1,

lim
t→x

Al(u)(t) if x = 0, 1

(3.7)

(u ∈ D(Al), 0 ≤ x ≤ 1).
An analogous description of (Al, D(Al)) in multidimensional setting

seems to be a difficult but very interesting problem.
3. Statement (2) of Theorem 3.2 has been also obtained in [7, Theorem
2.1] with a different approach.

Next, we shall show that, in some particular cases, the Markov semi-
group considered in Theorem 3.2 extends to a positive contractive C0-
semigroup on Lp([0, 1]N ), 1 ≤ p < +∞.

In fact, in these cases the limit (3.1) is l = 1, that leads to consider the
differential operator

V (u)(x) := V1(u)(x) =
1
2

N∑
i=1

xi(1− xi)
∂2u

∂x2
i

(x) +
N∑

i=1

(
1
2
− xi

)
∂u

∂xi
(x)

=
N∑

i=1

∂

∂xi

(
xi(1− xi)

2
∂u

∂xi

)
(x)

(3.8)

(u ∈ C 2([0, 1]N ) and x = (xi)1≤i≤N ∈ [0, 1]N ).
Similarly, we shall simply denote by (T (t))t≥0 and by (A,D(A)) the

semigroup (T1(t))t≥0 and its generator (A1, D(A1)).

Theorem 3.4. The Markov semigroup (T (t))t≥0 extends to a positive contrac-
tive C0-semigroup (T̃ (t))t≥0 on Lp([0, 1]N ) for each p ∈ [1,+∞[.

Moreover, C 2([0, 1]N ) is a core for the generator (Ã,D(Ã)) of (T̃ (t))t≥0,
so that (Ã,D(Ã)) is the closure of (V,C 2([0, 1]N )) in Lp([0, 1]N ).

Finally, if (an)n≥1 and (bn)n≥1 are two sequences of real numbers such
that 0 ≤ an < bn ≤ 1 and if, in addition, they satisfy one of the following
sets of conditions:
(a) an = 0 and bn = 1 for every n ≥ 1,

or
(b) (i) 0 < bn − an < 1 for every n ≥ 1;

(ii) there exist lim
n→∞

an = 0 and lim
n→∞

bn = 1;

(iii) M1 := sup
n≥1

n(1− (bn − an)) < +∞,
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then for every t ≥ 0, for every sequence (ρn)n≥1 of positive integers such that
lim

n→∞
ρn/n = t and for every f ∈ Lp([0, 1]N ),

lim
n→∞

Cρn
n (f) = T̃ (t)(f) in Lp([0, 1]N ). (3.9)

In particular, for every f ∈ Lp([0, 1]N ),

lim
n→∞

C [nt]
n (f) = T̃ (t)(f) in Lp([0, 1]N ). (3.10)

Here, again, the operators Cn, n ≥ 1, are defined by (2.6).

Proof. Fix t ≥ 0 and consider an arbitrary sequence (ρn)n≥1 of positive
integers such that ρn/n → t. Furthermore, consider the sequence (Cn)n≥1

associated with an = 0 and bn = 1, n ≥ 1. From (2.10) it follows that
‖Cn‖Lp,Lp ≤ 1 and hence, on account of (3.4)

‖T (t)f‖p = lim
n→∞

‖Cρn
n (f)‖p ≤ ‖f‖p

for every f ∈ C ([0, 1]N ).
Therefore, there exists a unique linear continuous extension T̃ (t) :

Lp([0, 1]N ) −→ Lp([0, 1]N ) of T (t). Moreover, ‖T̃ (t)‖Lp,Lp ≤ 1 for every
t ≥ 0.

It is not difficult to show that T̃ (t) is positive because if f ∈ Lp([0, 1]N ),
f ≥ 0, then there exists a sequence (fn)n≥1 in C ([0, 1]N ) such that lim

n→∞
fn =

f in Lp([0, 1]N ). We may assume that fn ≥ 0 for every n ≥ 1 (if not, we
replace fn with its positive part f+

n ). Therefore,

T̃ (t)(f) = lim
n→∞

T̃ (t)(fn) = lim
n→∞

T (t)(fn) ≥ 0.

The family (T̃ (t))t≥0 is obviously a semigroup and, in addition, it is
strongly continuous; this easily follows, for instance, from ([9, Chapter I,
Proposition 5.3]) thanks to the fact that, for every t ∈ [0, 1] and for every
f ∈ C ([0, 1]N ),

lim
t→0+

T̃ (t)(f) = lim
t→0+

T (t)(f) = f

in C ([0, 1]N ) and hence in Lp([0, 1]N ), because (T (t))t≥0 is a C0-semigroup
on C ([0, 1]N ).

Let (Ã,D(Ã)) be the generator of (T̃ (t))t≥0. Then, from the definition
of domain of generators, it follows that D(A) ⊂ D(Ã) and Ã = A on D(A).
Moreover, D(A) is a core for (Ã,D(Ã)), since T̃ (t)(D(A)) = T (t)(D(A)) ⊂
D(A) for every t ≥ 0.

In order to show that C 2([0, 1]N ) is a core for (Ã,D(Ã)), fix u ∈ D(Ã)
and ε > 0; then there exists v ∈ D(A) such that

‖u− v‖p ≤
ε

2
and ‖Ã(u)−A(v)‖p ≤

ε

2
. (3.11)
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On the other hand, by Theorem 3.2, C 2([0, 1]N ) is a core for (A,D(A))
and hence there exists w ∈ C 2([0, 1]N ) such that

‖v − w‖∞ ≤ ε

2
and ‖A(v)−A(w)‖∞ ≤ ε

2
. (3.12)

From (3.11) and (3.12) it follows that

‖u− w‖p ≤ ‖u− v‖p + ‖v − w‖p ≤ ‖u− v‖p + ‖v − w‖∞ ≤ ε

and, analogously,
‖Ã(u)−A(w)‖p ≤ ε.

In order to prove (3.9), fix t ≥ 0 and consider a sequence (ρn)n≥1 of
positive integers such that lim

n→∞
ρn/n = t; formula (3.4) implies that, for

every f ∈ C ([0, 1]N ),
lim

n→∞
Cρn

n (f) = T̃ (t)(f)

in Lp([0, 1]N ). Since ‖Cρn
n ‖Lp,Lp ≤ 1 for every n ≥ 1, then (3.9) and (3.10)

follow.
Finally, consider two sequences (an)n≥1 and (bn)n≥1 satisfying assump-

tion (b) and denote by (Cn)n≥1 the relevant operators. Given t ≥ 0 and a
sequence (ρn)n≥1 of positive integers such that ρn/n→ t, from (3.4) it follows
that

T̃ (t)(f) = lim
n→∞

Cρn
n (f) in Lp([0, 1]N )

for every f ∈ C ([0, 1]N ). Moreover, (2.19) implies that

‖Cρn
n ‖Lp,Lp ≤ exp

(
ωp
ρn

n

)
≤ exp(ρ ωp),

where ρ := sup
n≥1

ρn/n and ωp = NM1M2/p, M2 being defined by formula

(2.20) in the proof of Proposition 2.6. Consequently, (Cρn
n )n≥1 is equibounded

in Lp([0, 1]N ) and hence the above limit relationship extends from C ([0, 1]N )
to Lp([0, 1]N ). �

Remarks 3.5.
1. Examples of sequences satisfying assumptions (b) in Theorem 3.4
can be easily furnished. For instance, fix α ≥ 1 and, for every n ≥ 1, set

an :=
1
2

(
1 +

1
2nα

− nα

nα + 1

)
and bn :=

1
2

(
1 +

1
2nα

+
nα

nα + 1

)
.

2. Theorem 3.4 seems to be new even in the one-dimensional case where,
according to Remark 3.3, 2, the generator (A,D(A)) is described by (3.6)
and (3.7). However, for N = 1 and for an = 0 and bn = 1, n ≥ 1, a similar
result has been already proved in [11, Theorem 1] with a completely different
method. Moreover, in the same paper a representation of the semigroup in
terms of the Legendre polynomials is also given.
3. The differential operator (Vl,C 2([0, 1]N )) falls within a more general
class of second order differential operators that have been investigated in
[2] (see, in particular, Section 4, formula (4.1) and Examples 2.2, 2). From
Theorem 4.1 of that paper it already follows that (Vl,C 2([0, 1]N )) is closable
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and its closure is the generator of a Markov semigroup on C ([0, 1]N ) that
can be approximated, as in (3.4), by iterates of modified Bernstein-Schnabl
operators. However, in general, these approximating operators are not defined
on Lp([0, 1]N ), so that formulae (3.9) and (3.10) cannot be available for them.
4. The generation property of the operator (V,C 2([0, 1]N )) in the space
Lp([0, 1]N ) has been also investigated in [10, Theorem 2.5]. Moreover, in this
paper it is shown that the semigroup (T̃ (t))t≥0 is analytic and a description
of the domain D(Ã) in terms of weighted Sobolev spaces is given.
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Università degli Studi di Bari ”A. Moro”
Campus Universitario, Via E. Orabona, 4
70125 Bari-Italia
e-mail: altomare@dm.uniba.it

Mirella Cappelletti Montano
Dipartimento di Matematica
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