Iterates of multidimensional Kantorovichtype operators and their associated positive C_{0}-semigroups

Francesco Altomare, Mirella Cappelletti Montano and Vita Leonessa

Abstract

In this paper we deepen the study of a sequence of positive linear operators acting on $L^{1}\left([0,1]^{N}\right), N \geq 1$, that have been introduced in [3] and that generalize the multidimensional Kantorovich operators (see [15]). We show that particular iterates of these operators converge on $\mathscr{C}\left([0,1]^{N}\right)$ to a Markov semigroup and on $L^{p}\left([0,1]^{N}\right), 1 \leq p<+\infty$, to a positive contractive C_{0}-semigroup (that is an extension of the previous one). The generators of these C_{0}-semigroups are the closures of some partial differential operators that belong to the class of Fleming-Viot operators arising in population genetics.

Mathematics Subject Classification (2010): 41A36, 47D06, 47F05.
Keywords: Multidimensional Kantorovich operator, positive approximation process, iterate of operators, positive C_{0}-semigroup, approximation of semigroups, Fleming-Viot operator.

1. Introduction

In the paper [3] we introduced and studied a sequence $\left(C_{n}\right)_{n \geq 1}$ of positive linear operators on $L^{1}\left([0,1]^{N}\right), N \geq 1$, that are a generalization of the multidimensional Kantorovich operators, first introduced in [15], and that also extend to a multidimensional setting another sequence of positive linear operators on $L^{1}([0,1])$ studied in [5] and [6].

The operators $C_{n}, n \geq 1$, offer the advantage to reconstruct any Lebesgue-integrable function on $[0,1]^{N}$ by means of its mean values on a finite numbers of sub-cells of $[0,1]^{N}$ that do not constitute a subdivision of $[0,1]^{N}$.

Both in [6] and in [11] particular iterates of the (generalized) Kantorovich operators have been also investigated in connection with the existence of related C_{0}-semigroups of operators on $\mathscr{C}([0,1])$ and on $L^{1}([0,1])$.

Then, it seemed quite natural to tackle similar problems in a multidimensional setting and for the operators $C_{n}, n \geq 1$.

By using different methods from those employed in [6] and [11], in fact we first show that there exists a Markov semigroup $(T(t))_{t \geq 0}$ on $\mathscr{C}\left([0,1]^{N}\right)$ such that

$$
\begin{equation*}
T(t)(f)=\lim _{n \rightarrow \infty} C_{n}^{\rho_{n}}(f) \quad \text { in } \mathscr{C}\left([0,1]^{N}\right) \tag{1.1}
\end{equation*}
$$

for any $f \in \mathscr{C}\left([0,1]^{N}\right), t \geq 0$ and for any sequence $\left(\rho_{n}\right)_{n \geq 1}$ of positive integers such that $\rho_{n} / n \rightarrow t$ as $n \rightarrow \infty$.

The generator $(A, D(A))$ of the Markov semigroup is determined on a core of $D(A)$, namely on $\mathscr{C}^{2}\left([0,1]^{N}\right)$, where it coincides with the second-order elliptic differential operator

$$
V_{l}(u)(x):=\frac{1}{2} \sum_{i=1}^{N} x_{i}\left(1-x_{i}\right) \frac{\partial^{2} u}{\partial x_{i}^{2}}(x)+\sum_{i=1}^{N}\left(\frac{l}{2}-x_{i}\right) \frac{\partial u}{\partial x_{i}}(x)
$$

$\left(u \in \mathscr{C}^{2}\left([0,1]^{N}\right), x=\left(x_{i}\right)_{1 \leq i \leq N} \in[0,1]^{N}\right)$, where $l \in[0,2]$.
Accordingly, formula (1.1) provides a constructive approximation of the solutions to the abstract Cauchy problem

$$
\begin{cases}\frac{\partial u}{\partial t}(x, t)=A(u(\cdot, t))(x) & x \in[0,1]^{N}, \quad t \geq 0 \\ u(x, 0)=u_{0}(x) & u_{0} \in D(A), \quad x \in[0,1]^{N}\end{cases}
$$

that, as it is well-known, are given by $u(x, t)=T(t)\left(u_{0}\right)(x)\left(x \in[0,1]^{N}, t \geq\right.$ $0)$.

The differential operator V_{l} falls in a class of Fleming-Viot operators arising in population genetics (see [2], [7], [10] for some additional references).

In addition, we also show that the subspace of all polynomials with a given degree and the subspace of all Hölder continuous functions on $[0,1]^{N}$ are invariant under $(T(t))_{t \geq 0}$. In some particular cases we finally show that the semigroup $(T(t))_{t \geq 0}$ can be extended to a positive contractive C_{0}-semigroup on $L^{p}\left([0,1]^{N}\right)$ for every $1 \leq p<+\infty$ and this semigroup can be equally approximated in the L^{p}-norm by iterates of the operators C_{n}, as in formula (1.1).

2. Preliminary results

Throughout this paper $[0,1]^{N}$ denotes the canonical hypercube in $\mathbf{R}^{N}, N \geq 1$, i.e.,

$$
[0,1]^{N}:=\left\{\left(x_{i}\right)_{1 \leq i \leq N} \in \mathbf{R}^{N} \mid 0 \leq x_{i} \leq 1 \text { for every } i=1, \ldots, N\right\}
$$

As usual we denote by $\mathscr{C}\left([0,1]^{N}\right)$ the space of all real valued continuous functions on $[0,1]^{N}$ and by $\mathscr{C}^{2}\left([0,1]^{N}\right)$ the space of all real valued continuous functions on $[0,1]^{N}$ which are twice continuously differentiable in the interior
of $[0,1]^{N}$ and whose partial derivatives up to the order two can be continuously extended on $[0,1]^{N}$. The space $\mathscr{C}\left([0,1]^{N}\right)$, endowed with the natural (pointwise) ordering and the sup-norm $\|\cdot\|_{\infty}$, is a Banach lattice.

We also denote by $\mathbf{1}$ the constant function of constant value 1 on $[0,1]^{N}$. For a given $i \in\{1, \ldots, N\}$, the symbol $p r_{i}$ stands for the $i^{t h}$ coordinate function on $[0,1]^{N}$, i.e., $p r_{i}(x):=x_{i}\left(x=\left(x_{i}\right)_{1 \leq i \leq N} \in[0,1]^{N}\right)$. Moreover, fixed $x \in[0,1]^{N}$, we denote by Ψ_{x} the function defined as $\Psi_{x}(y)=y-x$ for every $y \in[0,1]^{N}$ (whenever $N=1$ we use the symbol ψ_{x}) and by d_{x} the function defined by

$$
\begin{equation*}
d_{x}(y):=\|y-x\|_{2} \quad\left(y \in[0,1]^{N}\right) \tag{2.1}
\end{equation*}
$$

where $\|\cdot\|_{2}$ stands for the Euclidean norm on \mathbf{R}^{N}, i.e., $\|x\|_{2}:=\left(\sum_{i=1}^{N} x_{i}^{2}\right)^{1 / 2}$ $\left(x=\left(x_{i}\right)_{1 \leq i \leq N} \in \mathbf{R}^{N}\right)$.

We note that, given $x=\left(x_{i}\right)_{1 \leq i \leq N} \in[0,1]^{N}$ and $i \in\{1, \ldots, N\}$,

$$
\begin{equation*}
p r_{i} \circ \Psi_{x}=p r_{i}-x_{i} \mathbf{1} \tag{2.2}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left(p r_{i} \circ \Psi_{x}\right)^{2}=p r_{i}^{2}-2 x_{i} p r_{i}+x_{i}^{2} \mathbf{1} \tag{2.3}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
d_{x}^{2}=\sum_{i=1}^{N}\left(p r_{i} \circ \Psi_{x}\right)^{2} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{x}^{4}=\sum_{i=1}^{N}\left(p r_{i} \circ \Psi_{x}\right)^{4}+2 \sum_{1 \leq i<j \leq N}\left(p r_{i} \circ \Psi_{x}\right)^{2}\left(p r_{j} \circ \Psi_{x}\right)^{2} . \tag{2.5}
\end{equation*}
$$

Given $1 \leq p<+\infty$, the symbol $L^{p}\left([0,1]^{N}\right)$ stands for the spaces of all (equivalence classes of) Borel measurable functions f defined on $[0,1]^{N}$ such that

$$
\|f\|_{p}:=\left(\int_{[0,1]^{N}}|f|^{p} d x\right)^{1 / p}<+\infty
$$

In [3] we introduced and studied a new sequence of positive linear operators acting on $L^{1}\left([0,1]^{N}\right)$, that will be also the object of interest of this paper.

More precisely, let $\left(a_{n}\right)_{n \geq 1}$ and $\left(b_{n}\right)_{n \geq 1}$ be two sequences of real numbers such that $0 \leq a_{n}<b_{n} \leq 1$ for every $n \geq 1$.

If $n \geq 1$ and $h=\left(h_{i}\right)_{1 \leq i \leq N} \in\{0, \ldots, n\}^{N}$, set

$$
Q_{n, h}^{a_{n}, b_{n}}:=\prod_{i=1}^{N}\left[\frac{h_{i}+a_{n}}{n+1}, \frac{h_{i}+b_{n}}{n+1}\right]
$$

and consider the positive linear operator $C_{n}: L^{1}\left([0,1]^{N}\right) \longrightarrow \mathscr{C}\left([0,1]^{N}\right)$ defined by setting, for any $f \in L^{1}\left([0,1]^{N}\right)$ and $x=\left(x_{i}\right)_{1 \leq i \leq N} \in[0,1]^{N}$,

$$
\begin{align*}
& C_{n}(f)(x)=\sum_{h \in\{0, \ldots, n\}^{N}} P_{n, h}(x)\left(\frac{n+1}{b_{n}-a_{n}}\right)^{N} \int_{Q_{n, h}^{a_{n}, b_{n}}} f(t) d t \\
& =\sum_{\substack{h=\left(h_{i}\right)_{1 \leq i \leq N} \\
h_{i} \in\{0, \ldots, n\}}} P_{n, h}(x)\left(\frac{n+1}{b_{n}-a_{n}}\right)^{N} \int_{\frac{h_{1}+a_{n}}{n+1}}^{\frac{h_{1}+b_{n}}{n+1}} \cdots \int_{\frac{h_{N}+a_{n}}{n+1}}^{\frac{h_{N}+b_{n}}{n+1}} f\left(t_{1}, \ldots, t_{N}\right) d t_{1} \cdots d t_{N} \tag{2.6}
\end{align*}
$$

where

$$
\begin{equation*}
P_{n, h}(x):=\prod_{i=1}^{N} p_{n, h_{i}}\left(x_{i}\right)=\prod_{i=1}^{N}\binom{n}{h_{i}} x_{i}^{h_{i}}\left(1-x_{i}\right)^{n-h_{i}} \tag{2.7}
\end{equation*}
$$

for every $x=\left(x_{i}\right)_{1 \leq i \leq N} \in[0,1]^{N}$ and $h=\left(h_{i}\right)_{1 \leq i \leq N} \in\{0, \ldots, n\}^{N}$.
Note that C_{n} is positive and continuous and that, as an operator from $\mathscr{C}\left([0,1]^{N}\right)$ into itself, its norm is $\left\|C_{n}\right\|=1$, since $C_{n}(\mathbf{1})=\mathbf{1}$ for any $n \geq 1$.

We point out that the sequence $\left(C_{n}\right)_{n \geq 1}$ represents a generalization of Kantorovich operators on $[0,1]^{N}$, that were introduced and studied by Zhou in [15] and that can be obtained from (2.6) by setting, for any $n \geq 1, a_{n}=0$ and $b_{n}=1$.

On the other hand, the C_{n} 's generalize to the multidimensional case a class of operators first studied in [5, Examples 1.2, 1] and defined by

$$
\begin{equation*}
K_{n}(f)(x)=\sum_{h=0}^{n} p_{n, h}(x) \frac{n+1}{b_{n}-a_{n}} \int_{\frac{h+a_{n}}{n+1}}^{\frac{h+b_{n}}{n+1}} f(t) d t \tag{2.8}
\end{equation*}
$$

for every $n \geq 1, f \in L^{1}([0,1])$ and $x \in[0,1]$, where, as above, $p_{n, h}(x):=$ $\binom{n}{h} x^{h}(1-x)^{n-h}$.

A possible interest in the study of the sequence $\left(C_{n}\right)_{n \geq 1}$ lies in the fact that it allows to reconstruct a Lebesgue-integrable function by means of its mean values on the sets $Q_{n, h}^{a_{n}, b_{n}}$ which are smaller than the corresponding ones considered in [15]. In fact, the following result holds (see [3, Theorems 2.2 and 2.5]).

Proposition 2.1. For every $f \in \mathscr{C}\left([0,1]^{N}\right)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} C_{n}(f)=f \quad \text { uniformly on }[0,1]^{N} \tag{2.9}
\end{equation*}
$$

Moreover, for every $n \geq 1$ and $p \in\left[1,+\infty\left[\right.\right.$, the operator C_{n} is continuous from $L^{p}\left([0,1]^{N}\right)$ into itself and

$$
\begin{equation*}
\left\|C_{n}\right\|_{L^{p}, L^{p}} \leq \frac{1}{\left(b_{n}-a_{n}\right)^{N / p}} \tag{2.10}
\end{equation*}
$$

Finally, if $\sup _{n \geq 1} 1 /\left(b_{n}-a_{n}\right)<+\infty$, then, for every $f \in L^{p}\left([0,1]^{N}\right)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} C_{n}(f)=f \quad \text { in } \quad L^{p}\left([0,1]^{N}\right) \tag{2.11}
\end{equation*}
$$

In [3, Propositions 2.4, 2.6 and 2.7] estimates of the rate of convergence in the previous approximation formulae are also given.

The main aim of this paper is to show that suitable iterates of the operators C_{n} converge to a positive C_{0}-semigroup of operators both in $\mathscr{C}\left([0,1]^{N}\right)$ and in $L^{p}\left([0,1]^{N}\right), p \geq 1$.

To this end, first of all we recall some properties of the operators K_{n} defined in (2.8), that will be useful in the sequel (for a proof see [6, Section 2]).

Lemma 2.2. For every $n \geq 1$, let K_{n} be the positive linear operator defined by (2.8) and, for every $0 \leq x \leq 1$, consider the functions $\psi_{x}(y)=y-x$ ($y \in[0,1]$). Then
(i) $\lim _{n \rightarrow \infty} K_{n}\left(\psi_{x}^{2}\right)(x)=0$ uniformly on $[0,1]$;
(ii) $\lim _{n \rightarrow \infty} n K_{n}\left(\psi_{x}^{2}\right)(x)=x(1-x)$ uniformly on $[0,1]$;
(iii) $\lim _{n \rightarrow \infty} n K_{n}\left(\psi_{x}^{4}\right)(x)=0$ uniformly on $[0,1]$.

As regards the operators C_{n}, we have the following result (see [3, Lemma 2.1]).

Lemma 2.3. Given $n \geq 1$ and $i \in\{1, \ldots, N\}$, then

$$
\begin{gather*}
C_{n}(\mathbf{1})=\mathbf{1} \tag{2.12}\\
C_{n}\left(p r_{i}\right)=\frac{n}{n+1} p r_{i}+\frac{a_{n}+b_{n}}{2(n+1)} \mathbf{1} \tag{2.13}
\end{gather*}
$$

and

$$
\begin{align*}
C_{n}\left(p r_{i}^{2}\right)=\frac{1}{(n+1)^{2}}\left\{n^{2} p r_{i}^{2}+n p r_{i}(\right. & \left.1-p r_{i}\right)+n\left(a_{n}+b_{n}\right) p r_{i} \\
& \left.+\frac{1}{3}\left(a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}\right) 1\right\} \tag{2.14}
\end{align*}
$$

Further, the following equalities will be useful (see [3, Lemma 2.1]).
Proposition 2.4. For every $x=\left(x_{i}\right)_{1 \leq i \leq N} \in[0,1]^{N}$ and $n \geq 1$,

$$
\begin{array}{r}
C_{n}\left(p r_{i} \circ \Psi_{x}\right)(x)=-\frac{1}{n+1} x_{i}+\frac{a_{n}+b_{n}}{2(n+1)}, \\
C_{n}\left(\left(p r_{i} \circ \Psi_{x}\right)^{2}\right)(x)=\frac{1}{(n+1)^{2}}\left\{x_{i}^{2}+n x_{i}\left(1-x_{i}\right)-\left(a_{n}+b_{n}\right) x_{i}\right. \\
\\
\left.+\frac{a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}}{3}\right\}, \tag{2.17}\\
C_{n}\left(d_{x}^{2}\right)(x)=\frac{1}{(n+1)^{2}}\left\{(1-n)\|x\|_{2}^{2}+\left(n-a_{n}-b_{n}\right) \sum_{i=1}^{N} x_{i}\right. \\
+
\end{array} \begin{array}{r}
\left.\frac{a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}}{3}\right\}
\end{array}
$$

and

$$
\begin{equation*}
C_{n}\left(d_{x}^{4}\right)(x)=\sum_{i=1}^{N} K_{n}\left(\psi_{x_{i}}^{4}\right)\left(x_{i}\right)+2 \sum_{1 \leq i<j \leq N} K_{n}\left(\psi_{x_{i}}^{2}\right)\left(x_{i}\right) K_{n}\left(\psi_{x_{j}}^{2}\right)\left(x_{j}\right), \tag{2.18}
\end{equation*}
$$

where, for any $n \geq 1$, the operator K_{n} is defined by (2.8) and, for a given $i \in\{1, \ldots, N\}, \psi_{x_{i}}\left(t_{i}\right)=t_{i}-x_{i}\left(t=\left(t_{i}\right)_{1 \leq i \leq N} \in[0,1]^{N}\right)$.

Proof. Formulae (2.15)-(2.17) are a direct consequence of Lemma 2.3 and formulas (2.2)-(2.4). Taking both definition (2.6) of C_{n} 's and formulae (2.2) and (2.5) into account, we obtain

$$
\begin{aligned}
& C_{n}\left(d_{x}^{4}\right)(x)=\sum_{h \in\{0, \ldots, n\}^{N}} P_{n, h}(x)\left(\frac{n+1}{b_{n}-a_{n}}\right)^{N} \int_{Q_{n, h}^{a_{n}, b_{n}}} d_{x}^{4}(t) d t \\
& =\sum_{h \in\{0, \ldots, n\}^{N}} P_{n, h}(x)\left(\frac{n+1}{b_{n}-a_{n}}\right)^{N} \int_{Q_{n, h}^{a_{n}, b_{n}}} \sum_{i=1}^{N}\left(t_{i}-x_{i}\right)^{4}(t) d t \\
& +\sum_{\substack{h \in\{0, \ldots, n\}^{N}}} P_{n, h}(x)\left(\frac{n+1}{b_{n}-a_{n}}\right)^{N} \int_{Q_{n, h}^{a_{n}, b_{n}}} 2 \sum_{1 \leq i<j \leq N}\left(t_{i}-x_{i}\right)^{2}\left(t_{j}-x_{j}\right)^{2} d t \\
& =\sum_{\substack{h=\left(h_{i}\right)_{1 \leq i \leq N} \\
h_{i} \in\{0, \ldots, n\}}} P_{n, h}(x)\left(\frac{n+1}{b_{n}-a_{n}}\right)^{N} \int_{\frac{h_{1}+a_{n}}{n+1}}^{\frac{h_{1}+b_{n}}{n+1}} \cdots \int_{\frac{h_{N}+a_{n}}{n+1}}^{\frac{h_{N}+b_{n}}{n+1}} \sum_{i=1}^{N} \psi_{x_{i}}^{4}\left(t_{i}\right) d t_{1} \cdots d t_{N} \\
& +2 \sum_{\substack{h=\left(h_{i}\right)_{1 \leq i \leq N} \\
h_{i} \in\{0, \ldots, n\}}} P_{n, h}(x)\left(\frac{n+1}{b_{n}-a_{n}}\right)^{N} \int_{\frac{h_{1}+a_{n}}{n+1}}^{\frac{h_{1}+b_{n}}{n+1}} \cdots \int_{\frac{h_{N}+a_{n}}{n+1}}^{\frac{h_{N}+b_{n}}{n+1}} \sum_{1 \leq i<j \leq N} \psi_{x_{i}}^{2}\left(t_{i}\right) \psi_{x_{j}}^{2}\left(t_{j}\right) d t_{1} \cdots d t_{N} \\
& =\sum_{\substack{h=\left(h_{i}\right)_{1 \leq i \leq N} \\
h_{i} \in\{0, \ldots, n\}}} P_{n, h}(x)\left(\frac{n+1}{b_{n}-a_{n}}\right)^{\sum_{i=1}^{N} \int_{\frac{h_{i}+a_{n}}{n+1}}^{\frac{h_{i}+b_{n}}{n+1}} \psi_{x_{i}}^{4}\left(t_{i}\right) d t_{i}} \\
& +2 \sum_{\substack{h=\left(h_{i}\right)_{1 \leq i \leq N} \\
h_{i} \in\{0, \ldots, n\}}} P_{n, h}(x)\left(\frac{n+1}{b_{n}-a_{n}}\right)^{2} \sum_{1 \leq i<j \leq N} \int_{\frac{h_{i}+a_{n}}{n+1}}^{\frac{h_{i}+b_{n}}{n+1}} \int_{\frac{h_{j}+a_{n}}{n+1}}^{\frac{h_{j}+b_{n}}{n+1}} \psi_{x_{i}}^{2}\left(t_{i}\right) \psi_{x_{j}}^{2}\left(t_{j}\right) d t_{i} d t_{j} .
\end{aligned}
$$

Now keeping (2.7) in mind and using the identities

$$
\sum_{h_{k}=0}^{n} p_{n, h_{k}}\left(x_{k}\right)=1 \quad \text { for every } k \in\{1, \ldots, N\}
$$

we have

$$
\begin{aligned}
& C_{n}\left(d_{x}^{4}\right)(x)=\sum_{i=1}^{N} \sum_{h_{i}=0}^{n} p_{n, h_{i}}\left(x_{i}\right)\left(\frac{n+1}{b_{n}-a_{n}}\right) \int_{\frac{h_{i}+a_{n}}{n+1}}^{\frac{h_{i}+b_{n}}{n+1}} \psi_{x_{i}}^{4}\left(t_{i}\right) d t_{i} \\
& +2 \sum_{1 \leq i<j \leq N} \sum_{h_{i}=0}^{n} p_{n, h_{i}}\left(x_{i}\right)\left(\frac{n+1}{b_{n}-a_{n}}\right) \int_{\frac{h_{i}+a_{n}}{n+1}}^{\frac{h_{i}+b_{n}}{n+1}} \psi_{x_{i}}^{2}\left(t_{i}\right) d t_{i} \\
& \times \sum_{h_{j}=0}^{n} p_{n, h_{j}}\left(x_{j}\right)\left(\frac{n+1}{b_{n}-a_{n}}\right) \int_{\frac{h_{j}+a_{n}}{n+1}}^{\frac{h_{j}+b_{n}}{n+1}} \psi_{x_{j}}^{2}\left(t_{j}\right) d t_{j},
\end{aligned}
$$

and hence formula (2.18) follows.
Remark 2.5. A more explicit expression of (2.18) can be obtained using some computations contained in the proof of [6, Theorem 2.2].

Another useful result is shown below.
Proposition 2.6. Under each of the following sets of conditions:
(a) $a_{n}=0$ and $b_{n}=1$ for every $n \geq 1$,
or
(b) (i) $0<b_{n}-a_{n}<1$ for every $n \geq 1$;
(ii) there exist $\lim _{n \rightarrow \infty} a_{n}=0$ and $\lim _{n \rightarrow \infty} b_{n}=1$;
(iii) $M_{1}:=\sup _{n \geq 1} n\left(1-\left(b_{n}-a_{n}\right)\right)<+\infty$,
for every $p \geq 1$ there exists $\omega_{p} \geq 0$ such that, for every $k \geq 1$ and $n \geq 1$,

$$
\begin{equation*}
\left\|C_{n}^{k}\right\|_{L^{p}, L^{p}} \leq e^{\frac{k}{n} \omega_{p}} \tag{2.19}
\end{equation*}
$$

where C_{n}^{k} denotes the iterate of C_{n} of order k.
Proof. Fix $p \geq 1$. Under assumption (a), on account of (2.10), the result obviously follows with $\omega_{p}=0$.

Assume that conditions (i), (ii) and (iii) of (b) hold true; since

$$
\lim _{n \rightarrow \infty} \frac{\log \left(b_{n}-a_{n}\right)}{1-\left(b_{n}-a_{n}\right)}=-1
$$

there exists

$$
\begin{equation*}
M_{2}:=\sup _{n \geq 1} \frac{-\log \left(b_{n}-a_{n}\right)}{1-\left(b_{n}-a_{n}\right)}>0 \tag{2.20}
\end{equation*}
$$

By means of (2.10), we then get

$$
\begin{aligned}
& \left\|C_{n}^{k}\right\|_{L^{p}, L^{p}} \leq \frac{1}{\left(b_{n}-a_{n}\right)^{k N / p}}=e^{-\frac{k N}{p} \log \left(b_{n}-a_{n}\right)} \\
& =e^{\frac{k}{n}\left(-\frac{N}{p} n\left(1-\left(b_{n}-a_{n}\right)\right) \frac{\log \left(b_{n}-a_{n}\right)}{1-\left(b_{n}-a_{n}\right)}\right)} \leq e^{\frac{k}{n} \omega_{p}}
\end{aligned}
$$

where $\omega_{p}:=N M_{1} M_{2} / p$, and this completes the proof of (2.19).

We also point out that, as in the one-dimensional case (see [5, formula $(4.2)])$, the operators C_{n} are closely related to the Bernstein operators on $[0,1]^{N}$ that are defined by

$$
\begin{equation*}
B_{n}(f)(x):=\sum_{\substack{h=\left(h_{i}\right)_{1 \leq i \leq N} \\ h_{i} \in\{0, \ldots, N\}}} P_{n, h}(x) f\left(\frac{h_{1}}{n}, \ldots, \frac{h_{N}}{n}\right) \tag{2.21}
\end{equation*}
$$

$\left(f \in \mathscr{C}\left([0,1]^{N}\right), x=\left(x_{i}\right)_{1 \leq i \leq N} \in[0,1]^{N}, n \geq 1\right), P_{n, h}(x)$ being defined by (2.7).

More precisely, for every $f \in L^{1}\left([0,1]^{N}\right)$, considering the function

$$
\begin{align*}
& F_{n}(f)(x):=\left(\frac{n+1}{b_{n}-a_{n}}\right)^{N} \int_{\frac{n x_{1}+a_{n}}{n+1}}^{\frac{n x_{1}+b_{n}}{n+1}} d t_{1} \cdots \int_{\frac{n x_{N}+a_{n}}{n+1}}^{\frac{n x_{N}+b_{n}}{n+1}} f\left(t_{1}, \ldots, t_{N}\right) d t_{N} \\
& =\int_{0}^{1} d t_{1} \cdots \int_{0}^{1} f\left(\frac{\left(b_{n}-a_{n}\right) t_{1}+a_{n}+n x_{1}}{n+1}, \ldots, \frac{\left(b_{n}-a_{n}\right) t_{N}+a_{n}+n x_{N}}{n+1}\right) d t_{N} \tag{2.22}
\end{align*}
$$

$\left.\left(x=\left(x_{i}\right)_{1 \leq i \leq N} \in[0,1]^{N}\right), n \geq 1\right)$, it turns out that

$$
\begin{equation*}
C_{n}(f)(x)=B_{n}\left(F_{n}(f)\right)(x) \tag{2.23}
\end{equation*}
$$

$\left(f \in L^{1}\left([0,1]^{N}\right), x=\left(x_{i}\right)_{1 \leq i \leq N} \in[0,1]^{N}, n \geq 1\right)$.
Formula (2.23) allows us to easily determine some subsets of $\mathscr{C}\left([0,1]^{N}\right)$ that are invariant under the operators $C_{n}, n \geq 1$.

Given any $m \in \mathbf{N}$, we shall denote by \mathbb{P}_{m} the linear subspace of the (restrictions to $[0,1]^{N}$ of the) polynomials of degree no greater than m.

Finally, given $M \geq 0$ and $0<\alpha \leq 1$, the symbol Lip $_{M}^{1} \alpha$ stands for the subset of all functions $f \in \mathscr{C}\left([0,1]^{N}\right)$ such that, for every $x, y \in[0,1]^{N}$,

$$
|f(x)-f(y)| \leq M\|x-y\|_{1}^{\alpha}
$$

where $\|\cdot\|_{1}$ denotes the l_{1}-norm on \mathbf{R}^{N}, i.e., $\|z\|_{1}:=\sum_{i=1}^{N}\left|z_{i}\right|$ for every $z=$ $\left(z_{i}\right)_{1 \leq i \leq N} \in \mathbf{R}^{N}$.

Proposition 2.7. The subsets $\mathbb{P}_{m}, m \geq 1$, and $\operatorname{Lip}_{M}^{1} \alpha$ are invariant under the operators $C_{n}, n \geq 1$, i.e.,

$$
\begin{equation*}
C_{n}\left(\mathbb{P}_{m}\right) \subset \mathbb{P}_{m} \tag{2.24}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{n}\left(\operatorname{Lip}_{M}^{1} \alpha\right) \subset \operatorname{Lip}_{M}^{1} \alpha \tag{2.25}
\end{equation*}
$$

Proof. Both the subsets \mathbb{P}_{m} and Lip ${ }_{M}^{1} \alpha$ are invariant under the operators $B_{n}, n \geq 1$ (see, respectively, [1, Section 6.3.12, condition (6.2.18) and the proof of Theorem 6.2.6, p. 441] and [1, Corollary 6.1.22 and Section 6.3.12, p. 476]).

Therefore, on account of (2.23), it suffices to show that $F_{n}(f) \in \mathbb{P}_{m}$ (resp., $F_{n}(f) \in \operatorname{Lip}{ }_{M}^{1} \alpha$) provided that $f \in \mathbb{P}_{m}$ or $f \in \operatorname{Lip}_{M}^{1} \alpha$, respectively, and this can be easily verified by virtue of (2.22).

3. The C_{0}-semigroups associated with the operators C_{n}

In this section we shall prove that suitable iterates of the operators C_{n} converge on $\mathscr{C}\left([0,1]^{N}\right)$ to a Markov semigroup and on $L^{p}\left([0,1]^{N}\right), 1 \leq p<+\infty$, to a positive contractive C_{0}-semigroup (that is an extension of the previous one).

From now on we assume that there exists

$$
\begin{equation*}
l:=\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \in \mathbf{R} \tag{3.1}
\end{equation*}
$$

Clearly, $0 \leq l \leq 2$.
Under this assumption we shall prove that the sequence $\left(C_{n}\right)_{n \geq 1}$ satisfies an asymptotic formula with respect to the elliptic second order differential operator $V_{l}: \mathscr{C}^{2}\left([0,1]^{N}\right) \longrightarrow \mathscr{C}\left([0,1]^{N}\right)$ defined by setting

$$
\begin{equation*}
V_{l}(u)(x):=\frac{1}{2} \sum_{i=1}^{N} x_{i}\left(1-x_{i}\right) \frac{\partial^{2} u}{\partial x_{i}^{2}}(x)+\sum_{i=1}^{N}\left(\frac{l}{2}-x_{i}\right) \frac{\partial u}{\partial x_{i}}(x) \tag{3.2}
\end{equation*}
$$

for every $u \in \mathscr{C}^{2}\left([0,1]^{N}\right)$ and $x=\left(x_{i}\right)_{1 \leq i \leq N} \in[0,1]^{N}$.
Theorem 3.1. Under assumption (3.1), for every $u \in \mathscr{C}^{2}\left([0,1]^{N}\right)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(C_{n}(u)-u\right)=V_{l}(u) \tag{3.3}
\end{equation*}
$$

uniformly on $[0,1]^{N}$ and hence in $L^{p}\left([0,1]^{N}\right)$.
Proof. According to [4, Theorem 3.5], the claim will be proved after showing that, for every $i \in\{1, \ldots, N\}$,
(a) $\lim _{n \rightarrow \infty}\left[n C_{n}\left(p r_{i} \circ \Psi_{x}\right)(x)-\left(l / 2-x_{i}\right)\right]=0$ uniformly on $[0,1]^{N}$,
(b) $\lim _{n \rightarrow \infty}\left[n C_{n}\left(\left(p r_{i} \circ \Psi_{x}\right)^{2}\right)(x)-x_{i}\left(1-x_{i}\right)\right]=0$ uniformly on $[0,1]^{N}$,
(c) $\sup _{\substack{n \geq 1 \\ x \in[0,1]^{N}}} n C_{n}\left(d_{x}^{2}\right)(x)<+\infty$
and
(d) $\lim _{n \rightarrow \infty} n C_{n}\left(d_{x}^{4}\right)(x)=0$ uniformly on $[0,1]^{N}$,
where d_{x} is defined by (2.1).
We proceed to verify (a). According to formula (2.15) we get that, for every $i=1, \ldots, N$,

$$
\begin{aligned}
& \left|n C_{n}\left(p r_{i} \circ \Psi_{x}\right)(x)-\left(\frac{l}{2}-x_{i}\right)\right| \leq \frac{1}{n+1}\left|x_{i}\right|+\left|\frac{n}{n+1} \frac{a_{n}+b_{n}}{2}-\frac{l}{2}\right| \\
& \leq \frac{1}{n+1}+\left|\frac{n}{n+1} \frac{a_{n}+b_{n}}{2}-\frac{l}{2}\right|
\end{aligned}
$$

hence the required assertion follows from (3.1).

To prove statement (b) we preliminary notice that, by virtue of formula (2.16), for every $i=1, \ldots, N$,

$$
\begin{aligned}
& n C_{n}\left(\left(p r_{i} \circ \Psi_{x}\right)^{2}\right)(x)-x_{i}\left(1-x_{i}\right) \\
& =\left[\frac{n^{2}}{(n+1)^{2}}-1\right] x_{i}\left(1-x_{i}\right)+\frac{n}{(n+1)^{2}}\left\{x_{i}^{2}-\left(a_{n}+b_{n}\right) x_{i}+\frac{a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}}{3}\right\}
\end{aligned}
$$

therefore

$$
\begin{aligned}
& \left|n C_{n}\left(\left(p r_{i} \circ \Psi_{x}\right)^{2}\right)(x)-x_{i}\left(1-x_{i}\right)\right| \\
& \quad \leq\left|\frac{n^{2}}{(n+1)^{2}}-1\right| x_{i}\left(1-x_{i}\right)+\frac{n}{(n+1)^{2}}\left(x_{i}^{2}+\left(a_{n}+b_{n}\right) x_{i}+\frac{a_{n}^{2}+a_{n} b_{n}+b_{n}^{2}}{3}\right) \\
& \quad \leq \frac{2 n+1}{4} \frac{1}{(n+1)^{2}}+\frac{4 n}{(n+1)^{2}}
\end{aligned}
$$

and this completes the proof of (b).
As regards conditions (c) and (d), from (2.17) we achieve that, for every $x \in[0,1]^{N}$,

$$
C_{n}\left(d_{x}^{2}\right)(x) \leq \frac{N}{n+1}
$$

and hence condition (c) follows. Finally, condition (d) is a consequence of (2.18) and Lemma 2.2.

We recall that a Markov semigroup on $\mathscr{C}\left([0,1]^{N}\right)$ is a C_{0}-semigroup $(T(t))_{t \geq 0}$ of positive linear operators on $\mathscr{C}\left([0,1]^{N}\right)$ such that $T(t)(\mathbf{1})=\mathbf{1}$ for every $t \geq 0$ (for more details on the theory of C_{0}-semigroups of operators we refer, e.g., to [8], [9] and [12]). In particular, we refer to [8, Section 13.6] for some remarkable aspects concerning Markov semigroups (see also [1, Section 1.6]).

We also recall that, given a Banach space $(E,\|\cdot\|)$, a core for a linear operator $A: D(A) \longrightarrow E$, defined on a linear subspace $D(A)$ of E, is a linear subspace D_{0} of E that is dense in $D(A)$ with respect to the graph norm $\|u\|_{A}:=\|u\|+\|A(u)\|(u \in D(A))$.

If $(A, D(A))$ is the generator of a C_{0}-semigroup $(T(t))_{t \geq 0}$ of operators on E, then a dense (in E) linear subspace D_{0} of $D(A)$ that is invariant under $(T(t))_{t \geq 0}$, i.e., $T(t)\left(D_{0}\right) \subset D_{0}$ for every $t \geq 0$, is a core for $(A, D(A))$ (see, e.g., [9, Chapter II, Proposition 1.7]). Moreover, if D_{0} is a core for $(A, D(A))$, then $(A, D(A))$ is the closure of $\left(A, D_{0}\right)$ as well.

As in Section 2, given any $m \in \mathbf{N}$, we denote by \mathbb{P}_{m} the linear subspace of the (restrictions to $[0,1]^{N}$ of the) polynomials on \mathbf{R}^{N} of degree no greater than m. Thus $\mathbb{P}:=\bigcup_{m=0}^{+\infty} \mathbb{P}_{m}$ is the subalgebra of all the (restrictions to $[0,1]^{N}$ of the) polynomials on \mathbf{R}^{N} and it is dense in $\mathscr{C}\left([0,1]^{N}\right)$ by the Stone-Weierstrass theorem.

Fix $0 \leq l \leq 2$ and consider the differential operator $V_{l}: \mathscr{C}^{2}\left([0,1]^{N}\right) \longrightarrow$ $\mathscr{C}\left([0,1]^{N}\right)$ defined by (3.2). This operator falls in the class of Fleming-Viot operators arising in population genetics, that are usually studied in the setting
of the multidimensional simplex. However, in the framework of hypercubes they have been investigated in [2], [7], [10].

Theorem 3.2. There exists a Markov semigroup $\left(T_{l}(t)\right)_{t \geq 0}$ on $\mathscr{C}\left([0,1]^{N}\right)$ satisfying the following properties:
(1) If $\left(a_{n}\right)_{n \geq 1}$ and $\left(b_{n}\right)_{n \geq 1}$ are two sequences of real numbers satisfying $0 \leq a_{n}<b_{n} \leq 1$ for every $n \geq 1$ and $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=l$, then for every $t \geq 0$ and for every sequence $\left(\rho_{n}\right)_{n \geq 1}$ of positive integers such that $\lim _{n \rightarrow \infty} \rho_{n} / n=t$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} C_{n}^{\rho_{n}}(f)=T_{l}(t)(f) \quad \text { uniformly on }[0,1]^{N} \tag{3.4}
\end{equation*}
$$

for every $f \in \mathscr{C}\left([0,1]^{N}\right)$, where each $C_{n}^{\rho_{n}}$ denotes the iterate of C_{n} of order ρ_{n}. In particular,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} C_{n}^{[n t]}(f)=T_{l}(t)(f) \quad \text { uniformly on }[0,1]^{N} \tag{3.5}
\end{equation*}
$$

for every $f \in \mathscr{C}\left([0,1]^{N}\right)$, where $[n t]$ stands for the integer part of $n t$.
(2) Denoted by $\left(A_{l}, D\left(A_{l}\right)\right)$ the generator of the semigroup $\left(T_{l}(t)\right)_{t \geq 0}$, then $\mathscr{C}^{2}\left([0,1]^{N}\right)$ is a core for $\left(A_{l}, D\left(A_{l}\right)\right)$, so that $\left(A_{l}, D\left(A_{l}\right)\right)$ is the closure of $\left(V_{l}, \mathscr{C}^{2}\left([0,1]^{N}\right)\right)$.
(3) The subalgebra \mathbb{P} is a core for $\left(A_{l}, D\left(A_{l}\right)\right)$ and $T_{l}(t)\left(\mathbb{P}_{m}\right) \subset \mathbb{P}_{m}$ for every $t \geq 0$ and $m \geq 0$.
(4) $T_{l}(t)\left(L i p_{M}^{1} \alpha\right) \subset L i p_{M}^{1} \alpha$ for every $t \geq 0, M \geq 0$ and $0<\alpha \leq 1$.

Proof. The proof is similar in spirit to the one of Theorem 4.1 of [2]. Consider two sequences $\left(a_{n}\right)_{n \geq 1}$ and $\left(b_{n}\right)_{n \geq 1}$ of real numbers satisfying $0 \leq a_{n}<b_{n} \leq$ 1 for every $n \geq 1$ and $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=l$, and denote by $\left(C_{n}\right)_{n \geq 1}$ the relevant operators defined by (2.6).

Moreover, consider the linear operator $B: D(B) \longrightarrow \mathscr{C}\left([0,1]^{N}\right)$ defined by

$$
B(u):=\lim _{n \rightarrow \infty} n\left(C_{n}(u)-u\right) \quad(u \in D(B))
$$

where
$D(B):=\left\{u \in \mathscr{C}\left([0,1]^{N}\right) \mid\right.$ there exists $\lim _{n \rightarrow \infty} n\left(C_{n}(u)-u\right)$ in $\left.\mathscr{C}\left([0,1]^{N}\right)\right\}$.
By Theorem 3.1, $\mathscr{C}^{2}\left([0,1]^{N}\right) \subset D(B)$ and $B=V_{l}$ on $\mathscr{C}^{2}\left([0,1]^{N}\right)$. In particular, each \mathbb{P}_{m} is contained in $D(B)$, it is finite dimensional and invariant under the operators C_{n} by virtue of Proposition 2.7. By a result of Schnabl ([14]; see also [13] or [1, Theorem 1.6.8]) the operator $(B, D(B))$ is then closable in $\mathscr{C}\left([0,1]^{N}\right)$ and its closure, that we denote by $\left(A_{l}, D\left(A_{l}\right)\right)$, is the generator of a positive C_{0}-semigroup $\left(T_{l}(t)\right)_{t \geq 0}$ of linear contractions of $\mathscr{C}\left([0,1]^{N}\right)$, satisfying (3.4) and (3.5).

Since $C_{n}(\mathbf{1})=\mathbf{1}$ for any $n \geq 1$, from (3.5) it follows that $T_{l}(t)(\mathbf{1})=\mathbf{1}$ for every $t \geq 0$. Moreover, each \mathbb{P}_{m} is closed in $\mathscr{C}\left([0,1]^{N}\right)$ and it is invariant under the C_{n} 's. Therefore, iterating and passing to the limit, we obtain that $T_{l}(t)\left(\mathbb{P}_{m}\right) \subset \mathbb{P}_{m}$ for every $t \geq 0$.

Accordingly, we get that $T_{l}(t)(\mathbb{P}) \subset \mathbb{P}$ for any $t \geq 0$ and hence \mathbb{P} is a core for $\left(A_{l}, D\left(A_{l}\right)\right)$. In particular, $\mathscr{C}^{2}\left([0,1]^{N}\right)$ is a core for $\left(A_{l}, D\left(A_{l}\right)\right)$ as well and $A_{l}=B=V_{l}$ on $\mathscr{C}^{2}\left([0,1]^{N}\right)$, which implies that $\left(A_{l}, D\left(A_{l}\right)\right)$ is the closure of $\left(V_{l}, \mathscr{C}^{2}\left([0,1]^{N}\right)\right)$, too.

This last statement shows, indeed, that the generator $\left(A_{l}, D\left(A_{l}\right)\right)$ is independent on the sequence $\left(C_{n}\right)_{n \geq 1}$ and hence on the sequences $\left(a_{n}\right)_{n \geq 1}$ and $\left(b_{n}\right)_{n \geq 1}$. On the other hand, the generator $\left(A_{l}, D\left(A_{l}\right)\right)$ determines the generated semigroup uniquely (see [9, Chapter II, Theorem 1.4]) and so the semigroup $\left(T_{l}(t)\right)_{t \geq 0}$ does not depend on the particular sequences $\left(a_{n}\right)_{n \geq 1}$ and $\left(b_{n}\right)_{n \geq 1}$, as well.

Finally, statement (4) follows from formula (2.25) of Proposition 2.7 and from the fact that $L i p_{M}^{1} \alpha$ is closed under the pointwise (and hence under the uniform) convergence on $[0,1]^{N}$.

Remarks 3.3.

1. Let us now consider the abstract Cauchy problem associated with $\left(A_{l}, D\left(A_{l}\right)\right)$, i.e.,

$$
\begin{cases}\frac{\partial u}{\partial t}(x, t)=A_{l}(u(\cdot, t))(x) & x \in[0,1]^{N}, \quad t \geq 0 \\ u(x, 0)=u_{0}(x) & u_{0} \in D\left(A_{l}\right), \quad x \in[0,1]^{N}\end{cases}
$$

Since $\left(A_{l}, D\left(A_{l}\right)\right)$ generates a C_{0}-semigroup, the above Cauchy problem admits a unique solution $u:[0,1]^{N} \times[0,+\infty[\rightarrow \mathbf{R}$ given by $u(x, t)=$ $T_{l}(t)\left(u_{0}\right)(x)$ for every $x \in[0,1]^{N}$ and $t \geq 0$ (see, e.g., [12, Chapter A-II]). Hence, by Theorem 3.2, it is possible to approximate such solutions by means of iterates of the C_{n} 's, i.e.,

$$
u(x, t)=T_{l}(t)\left(u_{0}\right)(x)=\lim _{n \rightarrow \infty} C_{n}^{[n t]}\left(u_{0}\right)(x)
$$

the limit being uniform with respect to $x \in[0,1]^{N}$.
Moreover, since A_{l} coincides with the elliptic second-order differential operator V_{l} defined by (3.2) on $\mathbb{P}_{m}, m \geq 1$, if $u_{0} \in \mathbb{P}_{m}$, then $u(x, t)$ is the unique solution to the Cauchy problem

$$
\begin{cases}\frac{\partial u}{\partial t}(x, t)=\frac{1}{2} \sum_{i=1}^{N} x_{i}\left(1-x_{i}\right) \frac{\partial^{2} u(x, t)}{\partial x_{i}^{2}}+\sum_{i=1}^{N}\left(\frac{l}{2}-x_{i}\right) \frac{\partial u(x, t)}{\partial x_{i}} & x \in[0,1]^{N} \\ & t \geq 0 \\ u(x, 0)=u_{0}(x) & x \in[0,1]^{N}\end{cases}
$$

and $u(\cdot, t) \in \mathbb{P}_{m}$ for every $t \geq 0$ (see statement (3) of Theorem 3.2).
Finally, according to statement (4) of Theorem 3.2, if $u_{0} \in D\left(A_{l}\right) \cap$ $L i p_{M}^{1} \alpha(M \geq 0,0<\alpha \leq 1)$, then $u(\cdot, t) \in \operatorname{Lip} p_{M}^{1} \alpha$ for every $t \geq 0$.
2. Theorem 3.2 extends Theorem 3.3 of [6] from the one-dimensional case to a multidimensional context. However, there an explicit description of
the generator $\left(A_{l}, D\left(A_{l}\right)\right)$ is given, namely

$$
\begin{equation*}
D\left(A_{l}\right):=\left\{u \in \mathscr{C}([0,1]) \mid u \in \mathscr{C}^{2}(] 0,1[) \text { and } \lim _{\substack{x \rightarrow 0^{+} \\ x \rightarrow 1-}} A_{l}(u)(x) \in \mathbf{R}\right\} \tag{3.6}
\end{equation*}
$$

and

$$
A_{l}(u)(x):= \begin{cases}\frac{x(1-x)}{2} u^{\prime \prime}(x)+\left(\frac{l}{2}-x\right) u^{\prime}(x) & \text { if } 0<x<1 \tag{3.7}\\ \lim _{t \rightarrow x} A_{l}(u)(t) & \text { if } x=0,1\end{cases}
$$

$\left(u \in D\left(A_{l}\right), 0 \leq x \leq 1\right)$.
An analogous description of $\left(A_{l}, D\left(A_{l}\right)\right)$ in multidimensional setting seems to be a difficult but very interesting problem.
3. Statement (2) of Theorem 3.2 has been also obtained in [7, Theorem 2.1] with a different approach.

Next, we shall show that, in some particular cases, the Markov semigroup considered in Theorem 3.2 extends to a positive contractive $C_{0}-$ semigroup on $L^{p}\left([0,1]^{N}\right), 1 \leq p<+\infty$.

In fact, in these cases the limit (3.1) is $l=1$, that leads to consider the differential operator

$$
\begin{align*}
& V(u)(x):=V_{1}(u)(x)=\frac{1}{2} \sum_{i=1}^{N} x_{i}\left(1-x_{i}\right) \frac{\partial^{2} u}{\partial x_{i}^{2}}(x)+\sum_{i=1}^{N}\left(\frac{1}{2}-x_{i}\right) \frac{\partial u}{\partial x_{i}}(x) \\
& =\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(\frac{x_{i}\left(1-x_{i}\right)}{2} \frac{\partial u}{\partial x_{i}}\right)(x) \tag{3.8}
\end{align*}
$$

$\left(u \in \mathscr{C}^{2}\left([0,1]^{N}\right)\right.$ and $\left.x=\left(x_{i}\right)_{1 \leq i \leq N} \in[0,1]^{N}\right)$.
Similarly, we shall simply denote by $(T(t))_{t \geq 0}$ and by $(A, D(A))$ the semigroup $\left(T_{1}(t)\right)_{t \geq 0}$ and its generator $\left(A_{1}, D\left(A_{1}\right)\right)$.

Theorem 3.4. The Markov semigroup $(T(t))_{t \geq 0}$ extends to a positive contractive C_{0}-semigroup $(\widetilde{T}(t))_{t \geq 0}$ on $L^{p}\left([0,1]^{N}\right)$ for each $p \in[1,+\infty[$.

Moreover, $\mathscr{C}^{2}\left([0,1]^{N}\right)$ is a core for the generator $(\widetilde{A}, D(\widetilde{A}))$ of $(\widetilde{T}(t))_{t \geq 0}$, so that $(\widetilde{A}, D(\widetilde{A}))$ is the closure of $\left(V, \mathscr{C}^{2}\left([0,1]^{N}\right)\right)$ in $L^{p}\left([0,1]^{N}\right)$.

Finally, if $\left(a_{n}\right)_{n \geq 1}$ and $\left(b_{n}\right)_{n \geq 1}$ are two sequences of real numbers such that $0 \leq a_{n}<b_{n} \leq \overline{1}$ and if, in addition, they satisfy one of the following sets of conditions:
(a) $a_{n}=0$ and $b_{n}=1$ for every $n \geq 1$,
or
(b) (i) $0<b_{n}-a_{n}<1$ for every $n \geq 1$;
(ii) there exist $\lim _{n \rightarrow \infty} a_{n}=0$ and $\lim _{n \rightarrow \infty} b_{n}=1$;
(iii) $M_{1}:=\sup _{n \geq 1} n\left(1-\left(b_{n}-a_{n}\right)\right)<+\infty$,
then for every $t \geq 0$, for every sequence $\left(\rho_{n}\right)_{n \geq 1}$ of positive integers such that $\lim _{n \rightarrow \infty} \rho_{n} / n=t$ and for every $f \in L^{p}\left([0,1]^{N}\right)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} C_{n}^{\rho_{n}}(f)=\widetilde{T}(t)(f) \quad \text { in } L^{p}\left([0,1]^{N}\right) \tag{3.9}
\end{equation*}
$$

In particular, for every $f \in L^{p}\left([0,1]^{N}\right)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} C_{n}^{[n t]}(f)=\widetilde{T}(t)(f) \quad \text { in } L^{p}\left([0,1]^{N}\right) \tag{3.10}
\end{equation*}
$$

Here, again, the operators $C_{n}, n \geq 1$, are defined by (2.6).
Proof. Fix $t \geq 0$ and consider an arbitrary sequence $\left(\rho_{n}\right)_{n \geq 1}$ of positive integers such that $\rho_{n} / n \rightarrow t$. Furthermore, consider the sequence $\left(C_{n}\right)_{n \geq 1}$ associated with $a_{n}=0$ and $b_{n}=1, n \geq 1$. From (2.10) it follows that $\left\|C_{n}\right\|_{L^{p}, L^{p}} \leq 1$ and hence, on account of (3.4)

$$
\|T(t) f\|_{p}=\lim _{n \rightarrow \infty}\left\|C_{n}^{\rho_{n}}(f)\right\|_{p} \leq\|f\|_{p}
$$

for every $f \in \mathscr{C}\left([0,1]^{N}\right)$.
Therefore, there exists a unique linear continuous extension $\widetilde{T}(t)$: $L^{p}\left([0,1]^{N}\right) \longrightarrow L^{p}\left([0,1]^{N}\right)$ of $T(t)$. Moreover, $\|\widetilde{T}(t)\|_{L^{p}, L^{p}} \leq 1$ for every $t \geq 0$.

It is not difficult to show that $\widetilde{T}(t)$ is positive because if $f \in L^{p}\left([0,1]^{N}\right)$, $f \geq 0$, then there exists a sequence $\left(f_{n}\right)_{n \geq 1}$ in $\mathscr{C}\left([0,1]^{N}\right)$ such that $\lim _{n \rightarrow \infty} f_{n}=$ f in $L^{p}\left([0,1]^{N}\right)$. We may assume that $f_{n} \geq 0$ for every $n \geq 1$ (if not, we replace f_{n} with its positive part $\left.f_{n}^{+}\right)$. Therefore,

$$
\widetilde{T}(t)(f)=\lim _{n \rightarrow \infty} \widetilde{T}(t)\left(f_{n}\right)=\lim _{n \rightarrow \infty} T(t)\left(f_{n}\right) \geq 0
$$

The family $(\widetilde{T}(t))_{t \geq 0}$ is obviously a semigroup and, in addition, it is strongly continuous; this easily follows, for instance, from ($[9$, Chapter I, Proposition 5.3]) thanks to the fact that, for every $t \in[0,1]$ and for every $f \in \mathscr{C}\left([0,1]^{N}\right)$,

$$
\lim _{t \rightarrow 0^{+}} \widetilde{T}(t)(f)=\lim _{t \rightarrow 0^{+}} T(t)(f)=f
$$

in $\mathscr{C}\left([0,1]^{N}\right)$ and hence in $L^{p}\left([0,1]^{N}\right)$, because $(T(t))_{t \geq 0}$ is a C_{0}-semigroup on $\mathscr{C}\left([0,1]^{N}\right)$.

Let $(\widetilde{A}, D(\widetilde{A}))$ be the generator of $(\widetilde{T}(t))_{t \geq 0}$. Then, from the definition of domain of generators, it follows that $D(A) \subset D(\widetilde{A})$ and $\widetilde{A}=A$ on $D(A)$. Moreover, $D(A)$ is a core for $(\widetilde{A}, D(\widetilde{A}))$, since $\widetilde{T}(t)(D(A))=T(t)(D(A)) \subset$ $D(A)$ for every $t \geq 0$.

In order to show that $\mathscr{C}^{2}\left([0,1]^{N}\right)$ is a core for $(\widetilde{A}, D(\widetilde{A}))$, fix $u \in D(\widetilde{A})$ and $\varepsilon>0$; then there exists $v \in D(A)$ such that

$$
\begin{equation*}
\|u-v\|_{p} \leq \frac{\varepsilon}{2} \quad \text { and } \quad\|\widetilde{A}(u)-A(v)\|_{p} \leq \frac{\varepsilon}{2} \tag{3.11}
\end{equation*}
$$

On the other hand, by Theorem 3.2, $\mathscr{C}^{2}\left([0,1]^{N}\right)$ is a core for $(A, D(A))$ and hence there exists $w \in \mathscr{C}^{2}\left([0,1]^{N}\right)$ such that

$$
\begin{equation*}
\|v-w\|_{\infty} \leq \frac{\varepsilon}{2} \quad \text { and } \quad\|A(v)-A(w)\|_{\infty} \leq \frac{\varepsilon}{2} \tag{3.12}
\end{equation*}
$$

From (3.11) and (3.12) it follows that

$$
\|u-w\|_{p} \leq\|u-v\|_{p}+\|v-w\|_{p} \leq\|u-v\|_{p}+\|v-w\|_{\infty} \leq \varepsilon
$$

and, analogously,

$$
\|\widetilde{A}(u)-A(w)\|_{p} \leq \varepsilon
$$

In order to prove (3.9), fix $t \geq 0$ and consider a sequence $\left(\rho_{n}\right)_{n \geq 1}$ of positive integers such that $\lim _{n \rightarrow \infty} \rho_{n} / n=t$; formula (3.4) implies that, for every $f \in \mathscr{C}\left([0,1]^{N}\right)$,

$$
\lim _{n \rightarrow \infty} C_{n}^{\rho_{n}}(f)=\widetilde{T}(t)(f)
$$

in $L^{p}\left([0,1]^{N}\right)$. Since $\left\|C_{n}^{\rho_{n}}\right\|_{L^{p}, L^{p}} \leq 1$ for every $n \geq 1$, then (3.9) and (3.10) follow.

Finally, consider two sequences $\left(a_{n}\right)_{n \geq 1}$ and $\left(b_{n}\right)_{n \geq 1}$ satisfying assumption (b) and denote by $\left(C_{n}\right)_{n \geq 1}$ the relevant operators. Given $t \geq 0$ and a sequence $\left(\rho_{n}\right)_{n \geq 1}$ of positive integers such that $\rho_{n} / n \rightarrow t$, from (3.4) it follows that

$$
\widetilde{T}(t)(f)=\lim _{n \rightarrow \infty} C_{n}^{\rho_{n}}(f) \quad \text { in } L^{p}\left([0,1]^{N}\right)
$$

for every $f \in \mathscr{C}\left([0,1]^{N}\right)$. Moreover, (2.19) implies that

$$
\left\|C_{n}^{\rho_{n}}\right\|_{L^{p}, L^{p}} \leq \exp \left(\omega_{p} \frac{\rho_{n}}{n}\right) \leq \exp \left(\rho \omega_{p}\right)
$$

where $\rho:=\sup _{n \geq 1} \rho_{n} / n$ and $\omega_{p}=N M_{1} M_{2} / p, M_{2}$ being defined by formula (2.20) in the proof of Proposition 2.6. Consequently, $\left(C_{n}^{\rho_{n}}\right)_{n \geq 1}$ is equibounded in $L^{p}\left([0,1]^{N}\right)$ and hence the above limit relationship extends from $\mathscr{C}\left([0,1]^{N}\right)$ to $L^{p}\left([0,1]^{N}\right)$.

Remarks 3.5.

1. Examples of sequences satisfying assumptions (b) in Theorem 3.4 can be easily furnished. For instance, fix $\alpha \geq 1$ and, for every $n \geq 1$, set $a_{n}:=\frac{1}{2}\left(1+\frac{1}{2 n^{\alpha}}-\frac{n^{\alpha}}{n^{\alpha}+1}\right)$ and $b_{n}:=\frac{1}{2}\left(1+\frac{1}{2 n^{\alpha}}+\frac{n^{\alpha}}{n^{\alpha}+1}\right)$.
2. Theorem 3.4 seems to be new even in the one-dimensional case where, according to Remark 3.3, 2, the generator $(A, D(A))$ is described by (3.6) and (3.7). However, for $N=1$ and for $a_{n}=0$ and $b_{n}=1, n \geq 1$, a similar result has been already proved in [11, Theorem 1] with a completely different method. Moreover, in the same paper a representation of the semigroup in terms of the Legendre polynomials is also given.
3. The differential operator $\left(V_{l}, \mathscr{C}^{2}\left([0,1]^{N}\right)\right)$ falls within a more general class of second order differential operators that have been investigated in [2] (see, in particular, Section 4, formula (4.1) and Examples 2.2, 2). From Theorem 4.1 of that paper it already follows that $\left(V_{l}, \mathscr{C}^{2}\left([0,1]^{N}\right)\right)$ is closable
and its closure is the generator of a Markov semigroup on $\mathscr{C}\left([0,1]^{N}\right)$ that can be approximated, as in (3.4), by iterates of modified Bernstein-Schnabl operators. However, in general, these approximating operators are not defined on $L^{p}\left([0,1]^{N}\right)$, so that formulae (3.9) and (3.10) cannot be available for them. 4. The generation property of the operator $\left(V, \mathscr{C}^{2}\left([0,1]^{N}\right)\right)$ in the space $L^{p}\left([0,1]^{N}\right)$ has been also investigated in $[10$, Theorem 2.5]. Moreover, in this paper it is shown that the semigroup $(\widetilde{T}(t))_{t \geq 0}$ is analytic and a description of the domain $D(\widetilde{A})$ in terms of weighted Sobolev spaces is given.

References

[1] Altomare, F., Campiti, M., Korovkin-type approximation theory and its applications, de Gruyter Studies in Mathematics, 17, Walter de Gruyter \& Co., Berlin, 1994.
[2] Altomare, F., Cappelletti Montano, M., Diomede, S., Degenerate elliptic operators, Feller semigroups and modified Bernstein-Schnabl operators, Math. Nachr., 2011, DOI:10.1002/mana.200810196.
[3] Altomare, F., Cappelletti Montano, M., Leonessa, V., On a generalization of Kantorovich operators on simplices and hypercubes, Adv. Pure Appl. Math., 1(2010), no. 3, 359-385.
[4] Altomare, F., Diomede, S., Asymptotic formulae for positive linear operators on convex subsets of Banach spaces, J. Concr. Appl. Math., 3(2005), no. 4, 413-435.
[5] Altomare, F., Leonessa, V., On a sequence of positive linear operators associated with a continuous selection of Borel measures, Mediterr. J. Math., 3(2006), no. 3-4, 363-382.
[6] Altomare, F., Leonessa, V., Continuous selections of Borel measures, positive operators and degenerate evolution problems, Rev. Anal. Numér. Théor. Approx., 36(2007), no. 1, 9-23.
[7] Cerrai, S., Clément, Ph., Schauder estimates for a degenerate second order elliptic operator on a cube, J. Differential Equations, 242(2007), 287-321.
[8] Davies, E.B., Linear operators and their spectra, Cambridge Studies in Advanced Mathematics 106, Cambridge University Press, Cambridge, 2007.
[9] Engel, K.J., Nagel, R., One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer, New York-Berlin, 2000.
[10] Mugnolo, D., Rhandi, A., On the domain of a Fleming-Viot type operator on an L^{p}-space with invariant measure, preprint n. 63, 2009, Dipartimento di Ingegneria dell'Informazione e Matematica Applicata, Università degli Studi di Salerno.
[11] Nagel, J., Asymptotic properties of powers of Kantorovic̆ operators, J. Approx. Theory, 36(1982), no. 3, 268-275.
[12] Nagel, R., (ed.), One-parameter semigroups of positive operators, Lecture Notes in Math., 1184, Springer-Verlag, Berlin, 1986.
[13] Nishishiraho, T., Saturation of bounded linear operators, Tôhoku Math. J., 30(1978), 69-81.
[14] Schnabl, R., Über gleichmäßige Approximation durch positive lineare Operatoren, in Constructive Theory of Functions (Proc. Internat. Conf. Varna, 1970) 287-296; Izdat. Bolgar. Akad. Nauk, Sofia, 1972.
[15] Zhou, D.X., Converse theorems for multidimensional Kantorovich operators, Anal. Math., 19(1993), 85-100.

Francesco Altomare
Dipartimento di Matematica
Università degli Studi di Bari "A. Moro"
Campus Universitario, Via E. Orabona, 4
70125 Bari-Italia
e-mail: altomare@dm.uniba.it
Mirella Cappelletti Montano
Dipartimento di Matematica
Università degli Studi di Bari "A. Moro"
Campus Universitario, Via E. Orabona, 4
70125 Bari-Italia
e-mail: montano@dm.uniba.it
Vita Leonessa
Dipartimento di Matematica e Informatica
Università degli Studi della Basilicata
Viale dell'Ateneo Lucano no. 10, Macchia Romana
85100 Potenza-Italia
e-mail: vita.leonessa@unibas.it

