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Applying the Backus-Gilbert theory
to function approximation

Flavian Abramovici

Abstract. In this paper are given new results within the project I started
some years ago, of using inverse problems methods for recovering the
values at points x0 of a continuous function f with compact support E ⊆
Rm, when N of its values are given at the nodes xi. After showing in [1]
how to obtain Shepard’s formula with two different versions of the well
known Backus-Gilbert process, building averaging kernels that resemble
δ - ”functions” centered at the nodes and consist in linear combinations
of the data representers. In the present paper I am showing how to
attach a spread to the Shepard formula itself, leading to a convergence
theorem concerning the recovery of the considered function.

Mathematics Subject Classification (2010): 41A30.

Keywords: Backus-Gilbert theory, Shepard’s formula, deltaness, inverse
problems, moving least-squares.

1. Introduction

In order to use the classical Backus-Gilbert process, the data should consist
in a set of bounded functionals. Not having such functionals, I tried to use
the internal products ∫

Rm

f(x)G(λ)
i (x)dV (1.1)

between the given function f and the elements of a Dirac sequence ([9]), which
for high enough λ could approximate such functionals, e.g. the elements of
the Dirac sequence used in [1]

G(λ)(x) =

 λm for x ∈ S

0 otherwise
, (1.2)

where S is the reqular hypercube having the center at the origin and
edges of length 1

λ , with λ a positive real parameter. The Backus-Gilbert
classical theory is looking for the optimal linear combination of the form
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N∑
i=1

a
(λ)
i (x0)G

(λ)
i (x) with G

(λ)
i (x) = G(λ)(x− xi), that gives the best approx-

imation of the value of the function f at x0

f̃ (λ)(x0) =
N∑

i=1

∫
Rm

a
(λ)
i (x0)f(x)G(λ)

i (x)dV

=
N∑

i=1

∫
Rm

a
(λ)
i (x0)f(x)G(λ)(x− xi)dV , (1.3)

with dV the volume element dx1, . . . , dxm. Taking the limit of the result for
λ → ∞ in order to compensate for the errors involved in using only finite
values of λ, I obtained the well-known Shepard’s formula [7],[12],[13]:

lim
λ→∞

f̃ (λ)(x0) =
N∑

k=1

1

||xk − x0||2
N∑

i=1

1
||xi − x0||2

. (1.4)

This result surprised some people working in seismology and others work-
ing in numerical analysis, as the Backus-Gilbert theory [2],[3],[4] was known
mainly to geophysicists, while Shepard’s formula was familar to mathemati-
cians working in numerical analysis. In order to make sure that my results
were correct, I looked for another approximation of f(x0) having all the in-
gredients of the Backus-Gilbert theory including a spread. What I actually
did was to discretize the integrals involved, obtaining the discrete version of
the Backus-Gilbert theory. Following closely the way the classical theory was
built, I applied the Backus-Gilbert linear representation theorem marked be-
low as Theorem 2.1, finding that necessarily the average given by my discrete
version had to be of the form obtained by discretization. After finishing the
preliminary report, I passed copies to people who showed a special interest
in my results and with whom I had many discussions, among them Prof. Kes
Salkauskas from the University of Calgary in Canada and Prof. David Levin
from the Hebrew University in Jerusalem. They extended my findings ob-
taining new results, e.g. making the same steps I did including taking a limit,
Bos and Salkoskas obtained in [5] the moving least-squares approximation [8],
a generalisation of Shepard’s formula. For this purpose they defined a spe-
cial type of Dirac sequences called regular, in order to handle the quadratic
integrals needed for the optimal solutions. On the other hand David Levin
using not only my results but also those of Bos and Salkauskas, presented an
elegant way to obtain the moving least squares process using block matrices
and applied with great success in [10] my discrete Backus-Gilbert process to
scattered interpolation, smoothing and numerical differentition and, in [11],
to numerical integration.

Once I obtained the Shepard formula using two independent Backus-
Gilbert theories and being further stimulated by the results obtained by Bos,
Salkauskas and Levin, I decided to try to settle an important question that
was still open: is it possible to attach to the Shepard approximation also



Applying the Backus-Gilbert theory to function approximation 209

a sort of spread, which would lead to further properties? Although both
Backus-Gilbert theories led to Shepard’s formula, only within the discrete
one I could define a spread, as for λ → ∞ the process was divergent, the
spread tending to infinity. The solution came to me while reading the paper
by Bos and Salkauskas, as I realized that the simple Dirac sequence I used
was regular and therefore what I had to do was ”only” to modify a little
the classical Backus-Gilbert spread by normalizing its integrand. As a result,
the integral representing the spread for every λ became convergent, the limit
having all the characteristic properties of a spread. It was therefore justified
to define this limit as being the Backus-Gilbert spread of Shepard’s formula.
Moreover, it turned out that the limit obtained as described coincides with the
spread attached to the Shepard formula within the discrete theory directly,
not in combination with taking a limit and with its own justification. For
the benefit of those not familiar with the classical Backus-Gilbert theory, a
short description is given in Section 2. In Section 3 is shown how the Shepard
formula is obtained and in the last Section is described the discrete Backus-
Gilbert version.

2. The classical Backus-Gilbert theory

Clearly, if we have only a finite number of data, it is not possible to determine
exactly the properties of the Earth at every location, but it may be possible
to get averages of the so called ”Earth models”, functions f belonging to the
Hilbert space H = L2(E) with E the closed, connected and bounded support
of f in Rm representing the properties of the Earth. Hence, the most we may
hope to achieve using the data described in Section 1 is to find significant
quantities that characterize the entire family of models, e.g. the average fav

at every point x0 of E, corresponding to an averaging kernel A(x0,x):

fav(x0) =
∫

E
A(x0,x)f(x)dV ' f(x0) . (2.1)

Backus and Gilbert proved in [3] the following general result.

Theorem 2.1. Let f ∈ H be a function for which N linearly independent
bounded linear functionals γi on H are known. If it is possible to obtain a
linear average Lav(f) of f at a point x0 using only the given N functionals,
then the average Lav(f) is necessarily a linear combination of these function-
als:

Lav(f) =
N∑

i=1

aiLi(f) (2.2)

with coefficients ai that depend upon x0.

Using this result taking as Li(f) the values Gi(x), we find that

Lav(f) =
N∑

i=1

ai

∫
E

Gi(x)f(x)dV =
∫

E

[
N∑

i=1

aiGi(x)

]
f(x)dV , (2.3)
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i.e. the averaging kernels are indeed linear combination of the representers
Gi(x):

A(x0,x) =
N∑

i=1

ai(x0), Gi(x) . (2.4)

Consequently, Backus and Gilbert looked for an optimal unimodular averag-
ing kernel A(x0,x) i.e satisfying the condition∫

E
A(x0,x)dV = 1 (2.5)

and having the highest deltaness, that is the highest likeness to the Dirac
δ-function centered at x0, condition checked by using the ”spread” of the
average kernel defined, by Backus and Gilbert as follows.

Definition 2.2. For every averaging kernel A(x0,x) on a compact set E ⊆ Rm,
the function

s0 = s(x0) =
12
m

∫
E

J(x0,x)A2(x0,x)dV (2.6)

with J(x0,x) a ”sink” function i.e. a non-negative function that vanishes for
x = x0 and grows rapidly away from this point, is called a spread of A at
x0. A typical ”sink” function is J(x0,x) = ||x − x0||2, with ||x − x0|| the
Euclidean norm.

Thus, the Backus-Gilbert process solves the following variational prob-
lem: find the coefficients ai(x0) for which the averaging kernel has the highest
δ-ness, i.e. the smallest spread.

Using a Lagrange multiplier, Backus and Gilbert solved this classical
variational problem, obtaining the following relation giving the coefficients of
the averaging kernel:

a(x0) =
1

uT [Z(x0)]−1 u
[Z(x0)]−1 u (2.7)

with Z(x0) a Gram matrix [6] of components

Zik(x0) =
12
m

∫
E

J(x0,x)Gi(x)Gk(x)dV , (2.8)

the corresponding spread s(x0) being given by

s0 = a(x0)T Z(x0)a(x0) , (2.9)

Consider now the functions f ∈ H for which the following integrals∫
E

|f(x)− f(x0)|
||x− x0||

dV and
∫
E

|f(x)− f(x0)|2

||x− x0||2
dV (2.10)

are finite. Defining the square root of the second integral as being the ”x0-
norm” ||f(x)||x0 of a function f that belongs to H and is either identically
zero or not constant, Backus and Gilbert proved the following result:
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Theorem 2.3. Under the conditions described above. if the averaging kernel
A(x0,x) given by (2.4) is unimodular, the error functional

E(f(x0)) =
∫
E

A(x0,x) [f(x)− f(x0)] dV (2.11)

is bounded, its x0-norm being given by

||E||x0 =
√

m

12
s(x0) , (2.12)

with s(x0) the considered spread.

Corollary 2.4. (The boundedness inequality for a given λ) (For every λ > 0
the following inequality takes place:

|E(f(x0))| ≤ ||E||x0 ||f ||x0 (2.13)

Corollary 2.5. (A convergence theorem) Let A(λ)(x0,x) =
N∑

i=1

a
(λ)
i (x0)G

(λ)
i (x)

be a family of unimodular averaging kernels. The average f (λ)(x0) tends to
f(x0) when λ → µ, if and only if lim

λ→µ
s(λ)(x0) = 0, in particular f (λ)(x0)

tends to f(x0) when λ →∞ if and only if s(λ)(x0) → 0 when λ →∞.

Remark 2.6. This theorem is important as a general result but in many cases
the computer time needed to reach the wanted precision is very large. This is
why it is important to have an efficient method, giving an effective growth of
accuracy at every step, which is precisely why the Backus-Gilbert process is
preferable to other methods, as one may see on the examples given by David
Levin in the articles mentioned above.

3. Approximating a function with given values using the
classical Backus-Gilbert theory

Using the general relations (2.7) - (2.8), we prove the following result:

Theorem 3.1. Let f be a unimodular Earth model satisfying the conditions of
Theorem 2.1. For every set of data of the form

f̃ (λ)(xi) =
∫

Ei

G̃
(λ)
i (x)f(x)dV , (3.1)

the coefficients that minimize the spread of the averaging kernel are

ã(λ)(x0) =
1[

ũ(λ)
]T [

Z̃(λ)(x0)
]−1

ũ(λ)

[
Z̃(λ)(x0)

]−1

ũ(λ) . (3.2)

with ũ(λ) = 1 for every λ and

Z̃(λ)
ik (x0) =

∫
Rm

J(x0,x)G̃(λ)
i (x)G̃(λ)

k (x)dV . (3.3)
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As for λ > 0 large enough, the matrix Z̃(λ)(x0) is diagonal with diagonal
elements λ2X̃

(λ)
k (x0) where

X̃
(λ)
k (x0) = ||xk − x0||2 +

1
λ2

. (3.4)

Making λ tend to infinity, we find that

ǎ(x0) = lim
λ→∞

ã(λ)(x0) =
1

N∑
i=1

1
||xi − x0||2


1

||x1 − x0||2
...
1

||xN − x0||2

 , (3.5)

i.e. we arrive to the following result:

Corollary 3.2. The considerate Earth model is approximated by Shepard’s
formula

f̃(x0) =
1

N∑
i=1

1
||xi − x0||2

N∑
k=1

f(xk)
||xk − x0||2

. (3.6)

Having obtained the Shepard formula using the Backus-Gilbert theory,
it is only natural to try to attach to it a Backus-Gilbert spread for charac-
terizing the way Shepard’s formula approximates the function f . In order to
do so, we calculate the spread of the optimal averaging kernel for a given λ:

s̃(λ)(x0) =
12
m

N∑
k=1

[
ã
(λ)
k (x0)

]2 ∫
Ek

J(x0,x)
[
G

(λ)
k (x)

]2
dV

+
12
m

N∑
k,l=1

ã
(λ)
k (x0)ã

(λ)
` (x0)

∫
Ek

⋂
E`

J(x0,x)G̃(λ)
k (x0)G̃

(λ)
` (x0)dV .

(3.7)

and see if it tends to a finite limit when λ tends to infinity. For λ large enough
the intersection Ek

⋂
E` is empty, so that the double sum in the second term

of the right hand side is equal to zero as it is easy to see and therefore we are
left with

s̃(λ)(x0) =
12
m

N∑
k=1

[
ã
(λ)
k (x0)

]2 ∫
Ek

J(x0,x)
[
G

(λ)
k (x)

]2
dV , (3.8)

a divergent integral ! However, as already explained, the simple Dirac se-
quence G(λ)(x) is regular, according to the following definition.

Definition 3.3. A Dirac sequence G(λ)(x) is called regular if the following
conditions hold:

1. G(λ) ∈ L2(Rm).
2. For every bounded and continuous function f ∈ L2(Rm)

lim
λ→∞

∫
Rm

G(λ)(x− a)G(λ)(x− b)

κ
(λ)
m

f(x)dV =
{

0 if b 6= a
f(a) if b = a (3.9)
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with

κ(λ)
m =

∫
Rm

[
G(λ)(x)

]2
dV . (3.10)

Dividing both sides of relation (38) by κ̃
(λ)
m and knowing that the ratio

s̃(λ)(x0)
κ̃

(λ)
m

is convergent for λ →∞, we find that the right hand side is conver-

gent and therefore the left hand side is also convergent to š(x0) that may be
called the normalized spread of Shepard’s formula:

š(x0) =
12
m

N∑
k=1

lim
λ→∞

[
ã
(λ)
k (x0)

]2
lim

λ→∞

∫
Ek

J(x0,x)

[
G̃

(λ)
k (x)

]2
κ̃

(λ)
m

dV .

=
12
m

N∑
k=1

ǎ2
k(x0)J(x0,xk) . (3.11)

Moreover, we may attach to Shepard’s formula a boudedness inequality lead-
ing to a convergence property. Indeed, consider the boundedness inequality
(2.13) for a the minimal solution for any λ

|Ẽ(λ)(f̃ (λ))| ≤ ||Ẽ(λ)||x0 ||f̃ (λ)||x0 , (3.12)

the error functional Ẽ(λ)(f (λ)) being defined by

Ẽ(λ)(f (λ)) = f̃ (λ)(x0)− f(x0) =
N∑

i=1

ã
(λ)
i (x0)f̃

(λ)
i − f(x0) , (3.13)

with f̃
(λ)
i =

∫
E

G̃
(λ)
i (x)f(x)dV . Using the expression of the averaging kernel

(2.4) and its unimodularity, we find that

lim
λ→∞

Ẽ(λ)(f) = lim
λ→∞

∫
E

Ã(λ)(x0,x)[f(x)− f(x0)]dV = Ě(f) . (3.14)

As to the right hand side, the first factor is equal to
√

m
12 s̃(λ)(x0) and there-

fore tends to infinity when λ does, due to the presence of the spread according
to (2.12). Dividing by κm the first factor of the right hand side becomes con-
vergent but in this case we have to multiply the second factor also by κm,
bringing the inequality to the following form:

|Ẽ(λ)(f̃ (λ))| ≤

√
m

12
s̃(λ)(x0)

κ̃
(λ)
m

√
κ̃

(λ)
m ||f̃ (λ)||x0 . (3.15)

In order to prove that the right hand side is convergent and that its limit is
also a ”discrete” quantity, consider the ”shrinking” function

F (x) =

 f(x) if x = x0 or x ∈ Ei

for i = 1, . . . , N and
0 otherwise

(3.16)
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and its approximation F̃ (λ)(x0) =
N∑

i=1

ã
(λ)
i (x0)

∫
Ei

G̃
(λ)
i (y)F (y)dV . For λ

large enough this approximation also satisfies the boundedness inequality,
in fact F̃ (λ)(x0) is equal to f̃ (λ)(x0) for every x0 different from any node xi

for i = 1, . . . N , so that the error functionals and the x0-norms coincide. Tak-
ing into account that f̃ (λ) is sectionally continuous we find, using the mean
value theorem, that there exists at least one point ξ

(λ)
i ∈ Ei that depends

upon λ, such that

∫
Ei

∣∣∣f̃ (λ)(x)− f̃ (λ)(x0)
∣∣∣2

(x− x0)2
dx =

∣∣∣f̃ (λ)(ξ(λ)
i )− f̃ (λ)(x0)

∣∣∣2
(ξ(λ)

i − x0)2
ε (3.17)

and therefore

√
κ̃

(λ)
1 ||F̃ (λ)||x0 =

√√√√√ N∑
i=1

∣∣∣f̃ (λ)(ξ|(λ)
i )− f̃ (λ)(x0)

∣∣∣2
(ξ(λ)

i − x0)2
, (3.18)

as λε = 1. Using this relation we get from (3.15) the inequality

|Ẽ(λ)(f̃ (λ))| ≤
√

ms̃(λ)(x0)

12κ̃
(λ)
1

√√√√√ N∑
i=1

∣∣∣f̃ (λ)(ξ(λ)
i )− f̃ (λ)(x0)

∣∣∣2
(ξ(λ)

i − x0)2
, (3.19)

with the first factor of the right hand side tending to the ”discrete” quantity√
m
12 š(x0). On the other hand when λ tends to infinity, ε tends to zero so

that ξ
(λ)
i tends to the center xi of Ei and f̃ (λ) is continuous at xi. Therefore,

lim
λ→∞

f̃ (λ)(ξ) = f̃ (λ)(xi) implying that

lim
λ→∞

√√√√√ N∑
i=1

∣∣∣f̃ (λ)(ξ(λ)
i )− f̃ (λ)(x0)

∣∣∣2
(ξ(λ)

i − x0)2
=

√√√√ N∑
i=1

|f(xi)− f(x0)|2

(xi − x0)2
. (3.20)

As a result, we get using (3.13) the following boundedness inequality for the
discrete error functional:

|Ě(f)| ≤
√

š(x0)
12

√√√√ N∑
i=1

|f(xi)− f(x0)|2

(xi − x0)2
. (3.21)

making possible to define the following discrete quantity.

Definition 3.4. The discrete x0-norm of a function f(x) corresponding to the
points x1, . . . , xN ∈ E is

‖f‖x0 =

√√√√ N∑
k=1

|f(xk)− f(x0)|2

(xk − x0)2
. (3.22)
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As a result, the discrete boundedness inequality (3.21) becomes

|Ě(f)| ≤
√

š(x0)
12

‖f‖x0 (3.23)

leading to the following conclusion:

Corollary 3.5. The continuous boundedness inequality (3.12) written in the
form

|Ẽ(λ)(f̃ (λ))| ≤
√

š(x0)
12

||f̃ (λ)||x0 (3.24)

tends to the discrete boundedness inequality (3.23) when λ →∞, i.e. the left
hand side of (3.24) tends to the left hand side of (3.23) and similarly for the
right hand sides.

Corollary 3.6. The discrete error functional tends to zero if the discrete spread
tends to zero.

4. A discrete Backus-Gilbert theory

In this Section are presented formally without going into all the proofs, the
main definitions and properties of my version of the Backus-Gilbert discrete
process, built by similarity with the classical process: similar discrete spread,
discrete x0-norm and discrete boundedness inequality with similar proper-
ties. As already explained, my initial intention was just to check the results
obtained applying the classical theory combined with taking the limit for λ
tending to infinity, but it turned out from my own results as well as from
those of other people, that the discrete theory is very effective and gives very
good numerical results in many cases. Moreover, I found that the way to
write the corresponding approximation is dictated by Theorem 1.2 like in the
continuous case, the difference being, of course the different data set. As a
result, one finds that the form one writes usually a discrete average

fav(x0) =
N∑

i=1

ai(x0)f(xi) . (4.1)

is the only possible one under the adopted assumptions.

Definition 4.1. Let A = A(x0) be a set of real non-negative numbers ai

A = {ai(x0)}N
i=1 , (4.2)

used as coefficients of the average value of a function f ∈ H at a point
x0 ∈ E ⊂ Rm. The set A is called a discrete averaging kernel of f at x0 and
the Euclidean norm of the vector a having as components the coefficients ai

is called the norm ||A|| = ||A(x0)|| of the averaging kernel A.

It is not difficult to prove the following property.

Theorem 4.2. The x0-norm (3.22) of any sectionally continuous function f
which is either zero identically or non-constant on E, is indeed a norm.
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Definition 4.3. For every discrete averaging kernel A at x0, one may define
its discrete spread at x0

s0 = s(x0,A) =
12
m

N∑
i=1

Jia
2
i (x0) , (4.3)

the factors Ji = J(xi,x0) = ||xi − x0||2 called the spread’s coefficients, mea-
suring the ”location separation” between the nodes xi and the target point
x0.

Remark 4.4. Like with the ”deltaness” property in the classical Backus-
Gilbert theory, these coefficients depend upon the distances between the
nodes xi and the current point x0 through a ”sink” function.

Definition 4.5. A discrete averaging kernel A = {ai(x0)}N
i=1 is called unimod-

ular if
N∑

i=1

ai(x0) = 1.

Theorem 4.6. For every unimodular averaging kernel and every function f
belonging to CE or to L2, the error functional

E(f,x0) = fav(x0)− f(x0) (4.4)

with fav given by (4.1) is bounded, satisfies the inequality

|E(f,x0)|x0 ≤ ||E||x0 ||f ||x0 , (4.5)

and its x0-norm is given by

||E||x0 =
√

m

12
s(x0,A) . (4.6)

Proof. Using (4.1) and the unimodularity of the averaging kernel, we may
write

E(f,x0) =
N∑

i=1

ai(x0)[f(xi)− f(x0)] =
N∑

i=1

uivi (4.7)

with

ui =
√

Jiai(x0) and vi =
f(xi)− f(x0)√

Ji

, (4.8)

so that applying the Cauchy-Schwarz inequality we get

|E(f,x0)| ≤

√√√√ N∑
i=1

Jia2
i (x0)

√√√√ N∑
i=1

|f(xi)− f(x0)|2
Ji

. (4.9)

However, the first factor on the right is the discrete spread and the second
one is the x0-norm of f so that

|E(f,x0)| ≤
√

m

12
s (x0,A) ||f ||x0 , (4.10)

Hence, the linear functional E(f,x0) is bounded, its norm ||E||x0 being
not larger than any of its upper bounds, in particular not larger than
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√
m
12s (x0,A), which proves inequality (4.5). As to (4.6), consider the func-

tion p(x) = ||x − x0||2q(x) with q(x) continuous in E and satisfying the
condition q(xi) = ai(x0) for i = 1, . . . , N . It turns out that the inequality
(4.10) is actually an equality for f(x) = p(x):

|E(p,x0)| =
√

m

12
s (x0,A) ||p||x0 . (4.11)

Indeed, the error functional (4.4) corresponding to f(x) = p(x) is equal just
to fav(x0) as p(x0) = 0, so that in this case we get using (4.1) E(p,x0) =∑N

i=1 aip(xi). However, p(xi) = ||xi − x0||2q(xi) and ||xi − x0||2 = Ji while
q(xi) = ai(x0), so that p(xi) = Jiai(x0) and therefore

E(p,x0) =
N∑

i=1

a2
i (x0)Ji =

√√√√ N∑
i=1

a2
i (x0)Ji

√√√√ N∑
i=1

a2
i (x0)Ji . (4.12)

On the other hand, using the definition of the x0-norm we find that

||p||x0 =

√√√√ N∑
i=1

|p(xi)− p(x0)|2
Ji

=

√√√√ N∑
i=1

|p(xi)|2
Ji

=

√√√√ N∑
i=1

a2
i (x0)J1 , (4.13)

enabling us to replace one of the square roots in (4.12) by the x0-norm
||p||x0 , whereas using the definition (4.3) of the discrete spread,, we find
that we may replace the second square root in the right hand side of (4.12)
by
√

m
12s(x0,A), obtaining precisely (4.11). �

Based on this result, we arrive to the following easy to prove pointwise
convergence theorem.

Theorem 4.7. For any sequence A(ν) (ν = 1, 2, . . .) of x0− restricted uni-
modular discrete averaging kernels, the sequence f

(ν)
av (x0) tends to the exact

value f(x0) for every x0, if and only if lim
n→∞

s
(ν)
0 = lim

ν→∞
s
(
x0,A(ν)

)
= 0 .

In order to obtain the optimal average one solve here also a variational
problem using also a Lagrange multiplier, the coefficients and the multiplier
satisfying the same system of equations

∂τ

∂ak
= 0 for k = 1, . . . , N and

∂τ

∂η
= 0 . (4.14)

Hence, the solution of this equation is

ak =
mη

24||x0 − xk||2
(k = 1, . . . , N) . (4.15)

with

η =
24
m

(
N∑

i=1

1
||x0 − xi||2

)−1

. (4.16)

Substituting the obtained value of η into the expression of ak, we obtain
precisely the components of ǎ(x0) given by (3.5), where the components of
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this vector are denoted using i as index instead of k. Hence we get again
Shepard formula.
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