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On Grüss-type inequalities for positive
linear operators
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Abstract. The classical form of Grüss’ inequality gives an estimate of
the difference between the integral of the product and the product of the
integrals of two functions in C[a, b]. It was first published by G. Grüss
in [7]. The aim of this article is to discuss Grüss-type inequalities in
C(X), the set of continuous functions defined on a compact metric space
X. We consider a functional L(f) := H(f ; x), where H : C(X) → C(X)
is a positive linear operator and x ∈ X is fixed. Generalizing a result of
Acu et al. [1], a quantitative Grüss-type inequality is obtained in terms
of the least concave majorant of the classical modulus of continuity.
The interest is in the degree of non-multiplicativity of the functional
L. Moreover, for the case X = [a, b] we improve the inequality and
apply it to various known operators, in particular those of Bernstein-,
convolution- and Shepard-type.
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1. Introduction

The classical form of Grüss’ inequality gives an estimate of the difference
between the integral of the product and the product of the integrals of two
functions in C[a, b]. It was first published by G. Grüss in [7]. The aim of this
article is to discuss Grüss-type inequalities in C(X), the set of continuous
functions defined on a compact metric space X. We consider a functional
L(f) := H(f ;x), where H : C(X) → C(X) is a positive linear operator
and x ∈ X is fixed. Generalizing a result of Acu et al. [1], a quantitative
Grüss-type inequality is obtained in terms of the least concave majorant of
the classical modulus of continuity. The interest is in the degree of non-
multiplicativity of the functional L. Moreover, for the case X = [a, b] we
improve the inequality and apply it to various known operators, in particular
those of Bernstein-, convolution- and Shepard-type.
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2. Auxiliary results

Before giving our main results, we need some introductory notions that will
be used in the sequel. Let C(X) = CR((X, d)) represent the Banach lattice of
real-valued continuous functions defined on the compact metric space (X, d).
Then we have the following definition:

Definition 2.1. Let f ∈ C(X). If, for t ∈ [0,∞), the quantity

ωd(f ; t) := sup {|f(x)− f(y)| , d(x, y) ≤ t}

is the usual modulus of continuity, then its least concave majorant is given
by

ω̃d(f, t) =

 sup
0≤x≤t≤y≤d(X),x 6=y

(t−x)ωd(f,y)+(y−t)ωd(f,x)
y−x for 0 ≤ t ≤ d(X) ,

ωd(f, d(X)) if t > d(X) ,

and d(X) < ∞ is the diameter of the compact space X.

For 0 < r ≤ 1, let Lipr be the set of all functions g ∈ C(X) with the
property that

|g|Lipr
:= sup

d(x,y)>0

|g(x)− g(y)| /dr(x, y) < ∞.

Lipr is a dense subspace of C(X) equipped with the supremum norm ‖·‖∞,
and |·|Lipr

is a seminorm on Lipr.
We also need to define the K−functional with respect to (Lipr, |·|Lipr

),
which is given by

K (t, f ;C(X), Lipr) := inf
g∈Lipr

{
‖f − g‖∞ + t · |g|Lipr

}
,

for f ∈ C(X) and t ≥ 0.
Another tool for some proofs that follow is a lemma of Brudny̌i (see [10])

that gives the relationship between the K-functional and the least concave
majorant of the modulus of continuity.

Lemma 2.2. Every continuous function f on X satisfies

K

(
t

2
, f ;C(X), Lip1

)
=

1
2
· ω̃d(f, t), 0 ≤ t ≤ d(X).

In the case X = [a, b], we also have

K

(
t

2
, f ;C[a, b], C1[a, b]

)
:= inf

g∈C1[a,b]

{
‖f − g‖∞ +

t

2
· ‖g′‖∞

}
=

1
2
· ω̃(f ; t), t ≥ 0.
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3. Grüss-type inequalities in a compact metric space

What we do here is generalize Theorem 4 in [1] in the case of a compact
metric space.

We consider (X, d) a compact metric space, x ∈ X fixed, with diameter
d(X) > 0. Now let H : C(X) → C(X) be a positive linear operator reproduc-
ing constant functions. We define the positive linear functional H(·;x) and
consider the positive bilinear functional

D(f, g) := H(f · g;x)−H(f ;x) ·H(g;x).

It was remarked after Theorem 4 in [1] that the assertion given there
can be generalized by replacing ([a, b], |·|) by a compact metric space (X, d),
the second moment H((e1 − x)2;x) by H(d2(·, x);x), and the K-functional
K(·, f ;C[a, b], C1[a, b]) by K(·, f ;C(X), Lip1).

We then obtain the following result:

Theorem 3.1. If f, g ∈ C(X), (X, d) a compact metric space and x ∈ X fixed,
then the inequality

|D(f, g)| ≤ 1
4
ω̃d

(
f ; 4
√

H(d2(·, x);x)
)
· ω̃d

(
g; 4
√

H(d2(·, x);x)
)

(3.1)

holds.

Proof. Let f, g ∈ C[a, b] and r, s ∈ Lip1. We use the Cauchy-Schwarz inequal-
ity for positive linear functionals:

|H(f ;x)| ≤ H(|f | ;x) ≤
√

H(f2;x) ·H(1;x) =
√

H(f2;x),

so we have
D(f, f) = H(f2;x)−H(f ;x)2 ≥ 0.

Hence D is a positive bilinear form on C(X). Using Cauchy-Schwarz for D
gives us

|D(f, g)| ≤
√

D(f, f)D(g, g) ≤ ‖f‖∞ · ‖g‖∞ .

Because H : C(X) → C(X) is a positive linear operator reproducing constant
functions, H(f ;x), with fixed x ∈ X, is a positive linear functional that we
can represent as follows

H(f ;x) :=
∫

X

f(t)dµx(t),

where µx is a Borel probability measure on X, i.e.,
∫

X
dµx(t) = 1. For r as

above, we have

D(r, r) = H(r2;x)−H(r;x)2 =
∫

X

r2(t)dµx(t)−
(∫

X

r(u)dµx(u)
)2

=
∫

X

(
r(t)−

∫
X

r(u)dµx(u)
)2

dµx(t)

=
∫

X

(∫
X

(r(t)− r(u)) dµx(u)
)2

dµx(t)
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≤
∫

X

(∫
X

(r(t)− r(u))2 dµx(u)
)

dµx(t)

≤ |r|2Lip1

∫
X

(∫
X

d2(t, u)dµx(u)
)

dµx(t)

≤ |r|2Lip1

∫
X

(∫
X

[d(t, x) + d(x, u)]2 dµx(u)
)

dµx(t)

= |r|2Lip1

∫
X

∫
X

{
d2(t, x) + 2 · d(t, x) · d(x, u) + d2(x, u)

}
dµx(u)dµx(t)

= |r|2Lip1

[∫
X

d2(t, x)dµx(t)+2

∫
X

∫
X

d(t, x)d(x, u)dµx(u)dµx(t)+

∫
X

d2(x, u)dµx(u)

]
= |r|2Lip1

[
H(d2(·, x); x)+2

(∫
X

d(t, x)dµx(t)

)(∫
X

d(u, x)dµx(u)

)
+H(d2(·, x); x)

]
= |r|2Lip1

[
H(d2(·, x);x) + 2H(d(·, x);x) ·H(d(·, x);x) + H(d2(·, x);x)

]
= |r|2Lip1

[
2H(d2(·, x);x) + 2H(d(·, x);x)2

]
≤ |r|2Lip1

[
2H(d2(·, x);x) + 2H(d2(·, x);x)

]
= 4 |r|2Lip1

·H(d2(·, x);x).

For r, s as above, we have the estimate

|D(r, s)| ≤
√

D(r, r)D(s, s) ≤ 4 |r|Lip1
· |s|Lip1

·H(d2(·, x);x).

Moreover, for f ∈ C(X) and s ∈ Lip1, the inequality

|D(f, s)| ≤
√

D(f, f)D(s, s) ≤ 2 ‖f‖∞ · |s|Lip1
·
√

H(d2(·, x);x)

holds. Similarly, if r ∈ Lip1 and g ∈ C(X), we have

|D(r, g)| ≤
√

D(r, r)D(g, g) ≤ 2 ‖g‖∞ · |r|Lip1
·
√

H(d2(·, x);x).

Now let f, g ∈ C(X) be fixed and r, s ∈ Lip1 arbitrary. Then

|D(f, g)|
= |D(f − r + r, g − s + s)|
≤ |D(f − r, g − s)|+ |D(f − r, s)|+ |D(r, g − s)|+ |D(r, s)|

≤ ‖f − r‖∞ · ‖g − s‖∞ + 2 ‖f − r‖∞ · |s|Lip1
·
√

H(d2(·, x);x)

+ 2 ‖g − s‖∞ · |r|Lip1
·
√

H(d2(·, x);x) + 4 |r|Lip1
· |s|Lip1

·H(d2(·, x);x)

= ‖f − r‖∞ · {‖g − s‖∞ + 2 |s|Lip1
·
√

H(d2(·, x);x)}

+ 2 |r|Lip1
·
√

H(d2(·, x);x) · {‖g − s‖∞ + 2 |s|Lip1
·
√

H(d2(·, x);x)}

= {‖f − r‖∞ + 2 |r|Lip1

√
H(d2(·, x);x)}

· {‖g − s‖∞ + 2 |s|Lip1

√
H(d2(·, x);x)}.
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We now pass to the infimum over r and s, respectively, which leads us to

|D(f, g)|

≤ K
(√

4H(d2(·, x);x), f ;C(X), Lip1

)
K
(√

4H(d2(·, x);x), g;C(X), Lip1

)
=

1
2
ω̃
(
f ; 2 ·

√
4H(d2(·, x);x)

)
· 1
2
ω̃
(
g; 2 ·

√
4H(d2(·, x);x)

)
=

1
4
ω̃
(
f ; 4
√

H(d2(·, x);x)
)
· ω̃
(
g; 4
√

H(d2(·, x);x)
)

.

This ends our proof. �

3.1. Shepard-type operators

The latter result from Theorem 3.1 can be applied to Shepard-type operators
defined in the general setting. An example of such Shepard-type operators
goes back to the work of I.K. Crain and B.K. Bhattacharyya [3] and D.
Shepard [11] and was first investigated by W.J. Gordon and J.A. Wixom [6].
Other important references are e.g. the Habilitationsschrift [4] and the pa-
per [5], both by H. Gonska.

In both of the latter references, we have the following:

Definition 3.2. Let (X, d) be a metric space and let x1, . . . , xn be a finite
collection of distinct points in X. We further suppose that for each n-tuple
(x1, . . . , xn) we have a finite given sequence (µ1, . . . , µn) of real numbers µi >
0. Then the Crain-Bhattacharyya-Shepard (CBS) operator is given by

Sn(f ;x) := Sµ1,...,µn
x1,...,xn

(f, x)

:=

{∑n
i=1 f(xi) · d(x,xi)

−µi∑n
l=1 d(x,xl)

−µl
, x 6∈ {x1, . . . , xn}

f(xi) , otherwise.

Here x ∈ X and f is a real-valued function defined on X.

Remark 3.3. From the above definition, we can state that Sn is a positive
linear operator on C(X) that satisfies Sn(1X , x) = 1 for all x ∈ X. Also it
holds that Sn(f, xi) = xi, for all xi, 1 ≤ i ≤ n.

We now restrict ourselves to the simpler case 1 ≤ µ = µ1 = . . . = µn

and denote the corresponding operator by Sµ
n . Now let H := Sµ

n . Then we
have the following main result:

Theorem 3.4. Let f, g ∈ C(X) be two given functions. Then the inequality

|D(f, g)|≤ 1
4
ω̃d

f ; 4

√√√√ n∑
i=1

d(x, xi)2−µ∑n
l=1 d(x, xl)−µ

ω̃d

g; 4

√√√√ n∑
i=1

d(x, xi)2−µ∑n
l=1 d(x, xl)−µ


holds, for x 6∈ {x1, . . . , xn}. For x = xi, |D(f, g)| = 0.
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Proof. If we substitute the CBS operator Sµ
n in the result of Theorem 3.1,

the following inequality

|D(f, g)| = |Sµ
n(f · g;x)− Sµ

n(f ;x) · Sµ
n(g;x)|

≤ 1
4
ω̃d

(
f ; 4
√

Sµ
n(d2(·, x);x)

)
· ω̃d

(
g; 4
√

Sµ
n(d2(·, x);x)

)
holds. The second moment of the CBS-operator can be written as

Sµ
n(d2(·, x);x) =

{∑n
i=1

d(x,xi)
2−µ∑n

l=1 d(x,xl)−µ , x 6∈ {x1, . . . , xn},
0 , otherwise.

(3.2)

Using (3.2) in the previous estimate, we get the claimed result and this ends
our proof. �

Remark 3.5. We can also apply the Grüss-type inequality for the CBS oper-
ator defined on X = [a, b], but we are not doing this here. What will be done
in the sequel is improve the inequality from Theorem 4 in [1] and then apply
it to different types of operators.

4. Grüss-type inequalities in C[a, b]

In a recent paper [1], Grüss-type inequalities in C[a, b] were treated. The
degree of non-multiplicativity of a positive linear operator H : C[a, b] →
C[a, b] that reproduces constant functions was examined. For fixed x ∈ [a, b]
and two functions f, g ∈ C[a, b], the positive linear functional H(·;x) was
defined and the positive bilinear functional

D(f, g) := H(f · g;x)−H(f ;x) ·H(g;x)

was considered. We improve a result from the above stated article (see The-
orem 4) by removing the constant

√
2 in the arguments of the least concave

majorants. The idea of the proof was given by two of the authors of the
article, namely H. Gonska and I. Raşa.

We state and prove the following:

Theorem 4.1. If f, g ∈ C[a, b] and x ∈ [a, b] is fixed, then the inequality

|D(f, g)| ≤ 1
4
ω̃
(
f ; 2
√

H((e1 − x)2;x)
)
· ω̃
(
g; 2
√

H((e1 − x)2;x)
)

holds, where e1 denotes the first monomial given by e1(t) = t, t ∈ [a, b].

Proof. Let f, g ∈ C[a, b] and r, s ∈ C1[a, b]. Just like in the proof of Theorem
4 in [1], we use the Cauchy-Schwarz inequality for positive linear functionals:

|H(f ;x)| ≤ H(|f | ;x) ≤
√

H(f2;x) ·H(1;x) =
√

H(f2;x),

so we have
D(f, f) = H(f2;x)−H(f ;x)2 ≥ 0.

Then we can say that D is a positive bilinear form on C[a, b]. Using Cauchy-
Schwarz for D, we obtain

|D(f, g)| ≤
√

D(f, f)D(g, g) ≤ ‖f‖∞ · ‖g‖∞ .
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As stated before, H : C[a, b] → C[a, b] is a positive linear operator that
reproduces constant functions, so that H(·;x), with fixed x ∈ [a, b], is a
positive linear functional that can be represented as

H(f ;x) =
∫ b

a

f(t)dµx(t),

where µx is a probability measure on [a, b], i.e.,
∫ b

a
dµx(t) = 1. The interest

is in finding an upper bound for the following:

|D(f, g)| = |D(f − r + r, g − s + s)|
≤ |D(f − r, g − s)|+ |D(f − r, s)|+ |D(r, g − s)|+ |D(r, s)| .

What is different from Theorem 4 in [1] is that we replace a part of the
proof with the following results. We first consider Theorem 12 from the same
paper [1]. Let the function h in this theorem be equal to e1. Then we can
write

|D(r, s)| ≤ ‖r′‖∞ · ‖s′‖∞ · |D(e1, e1)|

and we know that

0 ≤ |D(e1, e1)| = H(e2;x)−H(e1;x)2 ≤ H((e1 − x)2;x).

This last inequality is true, because

H((e1 − x)2;x) = H(e2 − 2 · e1 · x + x2;x)

= H(e2;x)− 2 · x ·H(e1;x) + x2 ·H(e0;x)

≥ H(e2;x)−H(e1;x)2

is equivalent to

x2 − 2 · x ·H(e1;x) + H(e1;x)2 = (x−H(e1;x))2 ≥ 0.

We then get

|D(r, s)| ≤ ‖r′‖∞ · ‖s′‖∞ ·H((e1 − x)2;x).

For f − r ∈ C[a, b] and g − s ∈ C[a, b] we have

|D(f − r, g − s)| ≤ ‖f − r‖∞ · ‖g − s‖∞ .

Moreover, if f − r ∈ C[a, b] and s ∈ C1[a, b], then

|D(f − r, s)| ≤
√

D(f − r, f − r) ·D(s, s)

≤ ‖f − r‖∞ · ‖s′‖∞ ·
√

H((e1 − x)2;x)

and similarly, for r ∈ C1[a, b], g − s ∈ C[a, b], we obtain

|D(r, g − s)| ≤ ‖r′‖∞ · ‖g − s‖∞ ·
√

H((e1 − x)2;x).
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If we combine all these inequalities, we have

|D(f, g)| ≤ ‖f − r‖∞ · ‖g − s‖∞ + ‖f − r‖∞ · ‖s′‖∞ ·
√

H((e1 − x)2;x)

+ ‖r′‖∞ · ‖g − s‖∞ ·
√

H((e1 − x)2;x) + ‖r′‖∞ · ‖s′‖∞ ·H((e1 − x)2;x)

= ‖f − r‖∞ ·
{
‖g − s‖∞ + ‖s′‖∞ ·

√
H((e1 − x)2;x)

}
+ ‖r′‖∞ ·

√
H((e1 − x)2;x) ·

{
‖g − s‖∞ + ‖s′‖∞ ·

√
H((e1 − x)2;x)

}
=
{
‖f − r‖∞ + ‖r′‖∞ ·

√
H((e1 − x)2;x)

}
·
{
‖g − s‖∞ + ‖s′‖∞ ·

√
H((e1 − x)2;x)

}
.

We now pass to the infimum with respect to each of r, s and we obtain the
wanted result:

|D(f, g)|

≤ K
(√

H((e1 − x)2;x), f ;C0, C1
)
·K

(√
H((e1 − x)2;x), g;C0, C1

)
=

1
2
ω̃
(
f ; 2
√

H((e1 − x)2;x)
)
· 1
2
ω̃
(
g; 2
√

H((e1 − x)2;x)
)

=
1
4
ω̃
(
f ; 2
√

H((e1 − x)2;x)
)
· ω̃
(
g; 2
√

H((e1 − x)2;x)
)

.

This ends our proof. �

At present it is an open problem if the improved inequality in Theo-
rem 4.1 can be generalized to C(X) with (X, d) a compact metric space.

5. Applications

We can now apply the above improved result for different kinds of operators,
like Bernstein- , convolution- and a special kind of Shepard-type operators.

5.1. Bernstein operator

As a first example, we have the following remark:

Remark 5.1. We consider H := Bn, the Bernstein operator defined by

Bn(f ;x) :=
n∑

k=0

f

(
k

n

)
·
(

n

k

)
· xk(1− x)n−k,

where f ∈ C[0, 1] and x ∈ [0, 1], n = 1, 2, . . .. It is well known that the second
moment of the Bernstein polynomial is equal to

Bn((e1 − x)2;x) =
x(1− x)

n
.
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Using Theorem 4.1, we get the Grüss-type inequality for the Bernstein oper-
ator as follows:

|Bn(fg;x)−Bn(f ;x)Bn(g;x)|

≤ 1
4
ω̃
(
f ; 2
√

Bn((e1 − x)2;x)
)
· ω̃
(
g; 2
√

Bn((e1 − x)2;x)
)

=
1
4
ω̃

(
f ; 2

√
x(1− x)

n

)
· ω̃

(
g; 2

√
x(1− x)

n

)

≤ 1
4
· ω̃
(

f ;
1√
n

)
· ω̃
(

g;
1√
n

)
,

for two functions f, g ∈ C[0, 1].

5.2. Convolution-type operators

These types of operators were treated by many authors, like J.-D. Cao, H.
Gonska and H.-J. Wenz (see [2]). One of the first authors to give the following
definition was H.G. Lehnhoff in [8]:

Definition 5.2. For the case X = [−1, 1], given a function f ∈ C(X) and any
natural number n, the convolution operator Gm(n) is given by

Gm(n)(f, x) :=
1
π
·
∫ π

−π

f(cos(arccos(x) + υ)) ·Km(n)(υ)dυ,

where the kernel Km(n) is a positive and even trigonometric polynomial of
degree m(n) satisfying ∫ π

−π

Km(n)(υ)dυ = π,

meaning that Gm(n)(1, x) = 1 for x ∈ X.

It is clear that Gm(n)(f, ·) is an algebraic polynomial of degree m(n)
and the kernel Km(n) has the following form:

Km(n)(υ) =
1
2

+
m(n)∑
k=1

ρk,m(n) · cos(kυ),

for υ ∈ [−π, π].
We also need another result that goes back to H.G. Lehnhoff [8]:

Lemma 5.3. For x ∈ X the inequality

Gm(n)((e1 − x)2, x)

= x2

{
3
2
− 2 · ρ1,m(n) +

1
2
· ρ2,m(n)

}
+ (1− x2) ·

{
1
2
− 1

2
· ρ2,m(n)

}
holds. Here e1 denotes the first monomial given by e1(t) = t for |t| ≤ 1.

This lemma gives the second moment of the convolution-type operator,
which we will need in the sequel.

Furthermore, we take into account different degrees m(n), different con-
volution operators and Grüss-type inequalities, respectively.
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5.2.1. Convolution-type operator with Fejér-Korovkin kernel. If we consider
degree m(n) = n− 1, for n ∈ N, the Fejér-Korovkin kernel is given by

Kn−1(υ) =
1

n + 1

 sin
(

π
n+1

)
· cos

(
(n + 1)υ

2

)
cos(υ)− cos

(
π

n+1

)
2

with

ρ1,n−1 = cos
(

π

n + 1

)
, ρ2,n−1 =

n

n + 1
cos
(

2π

n + 1

)
+

1
n + 1

.

Using the latter relations, we get

Gn−1

(
(e1 − x)2;x

)
≤
∣∣∣∣32 − 2 · ρ1,n−1 +

1
2
ρ2,n−1

∣∣∣∣+ 1
2
|1− ρ2,n−1|

≤
∣∣∣∣32 − 2 cos

(
π

n + 1

)
+

1
2(n + 1)

+
n

2(n + 1)
cos
(

2π

n + 1

)∣∣∣∣
+

1
2
·
∣∣∣∣1− 1

n + 1
− n

n + 1
· cos

(
2π

n + 1

)∣∣∣∣
≤ 3 ·

(
π

n + 1

)2

+
(

π

n + 1

)2

= 4 ·
(

π

n + 1

)2

.

Having this preamble, we can now state the following result.

Theorem 5.4. If we consider f, g ∈ C(X) and the convolution-type operator
of degree n− 1 with the Fejér-Korovkin kernel, we have

|D(f, g)| = |Gn−1(f · g;x)−Gn−1(f ;x) ·Gn−1(g;x)|

≤ 1
4
ω̃

(
f ;

4π

n + 1

)
· ω̃
(

g;
4π

n + 1

)
= O

(
ω̃

(
f ;

1
n

)
· ω̃
(

g;
1
n

))
.

5.2.2. Convolution-type operator with de La Vallée Poussin kernel. We now
have degree m(n) = n ∈ N0 and we define the de La Vallée Poussin kernel by

Vn(υ) =
(n!)2

(2n)!
·
(
2 cos

(υ

2

))2n

with

ρ1,n =
n

n + 1
, ρ2,n =

(n− 1)n
(n + 1)(n + 2)

.
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Using the two relations, we have the second moment:

Gn

(
(e1 − x)2;x

)
≤
∣∣∣∣32 − 2n

n + 1
+

1
2
· n(n− 1)
(n + 1)(n + 2)

∣∣∣∣
+

1
2

∣∣∣∣1− n(n− 1)
(n + 1)(n + 2)

∣∣∣∣
≤
∣∣∣∣ 3
(n + 1)(n + 2)

∣∣∣∣+ ∣∣∣∣ 2n + 1
(n + 1)(n + 2)

∣∣∣∣
≤ 2

n + 1
.

Taking this into account, we give the following theorem:

Theorem 5.5. If we consider the convolution-type operator with the de La
Vallée Poussin kernel we have

|D(f, g)| = |Gn(f · g;x)−Gn(f ;x) ·Gn(g;x)|

≤ 1
4
ω̃

(
f ;

2
√

2√
n + 1

)
· ω̃

(
g;

2
√

2√
n + 1

)

= O
(

ω̃

(
f ;

1√
n

)
· ω̃
(

g;
1√
n

))
.

5.2.3. Convolution-type operator with Jackson kernel. Finally, the last op-
erator we consider is of degree m(n) = 2n − 2, with n ∈ N. For this, the
Jackson kernel has the form

J2n−2(υ) =
3

2n(2n2 + 1)
·

(
sin
(
nυ

2

)
sin
(

υ
2

) )4

with

ρ1,2n−2 =
2n2 − 2
2n2 + 1

, ρ2,2n−2 =
2n3 − 11n + 9

n(2n2 + 1)

and the second moment

G2n−2

(
(e1 − x)2;x

)
≤
∣∣∣∣32 − 4n2 − 4

2n2 + 1
+

1
2
· 2n3 − 11n + 9

n(2n2 + 1)

∣∣∣∣
+

1
2
·
∣∣∣∣1− 2n3 − 11n + 9

n(2n2 + 1)

∣∣∣∣
≤
∣∣∣∣ 9
2n(2n2 + 1)

∣∣∣∣+ ∣∣∣∣ 12n− 9
2n(2n2 + 1)

∣∣∣∣
≤ 6

2n2 + 1
≤ 3

n2
.

The result is as follows:



562 Maria-Daniela Rusu

Theorem 5.6. If we consider the convolution-type operator with the Jackson
kernel we have

|D(f, g)| = |G2n−2(f · g;x)−G2n−2(f ;x) ·G2n−2(g;x)|

≤ 1
4
ω̃

(
f ;

2
√

3
n

)
· ω̃

(
g;

2
√

3
n

)

= O
(

ω̃

(
f ;

1
n

)
· ω̃
(

g;
1
n

))
.

As we can see, the best degrees of approximation are obtained when
dealing with the Grüss-type inequality for convolution operators in the cases
of Fejér-Korovkin and Jackson kernels.

Remark 5.7. Another possibility is to apply the above obtained Grüss in-
equality for the Shepard-type operator defined on C[0, 1]. But this result,
just like in the case of the Hermite-Fejér operator, is disappointing (see Re-
mark 7 in [1]).

6. A pre-Grüss-type inequality for the CBS operator

We now try to find a pre-Grüss inequality for the CBS-operator. Just like
in the case of the pre-Grüss-type inequality for the Hermite-Fejér operator,
obtained in [1] (see Theorem 8), the idea is to find a different approach.
We consider the special case X = [0, 1], d(x, y) = |x− y|. Then, taking
H := Sµ

n+1 the CBS operator based on n + 1 equidistant points xi = i
n , for

0 ≤ i ≤ n and 1 ≤ µ ≤ 2, we get:

Theorem 6.1. Let f, g ∈ C[0, 1]. Then the inequality

|D(f, g)|

≤ 1
2

min
{
‖f‖∞ ω̃d

(
g; 4Sµ

n+1 (|e1 − x| ;x)
)
; ‖g‖∞ ω̃d

(
f ; 4Sµ

n+1 (|e1 − x| ;x)
)}

holds.

Proof. We want to estimate

|D(f, g)| =
∣∣Sµ

n+1(f · g;x)− Sµ
n+1(f ;x) · Sµ

n+1(g;x)
∣∣ .

For two fixed functions f, g ∈ C[0, 1] and an arbitrary s ∈ C1[0, 1], we have

|D(f, g)| = |D(f, g − s + s)| ≤ |D(f, g − s)|+ |D(f, s)| . (6.1)
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First, if we have f ∈ C[0, 1] and s ∈ C1[0, 1], we continue with

|D(f, s)| =
∣∣Sµ

n+1(f · s;x)− Sµ
n+1(f ;x) · Sµ

n+1(s;x)
∣∣

=
∣∣Sµ

n+1(f(s− Sµ
n+1(s;x));x)

∣∣
=
∣∣Sµ

n+1,t(f(t)(s(t)− s(x) + s(x)− Sµ
n+1(s;x));x)

∣∣
≤ ‖f‖∞ · Sµ

n+1,t(|s(t)− s(x)|+
∣∣s(x)− Sµ

n+1(s;x)
∣∣ ;x)

≤ ‖f‖∞ · Sµ
n+1(‖s′‖∞ · |e1 − x|+ ‖s′‖∞ · Sµ

n+1(|e1 − x| ;x);x)

= 2 · ‖f‖∞ · ‖s′‖∞ · Sµ
n+1(|e1 − x| ;x).

If we now use this result in (6.1), we get

|D(f, g)| ≤ ‖f‖∞ · ‖g − s‖∞ + 2 · ‖f‖∞ · ‖s′‖∞ · Sµ
n+1(|e1 − x| ;x)

= ‖f‖∞ {‖g − s‖∞ + 2 · ‖s′‖∞ · Sµ
n+1(|e1 − x| ;x)}.

Passing to the infimum over s ∈ C1[0, 1], it follows

|D(f, g)| ≤ ‖f‖∞ ·K(2 · Sµ
n+1(|e1 − x| ;x), g;C[0, 1], C1[0, 1])

=
1
2
· ‖f‖∞ · ω̃

(
g, 4 · Sµ

n+1(|e1 − x| ;x)
)
.

The same estimate holds if we interchange f and g. Putting both inequalities
together, we get the result we were looking for. �

In the above result, the first absolute moment of the CBS operator
appears, which can be represented by

Sµ
n+1(|e1 − x| ;x) =


∑n

i=0
|x− i

n |1−µ∑n
l=0 |x− l

n |−µ , x 6∈ {x0, . . . , xn}

0 , otherwise.

The idea is to further estimate this quantity. For that, we use an idea from [5]
(see proof of Theorem 4.3).

We distinguish three important cases for different values of µ.
The first case is µ = 1. The first absolute moment of the CBS operator
becomes

S1
n+1(|e1 − x| ;x) =

{∑n
i=0

1∑n
l=0 |x− l

n |−1 , x 6∈ {x0, . . . , xn}

0 , otherwise

=

(n + 1)
(∑n

l=0
1

|x− l
n |

)−1

, x 6∈ {x0, . . . , xn}

0 , otherwise.
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Let now l0 be defined by l0
n < x < l0+1

n . Then we have

1
n + 1

·

(
n∑

l=0

1∣∣x− l
n

∣∣
)
≥ n

n + 1
·

{
l0∑

l=0

1
l0 + 1− l

+
n∑

l=l0+1

1
l − l0

}

≥ n

n + 1

{∫ l0+2

1

1
x

dx +
∫ n−l0+1

1

1
x

dx

}
=

n

n + 1
ln((l0 + 2) · (n− l0 + 1))

≥ n

n + 1
· ln(2n + 2),

and the second absolute moment is then

S1
n+1(|e1 − x| ;x) ≤ n + 1

n · ln(2n + 2)
,

for x 6∈ {x0, . . . , xn}. In the end we get

|D(f, g)|

≤ 1
2

min
{
‖f‖∞ · ω̃d

(
g;

4(n + 1)
n · ln (2n + 2)

)
, ‖g‖∞ · ω̃d

(
f ;

4(n + 1)
n · ln (2n + 2)

)}
.

For the other two cases we will consider, first let l0 defined by∣∣∣∣x− l0
n

∣∣∣∣ = min
{∣∣∣∣x− l

n

∣∣∣∣ : 0 ≤ l ≤ n

}
.

Then for the case x 6∈ {x0, . . . , xn}, we have

Sµ
n+1(|e1 − x| ;x) ≤ |x− xl0 |

µ ·
n∑

i=0

|x− xi|1−µ

≤ 1
n

+
(

1
n

)
·

{∑
i<l0

|x− xi|1−µ +
∑
i>l0

|x− xi|1−µ

}

≤ 1
n

+
(

1
n

)
·

{
l0−1∑
k=0

(
1
2

+ k

)1−µ

+
n−l0−1∑

k=0

(
1
2

+ k

)1−µ
}

,

with 0 ≤ l0 ≤ n. Either of the two last sums may be empty. Estimating the
result in the accolades from above, we get

Sµ
n+1(|e1 − x| ;x) ≤

{
1
n + 1

n ·
[
2µ + 2

2−µ ·
(

n+1
2

)2−µ
]

, for 1 < µ < 2
1
n + 1

n · [4 + 2 · ln(n + 1)] , for µ = 2
.

(6.2)

For 1 < µ < 2, we obtain

|D(f, g)|

≤ 1
2

min
{
‖f‖∞ ω̃d

(
g; 4Sµ

n+1 (|e1 − x| ;x)
)
, ‖g‖∞ ω̃d

(
f ; 4Sµ

n+1 (|e1 − x| ;x)
)}
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where the first absolute moment can be estimated from above as in (6.2). For
µ = 2 we obtain

|D(f, g)|

≤ 1
2

min
{
‖f‖∞ ω̃d

(
g;

20 + 8 · ln(n + 1)
n

)
, ‖g‖∞ ω̃d

(
f ;

20 + 8 · ln(n + 1)
n

)}
.

One can also obtain results for µ > 2. This was done by G. Somor-
jai [12](see also J. Szabados [13] for µ > 4), but we are not treating other
cases in this article.
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