Discrete operators associated with certain integral operators

Ioan Raşa

Abstract

We associate to a given sequence of positive linear integral operators a sequence of discrete operators and investigate the relationship between the two sequences. Several examples illustrate the general results.

Mathematics Subject Classification (2010): 41A36.
Keywords: Positive linear operators.

1. Introduction

Let $I_{n}: C[a, b] \longrightarrow C[a, b], n \geq 1$, be a sequence of positive linear operators of the form

$$
I_{n}(f ; x)=\sum_{k=0}^{n} h_{n, k}(x) A_{n, k}(f), f \in C[a, b], x \in[a, b],
$$

where $h_{n, k} \in C[a, b], h_{n, k} \geq 0$ and

$$
A_{n, k}(f)=\int_{a}^{b} f(t) d \mu_{n, k}(t)
$$

with $\mu_{n, k}$ probability Borel measures on $[a, b], n \geq 1, k=0,1, \ldots, n$.
Let $x_{n, k} \in[a, b]$ be the barycenter of $\mu_{n, k}$, i.e.,

$$
x_{n, k}=\int_{a}^{b} t d \mu_{n, k}(t) .
$$

We associate with the sequence $\left(I_{n}\right)$ the sequence of operators

$$
D_{n}(f ; x)=\sum_{k=0}^{n} h_{n, k}(x) f\left(x_{n, k}\right) .
$$

Generally speaking, the operators D_{n} are simpler than I_{n}. We investigate the properties of D_{n} in relation with those of I_{n}.

2. Some examples

For $n \geq 1$ and $k=0,1, \ldots, n$ let

$$
p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}, x \in[0,1] .
$$

Example 2.1. Let $U_{n}: C[0,1] \longrightarrow C[0,1]$ be the genuine Bernstein-Durrmeyer operators (see [3] and the references therein) defined by

$$
\begin{gathered}
U_{n}(f ; x):=f(0) p_{n, 0}(x)+f(1) p_{n, n}(x)+ \\
+(n-1) \sum_{k=1}^{n-1} p_{n, k}(x) \int_{0}^{1} p_{n-2, k-1}(t) f(t) d t
\end{gathered}
$$

It is easy to see that the associated operators are the classical Bernstein operators

$$
B_{n}(f ; x)=\sum_{k=0}^{n} p_{n, k}(x) f\left(\frac{k}{n}\right) .
$$

Example 2.2. Consider the sequences of real numbers a_{n} and b_{n} such that $0 \leq a_{n}<b_{n} \leq 1, n \geq 1$. In [1] the authors introduced and investigated the operators

$$
C_{n}(f ; x)=\sum_{k=0}^{n} p_{n, k}(x)\left(\frac{n+1}{b_{n}-a_{n}} \int_{\frac{k+a_{n}}{n+1}}^{\frac{k+b_{n}}{n+1}} f(t) d t\right)
$$

where $f \in C[0,1]$ and $x \in[0,1]$.
The associated operators are the Stancu type operators (see [15])

$$
S_{n}(f ; x)=\sum_{k=0}^{n} p_{n, k}(x) f\left(\frac{2 k+a_{n}+b_{n}}{2(n+1)}\right)
$$

In particular, for $a_{n}=0$ and $b_{n}=1,\left(C_{n}\right)$ becomes the sequence of classical Kantorovich operators.
Example 2.3. Let $a, b>-1$ and $\alpha \geq 0$. Consider the positive linear functionals $T_{n, k}: C[0,1] \longrightarrow \mathbb{R}$,

$$
T_{n, k}(f):=\frac{\int_{0}^{1} f(t) t^{c k+a}(1-t)^{c(n-k)+b} d t}{B(c k+a+1, c(n-k)+b+1)},
$$

where $c:=c_{n}:=\left[n^{\alpha}\right]$ and B is the Beta function.
For $f \in C[0,1]$ and $x \in[0,1]$ let

$$
P_{n}(f ; x):=\sum_{k=0}^{n} p_{n, k}(x) T_{n, k}(f), ; n \geq 1
$$

The sequence of positive linear operators $\left(P_{n}\right)$ was introduced by D. Mache (see [5], [6]); it represents a link between the Durrmeyer operators with Jacobi weights (obtained for $\alpha=0$) and the Bernstein operators (obtained as a limiting case when $\alpha \longrightarrow \infty$). Concerning the properties of the operators P_{n} and their relationship with Durrmeyer, Bernstein, and other operators,
see [5], [6], [8], [9], [10], [11]. The semigroup of operators, represented in terms of iterates of P_{n}, is investigated in [2], [9], [10], [11], [12].

Let $e_{i}(x)=x^{i}, x \in[0,1], i=0,1, \ldots$ Then $T_{n, k}\left(e_{0}\right)=1$ and the barycenter of the probability Radon measure $T_{n, k}$ is

$$
T_{n, k}\left(e_{1}\right)=\frac{c k+a+1}{c n+a+b+2} .
$$

As in Section 1, we associate with the sequence $\left(P_{n}\right)$ the simpler sequence of positive linear operators $\left(V_{n}\right)$ defined, for $f \in C[0,1]$ and $x \in[0,1]$, by

$$
V_{n}(f ; x):=\sum_{k=0}^{n} p_{n, k}(x) f\left(\frac{c k+a+1}{c n+a+b+2}\right) .
$$

When $a=b=-1$, or when $\alpha \longrightarrow \infty$, we get the classical Bernstein operators; when $\alpha=0$, the operators V_{n} reduce to the operators considered by D.D. Stancu in [15].

In the next sections we investigate the properties of the operators $\left(V_{n}\right)$ in connection with the properties of $\left(P_{n}\right)$; see also [7].

3. Approximation properties

By direct computation we get

$$
\begin{gathered}
V_{n} e_{0}=e_{0} \\
V_{n} e_{1}=\frac{c n e_{1}+(a+1) e_{0}}{c n+a+b+2} \\
V_{n} e_{2}=\frac{c^{2} n(n-1) e_{2}+c n(c+2 a+2) e_{1}+(a+1)^{2} e_{0}}{(c n+a+b+2)^{2}} .
\end{gathered}
$$

Let us remark that

$$
\lim _{n \rightarrow \infty} V_{n} e_{i}=e_{i}, i=0,1,2,
$$

uniformly on $[0,1]$.
From the classical Korovkin Theorem we infer:
Proposition 3.1. For all $f \in C[0,1]$,

$$
\lim _{n \rightarrow \infty} V_{n} f=f, \text { uniformly on }[0,1] .
$$

In the sequel we shall use the inequality

$$
|L(f)-f(b)| \leq\left(L\left(e_{2}\right)-b^{2}\right) \frac{\left\|f^{\prime \prime}\right\|}{2}, \quad f \in C^{2}[0,1]
$$

where L is a probability Radon measure on $[0,1], b=L\left(e_{1}\right)$ is the barycenter of L, and $\|\cdot\|$ is the uniform norm. To prove this inequality, it suffices to apply the barycenter inequality

$$
L(h) \geq h(b), h \in C[0,1] \text { convex }
$$

to the convex functions $\frac{\left\|f^{\prime \prime}\right\|}{2} e_{2} \pm f$.

Theorem 3.2. For $n \geq 1, x \in[0,1]$, and $f \in C^{2}[0,1]$ we have

$$
\begin{aligned}
& \left|P_{n}(f ; x)-V_{n}(f ; x)\right| \leq \\
& \frac{c^{2} n(n-1) x(1-x)+c n(b-a) x+c n(a+1)+(a+1)(b+1)}{2(c n+a+b+2)^{2}(c n+a+b+3)}\left\|f^{\prime \prime}\right\|
\end{aligned}
$$

Proof. Since the barycenter of $T_{n, k}$ is

$$
\frac{c k+a+1}{c n+a+b+2}
$$

we have

$$
\begin{aligned}
& \left|T_{n, k}(f)-f\left(\frac{c k+a+1}{c n+a+b+2}\right)\right| \leq\left(T_{n, k}\left(e_{2}\right)-\left(\frac{c k+a+1}{c n+a+b+2}\right)^{2}\right) \frac{\left\|f^{\prime \prime}\right\|}{2} \\
& =\frac{(c k+a+1)(c(n-k)+b+1)}{(c n+a+b+2)^{2}(c n+a+b+3)} \frac{\left\|f^{\prime \prime}\right\|}{2} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \left|P_{n}(f ; x)-V_{n}(f ; x)\right| \leq \frac{\left\|f^{\prime \prime}\right\|}{2} \sum_{k=0}^{n} p_{n, k}(x) \frac{(c k+a+1)(c(n-k)+b+1)}{(c n+a+b+2)^{2}(c n+a+b+3)} \\
& =\frac{\left\|f^{\prime \prime}\right\|}{2} \frac{c^{2} n(n-1) x(1-x)+c n(b-a) x+c n(a+1)+(a+1)(b+1)}{(c n+a+b+2)^{2}(c n+a+b+3)}
\end{aligned}
$$

Let us remark that for $\alpha=a=b=0$ the operators P_{n} reduce to the classical Durrmeyer operators M_{n}. Consequently, the previous theorem yields

Corollary 3.3. For $n \geq 1, x \in[0,1]$ and $f \in C^{2}[0,1]$ we have

$$
\begin{aligned}
& \left|M_{n}(f ; x)-\sum_{k=0}^{n} p_{n, k}(x) f\left(\frac{k+1}{n+2}\right)\right| \leq \\
& \quad \leq \frac{n(n-1) x(1-x)+n+1}{2(n+2)^{2}(n+3)}\left\|f^{\prime \prime}\right\| .
\end{aligned}
$$

4. Asymptotic formulae

The moments of the operator V_{n} are defined by

$$
M_{n, m}(x):=V_{n}\left(\left(e_{1}-x e_{0}\right)^{m} ; x\right)=\sum_{k=0}^{n}\left(\frac{c k+a+1}{c n+a+b+2}-x\right)^{m} p_{n, k}(x) .
$$

Let us remark that

$$
M_{n, m}^{\prime}(x)=\sum_{k=0}^{n}\left(\frac{c k+a+1}{c n+a+b+2}-x\right)^{m} p_{n, k}^{\prime}(x)-m M_{n, m-1}(x) .
$$

Since

$$
x(1-x) p_{n, k}^{\prime}(x)=(k-n x) p_{n, k}(x)
$$

we get

$$
\begin{aligned}
x(1-x) M_{n, m}^{\prime}(x) & =\sum_{k=0}^{n}\left(\frac{c k+a+1}{c n+a+b+2}-x\right)^{m}(k-n x) p_{n, k}(x) \\
& -m x(1-x) M_{n, m-1}(x)= \\
& =\frac{c n+a+b+2}{c} \sum_{k=0}^{n}\left(\frac{c k+a+1}{c n+a+b+2}-x\right)^{m+1} p_{n, k}(x) \\
& -\frac{a+1-(a+b+2) x}{c} \sum_{k=0}^{n}\left(\frac{c k+a+1}{c n+a+b+2}-x\right)^{m} p_{n, k}(x) \\
& -m x(1-x) M_{n, m-1}(x) .
\end{aligned}
$$

Consequently, the following recurrence formula for the moments of V_{n} is valid:
Theorem 4.1. For all $n \geq 1$ and $m \geq 1$,

$$
\begin{aligned}
& (c n+a+b+2) M_{n, m+1}(x)=c x(1-x) M_{n, m}^{\prime}(x)+ \\
& +(a+1-(a+b+2) x) M_{n, m}(x)+c m x(1-x) M_{n, m-1}(x) .
\end{aligned}
$$

It is easy to verify that

$$
M_{n, 0}(x)=1, M_{n, 1}(x)=\frac{a+1-(a+b+2) x}{c n+a+b+2} .
$$

By using the recurrence formula we get

$$
M_{n, 2}(x)=\frac{c^{2} n x(1-x)+(a+1-(a+b+2) x)^{2}}{(c n+a+b+2)^{2}}
$$

The same recurrence formula can be used in order to verify that

$$
M_{n, m}(x)=O\left(n^{-\left[\frac{m+1}{2}\right]}\right), m \geq 0
$$

uniformly for $x \in[0,1]$.
Now the assumptions of Sikkema's theorem [14] are fulfilled; consequently, we have the following Voronovskaja type formula:

Theorem 4.2.

$\lim _{n \rightarrow \infty} n\left(V_{n}(f ; x)-f(x)\right)=\left\{\begin{array}{l}\frac{x(1-x)}{2} f^{\prime \prime}(x)+(a+1-(a+b+2) x) f^{\prime}(x), \alpha=0 \\ \frac{x(1-x)}{2} f^{\prime \prime}(x), \alpha>0,\end{array}\right.$
for all $f \in C[0,1]$ such that $f^{\prime \prime}(x)$ exists and is finite.Moreover, if $f \in$ $C^{2}[0,1]$, the convergence is uniform on $[0,1]$.

Concerning the (similar) Voronovskaja formula for the operators P_{n}, see [10] and the references given there.

5. Iterates of V_{n}

Let r be a non-negative integer, $r \leq n$. It is well-known (see, e.g., [4] and the references given there) that

$$
B_{n} e_{r}=\frac{n(n-1) \ldots(n-r+1)}{n^{r}} e_{r}+\text { terms of lower degree },
$$

where B_{n} are the classical Bernstein operators.
Let

$$
\varphi_{r}:=\left(\frac{c n e_{1}+(a+1) e_{0}}{c n+a+b+2}\right)^{r}
$$

Then, for $k=0,1, \ldots, n$,

$$
\varphi_{r}\left(\frac{k}{n}\right)=\left(\frac{c k+a+1}{c n+a+b+2}\right)^{r}
$$

so that

$$
\begin{aligned}
V_{n} e_{r} & =B_{n} \varphi_{r}=\left(\frac{c n}{c n+a+b+2}\right)^{r} B_{n} e_{r}+\text { terms of lower degree } \\
& =\frac{n(n-1) \ldots(n-r+1)}{(c n+a+b+2)^{r}} c^{r} e_{r}+\text { terms of lower degree. }
\end{aligned}
$$

It follows that:
Theorem 5.1. The numbers

$$
\lambda_{r}:=\frac{n(n-1) \ldots(n-r+1)}{(c n+a+b+2)^{r}} c^{r}, \quad r=0,1, \ldots, n
$$

are eigenvalues of V_{n}, and the eigenfunction corresponding to λ_{r} can be chosen as a monic polynomial of degree r.

Now let us describe V_{n} as

$$
V_{n}(f ; x)=\sum_{k=0}^{n} p_{n, k}(x) f\left(\frac{k+\frac{a+1}{c}}{n+\frac{a+b+2}{c}}\right)
$$

Under this form we see that V_{n} coincides with the operator $S_{n}^{<0, \beta, \gamma>}$ defined in $[4 ;(1)]$, if

$$
\beta:=\frac{a+1}{c}, \gamma:=\frac{a+b+2}{c} .
$$

Now the above Theorem 5.1 can be considered also as a consequence of Theorem 1 in [4].

The over-iterates of V_{n} can be studied by using the results of [4] or [13]. Indeed, let

$$
a_{j}:=\frac{j+\beta}{n+\gamma}=\frac{c j+a+1}{c n+a+b+2}, j=0,1, \ldots, n
$$

From $[4 ;(9),(11),(12)]$ or from [13; Th. 5.3] we deduce for $f \in C[0,1]$:

$$
\lim _{m \rightarrow \infty} V_{n}^{m} f=e_{0} \sum_{j=0}^{n} d_{j} f\left(\frac{c j+a+1}{c n+a+b+2}\right)
$$

uniformly on $[0,1]$, where $\left(d_{0}, d_{1}, \ldots, d_{n}\right)$ is the unique solution of the system

$$
\left(\begin{array}{ccc}
p_{n, 0}\left(a_{0}\right) & \ldots & p_{n, 0}\left(a_{n}\right) \\
\ldots & \ldots & \ldots \\
p_{n, n}\left(a_{0}\right) & \ldots & p_{n, n}\left(a_{n}\right)
\end{array}\right)\left(\begin{array}{c}
d_{0} \\
\ldots \\
d_{n}
\end{array}\right)=\left(\begin{array}{c}
d_{0} \\
\ldots \\
d_{n}
\end{array}\right)
$$

satisfying $d_{0} \geq 0, \ldots, d_{n} \geq 0, d_{0}+\cdots+d_{n}=1$.

6. Shape preserving properties

For each $m \geq 0$ consider the function

$$
\varphi_{m}(t)=\left(\frac{c n t+a+1}{c n+a+b+2}\right)^{m}, t \in[0,1] .
$$

Let B_{n} be the classical Bernstein operators on $C[0,1]$. Then we have

$$
V_{n} e_{m}=B_{n} \varphi_{m}, n \geq 1
$$

Consequently, the technique used in [16, Section 25.2] can be applied; as in [16, Cor.25.2] we get

Theorem 6.1. If $0 \leq m \leq n$ and $f \in C[0,1]$ is convex of order m, then $V_{n} f$ is convex of order m.

For convex functions of order 1, i.e., usual convex functions, we have also

Theorem 6.2. If $f \in C[0,1]$ is convex, then

$$
P_{n}(f ; x) \geq V_{n}(f ; x) \geq f\left(\frac{c n x+a+1}{c n+a+b+2}\right), x \in[0,1] .
$$

Proof. Let $f \in C[0,1]$ be convex, and $x \in[0,1]$. From the barycenter inequality we know that

$$
T_{n, k}(f) \geq f\left(\frac{c k+a+1}{c n+a+b+2}\right), k=0,1, \ldots, n
$$

which immediately yields

$$
P_{n}(f ; x) \geq V_{n}(f ; x)
$$

On the other hand, consider the probability Radon measure

$$
g \longrightarrow V_{n}(g ; x), g \in C[0,1] .
$$

The corresponding barycenter is

$$
V_{n}\left(e_{1} ; x\right)=\frac{c n x+a+1}{c n+a+b+2} .
$$

Again by the barycenter inequality we get

$$
V_{n}(f ; x) \geq f\left(\frac{c n x+a+1}{c n+a+b+2}\right)
$$

Acknowledgment. The author is grateful to the referee for many helpful suggestions.

References

[1] Altomare, F., Leonessa, V., On a sequence of positive linear operators associated with a continuous selection of Borel measures, Mediterr. J. Math., 3(2006), 363-382.
[2] Altomare, F., Raşa, I., On some classes of difussion equations and related approximation processes, In: Trends and Applications in Constructive Approximation, (Eds.) M.G. de Bruin, D.H. Mache and J. Szabados, ISNM vol. 151, 13-26, Birkhäuser Verlag, Basel, 2005.
[3] Gonska, H., Kacsó, D., Raşa, I., On genuine Bernstein-Durrmeyer operators, Result. Math., 50(2007), 213-225.
[4] Gonska, H., Pitul, P., Raşa, I., Over-iterates of Bernstein-Stancu operators, Calcolo, 44(2007), 117-125.
[5] Mache, D.H., Gewichtete Simultanapproximation in der L_{p}-Metrik durch das Verfahren der Kantorovič Operatoren, Dissertation, Univ. Dortmund, 1991.
[6] Mache, D.H., A link between Bernstein polynomials and Durrmeyer polynomials with Jacobi weights, In: Approx. Theory VIII, Vol. 1: Approximation and Interpolation, Ch.K. Chui and L.L. Schmaker (Eds.), 403-410, World Scientific Publ., 1995.
[7] Mache, D.H., Raşa, I., Relations between polynomial operators, Preprint.
[8] Mache, D.H., Zhou, D.X., Characterization theorems for the approximation by a family of operators, J. Approx. Theory, 84(1996), 145-161.
[9] Mache, D.H., Raşa, I., Some C_{0}-semigroups related to polynomial operators, Rend. Circ. Mat. Palermo Suppl. II, 76(2005), 459-467.
[10] Raşa, I., Semigroups associated to Mache operators, In: Advanced Problems in Constructive Approximation, (Eds.) M.D. Buhmann and D.H. Mache, ISNM vol.142, 143-152, Birkhäuser Verlag, Basel, 2002.
[11] Rasa, I., Semigroups associated to Mache operators (II), In: Trends and Applications in Constructive Approximation, (Eds.) M.G. de Bruin, D.H. Mache and J. Szabados, ISNM vol. 151, 225-228, Birkhäuser Verlag, Basel, 2005.
[12] Raşa, I., Positive operators, Feller semigroups and difussion equations associated with Altomare projections, Conf. Sem. Mat. Univ. Bari, 284(2002), 1-26.
[13] Rus, I.A., Iterates of Stancu operators (via fixed point principles) revisited, Fixed Point Theory, 11(2010), 369-374.
[14] Sikkema, P.C., On some linear positive operators, Indag. Math., 32(1970), 327337.
[15] Stancu, D.D., Asupra unei generalizari a polinoamelor lui Bernstein, Stud. Univ. Babeş-Bolyai Math., 14(1969), 31-45.
[16] Vladislav, T., Raşa, I., Analiză Numerică. Aproximare, problema lui Cauchy abstractă, proiectori Altomare, Editura Tehnică, Bucureşti, 1999.

Ioan Raşa
Technical University of Cluj-Napoca
Faculty of Automation and Computer Science
15, Daicoviciu Street
400020 Cluj-Napoca
Romania
e-mail: ioan.rasa@math.utcluj.ro

