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Steffensen type methods for approximating
solutions of differential equations

Flavius Pătrulescu

Abstract. The implicit methods for numerical solving of ODEs lead to
nonlinear equations which are usually solved by the Newton method.
We study the use of a Steffensen type method instead, and we give con-
ditions under which this method provides bilateral approximations for
the solution of these equations; this approach offers a more rigorous con-
trol of the errors. Moreover, the method can be applied even in the case
when certain functions are not differentiable on the definition domain.
The convergence order is the same as for Newton method.
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1. Introduction

The mathematical modeling of many problems in physics, engineering, che-
mistry, biology, etc. gives rise to ordinary differential equations or systems of
ordinary differential equations.

It is known that a high-order initial value problem (IVP) for differential
equations or systems of equations can be rewritten as a first-order IVP system
(see e.g. [4], [5]) so that the standard IVP can be written in the form:

{

y′ = f(x, y), x ∈ I

y(a) = y0,
(1.1)

where: y0 ∈ R
m, I ⊆ R, f : I × R

m → R
m and a ∈ I.

A solution is sought on the interval [a, b] ⊂ I, where a, b are finite. In
this paper we consider only the scalar case, i.e., m = 1.

In practice, the number of cases where an exact solution can be found
by analytical means is very limited, so that one uses numerical methods for
the approximation of the solution.
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Integrating (1.1), for m = 1, using an implicit linear multistep method
with step-size h, leads to the solving at each step of an equation of the form:

y = hAφ(x, y) + ψ. (1.2)

Here A is a constant determined by the numerical method and ψ is a known
value.

This equation can be solved by the fixed point iteration

y(ν+1) = hAφ(x, y(ν)) + ψ, y(0) arbitrary, ν = 0, 1, . . . (1.3)

which converges to the unique solution of (1.2) provided that:

h < 1
|A|L , (1.4)

where L is the Lipschitz constant of φ with respect to the second variable.
Condition (1.4) becomes too restrictive for stiff problems. Thus, if we

use an explicit method to solve a stiff equation, we have to use an excessively
small step-size to avoid instability; if we use an implicit method with an
absolute stability region large enough to impose no stability restriction, we
can choose a step-size as large as we want, but we will not be able to solve the
implicit equation (1.2) by the iteration (1.3) unless the step-size is excessively
small.

In order to overcome this difficulty one uses the Newton iteration instead
of the fixed point iteration. Newton iteration applied to the equation:

F (y) = 0, (1.5)

where F : [c, d] → R, c, d ∈ R, c < d, has the form:

y(ν+1) = y(ν) − F (y(ν))/F ′(y(ν)), ν = 0, 1, 2, . . . , y(0) ∈ [c, d]. (1.6)

When applied to the equation (1.2), where F (y) = y − hAφ(x, y) − ψ,
we get:

y(ν+1) = y(ν) − (y(ν) − hAφ(x, y(ν)) − ψ)/(1 − hAφ′y(x, y(ν))), (1.7)

i.e.,

y(ν+1) = (hA(φ(x, y(ν)) − y(ν)φ′y(x, y(ν))) + ψ)/(1 − hAφ′y(x, y(ν))). (1.8)

One step of Newton iteration requests considerably more computing time
than one step of fixed point iteration. Each step of the latter costs one func-
tion evaluation, whereas each step of the former calls for the updating of the
derivative.

In this paper we approximate the solution of equation (1.5) using the
Steffensen type method:

y(ν+1) = y(ν) −
F (y(ν))

[y(ν), g(y(ν));F ]
, ν = 0, 1, . . . (1.9)

where g : [c, d] → [c, d] is an auxiliary function such that the equation:

y − g(y) = 0 (1.10)
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is equivalent to (1.5), and [u, v;F ] represents the first order divided difference
of F at the points u, v ∈ [c, d]. This method does not require the calculation
of the derivative of the function F .

Let y∗ ∈ (c, d) be the root of equation (1.5). If the elements of the
sequence (y(ν))ν≥0 belong to the interval [c, d] then from Newton identity
and (1.9) we obtain:

y∗ − y(ν+1) = −
[y∗, y(ν), g(y(ν));F ](y∗ − y(ν))(y∗ − g(y(ν)))

[y(ν), g(y(ν));F ]
,

where [u, v, w;F ] represents the second order divided difference of F at the
points u, v, w ∈ [c, d]. If g is Lipschitz on [c, d] with constant L and if we
assume that there exist the real numbers M,m > 0 such that:

|[u, v, w;F ]| < M and |[u, v;F ]| > m,

for all u, v, w ∈ [c, d], then:

|y∗ − y(ν+1)| ≤
ML|y∗ − y(ν)|2

m
,

which shows that the q-convergence order for the method (1.9) is 2, i.e., the
same as for the Newton method.

In [7] are given conditions for the convergence of the sequences ge-
nerated by relation (1.9), and the function g is defined such that the se-
quences (y(ν))ν≥0 and (g(y(ν)))ν≥0 approximate bilaterally the exact solution
y∗. Thus, we have an a posteriori error control.

For the functions F and g we suppose the following hypothesis:

(α) the equations (1.5) and (1.10) are equivalent;
(β) the function g is continuous and decreasing on [c, d];
(γ) the equation (1.5) has a unique solution y∗ ∈ (c, d).

The following theorem holds (see [7]):

Theorem 1.1. If the functions F and g satisfy the conditions (α) − (γ) and
moreover the following conditions hold:

(i) F is increasing and convex on [c, d];
(ii) F (y0) < 0;

(iii) g(y0) ≤ d,

then the elements of the sequences (y(ν))ν≥0 and (g(y(ν)))ν≥0 belong to the
interval [c, d] and the following properties hold:

(j) the sequence (y(ν))ν≥0 is increasing and convergent;

(jj) the sequence (g(y(ν)))ν≥0 is decreasing and convergent;

(jjj) y(ν) ≤ y∗ ≤ g(y(ν)), ν = 0, 1, . . ..
(jv) lim

ν→∞
y(ν) = lim

ν→∞
g(y(ν)) = y∗;

(vj) |y∗ − y(ν)| ≤ |g(y(ν)) − y(ν)|, ν = 0, 1, . . . .

In the above theorem the auxiliary function g can be taken as:

g(y) = y − F (y)
F ′(c) . Similar results have been obtained in [7] if F verifies the

properties:
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-F is increasing and concave; g can be taken as g(y) = y − F (y)
F ′(d) ;

-F is decreasing and concave; g can be taken as g(y) = y − F (y)
F ′(c) ;

-F is decreasing and convex; g can be taken as g(y) = y − F (y)
F ′(d) .

The interval [a, b] is partitioned by the point set {xn} defined by
xn = a + nh, n = 0, 1, . . . , N , h = (b − a)/N , and yn denotes an
approximation to the exact solution y of (1.1) at xn.

If we use an implicit linear multistep method then yn, n = 1, . . . , N , are
the solutions of the equation:

y = hAφ(xn, y) + ψn, (1.11)

where ψn = ψn(a, h, yn−1, yn−2, . . . , y0).We call this equation as approximant
equation and we denote by y∗n ∈ (c, d), n = 1, . . . , N , the exact solution.

For each n = 1, . . . , N let Fn : [c, d] → R be defined by

Fn(y) = y − hAφ(xn, y) − ψn. (1.12)

Then equation (1.11) can be rewritten in the form Fn(y) = 0.
To approximate bilaterally the solution y∗n, n = 1, . . . , N , we generate

the sequence (y
(ν)
n )ν≥0, by:

y(ν+1)
n = y(ν)

n −
Fn(y

(ν)
n )

[y
(ν)
n , g(y

(ν)
n );Fn]

, ν = 0, 1, . . . (1.13)

or, using (1.12),

y(ν+1)
n =

hA(φ(xn, y
(ν)
n ) − y

(ν)
n [y

(ν)
n , g(y

(ν)
n );φ(xn, ·)]) + ψn

1 − hA[y
(ν)
n , g(y

(ν)
n );φ(xn, ·)]

. (1.14)

From Theorem 1.1, if Fn is increasing and convex, and the initial guess

y
(0)
n satisfy Fn(y

(0)
n ) < 0, then the sequences (y

(ν)
n )ν≥0, (g(y

(ν)
n ))ν≥0 converge

to y∗n and we have the inequalities:

y(ν)
n ≤ y∗n ≤ g(y(ν)

n ), ν = 0, 1, . . . .

The rest of the cases can be treated in a similar fashion.

2. Application to the trapezoidal rule

We consider the trapezoidal rule to integrate the initial value problem (1.1),
for m = 1, and the Steffensen method described above to solve the approxi-
mant equation (1.11).

The trapezoidal rule is a 1-step Adams-Moulton method (an implicit
method), and for (1.1) is defined by:

yn = yn−1 + h
2 (f(xn, yn) + f(xn−1, yn−1)), n = 1, . . . , N.

It is known that the trapezoidal rule is an A-stable method and has order 2
(see [5]).
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For any point xn, n = 1, . . . , N , we have:

yn − h
2 f(xn, yn) − h

2 f(xn−1, yn−1) − yn−1 = 0 (2.1)

and in this case Fn(y) = y − h
2 f(xn, y) −

h
2 f(xn−1, yn−1) − yn−1. Thus, in

(1.11) we have A = 1
2 , φ(xn, y) = f(xn, y) and ψn = h

2f(xn−1, yn−1) + yn−1,
n = 1, . . . , N .

For simplicity we consider only the autonomous case, i.e. f = f(y), and
in this case equation (2.1) becomes:

yn − h
2 f(yn) − h

2 f(yn−1) − yn−1 = 0 (2.2)

and Fn(y) = y − h
2 f(y) − ψn, ψn = h

2 f(yn−1) + yn−1, n = 1, . . . , N .
Using the fact that

[u, v;Fn] = 1 − h
2 [u, v; f ], for all u, v ∈ [c, d], (2.3)

and
[u, v, w;Fn] = −h

2 [u, v, w; f ], for all u, v, w ∈ [c, d], (2.4)

n = 1, . . . , N , we obtain that the auxiliary function g can be taken
as (see [10]):

g(y) =
h
2 (f(y) − y[d− ε, d; f ]) + ψn

1 − h
2 [d− ε, d; f ]

;

or

g(y) =
h
2 (f(y) − y[c, c+ ε; f ]) + ψn

1 − h
2 [c, c+ ε; f ]

,

where ε is sufficiently small such that the exact solution y∗n of the equation
Fn(yn) = 0, n = 1, . . . , N , belongs to the interval [c+ ε, d− ε].

For each n = 1, . . . , N we denote:

ψn
max = max{yk + h

2 f(yk)|k = 0, . . . , n− 1},

ψn
min = min{yk + h

2 f(yk)|k = 0, . . . , n− 1}.

We are lead to the main results of this work:

Theorem 2.1. If the function f , the step-size h, and the initial guesses y
(0)
n ,

n = 1, . . . , N , satisfy the following conditions:

(i) [u, v, w, f ] ≤ 0, for all u, v, w ∈ [c, d];
(ii) (m ≤ [u, v, f ] ≤ M ≤ 0, for all u, v ∈ [c, d]) or (0 ≤ m ≤ [u, v, f ] ≤ M ,

for all u, v ∈ [c, d], and h ≤ 2
M

);

(iii) y
(0)
n − h

2 f(y
(0)
n ) < ψn

min;

(iv) y
(0)
n M − f(y

(0)
n ) ≥ 2

h
[d(M h

2 − 1) + ψn
max],

then the elements of the sequences (y
(ν)
n )ν≥0, (g(y

(ν)
n ))ν≥0, n = 1, . . . , N , be-

long to the interval [c, d] and the following properties hold:

(j) (y
(ν)
n )ν≥0 is increasing and convergent;

(jj) (g(y
(ν)
n ))ν≥0 is decreasing and convergent;

(jjj) y
(ν)
n ≤ y∗n ≤ g(y

(ν)
n ), ν = 0, 1, . . .;

(jv) lim
ν→∞

y
(ν)
n = lim

ν→∞
g(y

(ν)
n ) = y∗n;
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(v) |y∗n − y
(ν)
n | ≤ |g(y

(ν)
n ) − y

(ν)
n |, ν = 0, 1, . . . .

Proof. From (2.3), (2.4) and (i), (ii) we have [u, v;Fn] ≥ 0, [u, v, w;Fn] ≥ 0,
n = 1, . . . , N , for all u, v, w ∈ [c, d], and we deduce that Fn is increasing and
convex.

Also, from (iii) and (iv) we obtain that the initial guesses satisfy the

inequalities: F (y
(0)
n ) < 0 and g(y

(0)
n ) ≤ d, n = 1, . . . , N .

Using Theorem 1.1 we deduce that the properties (j) − (v) hold. �

The following theorems can be proved in a similar manner:

Theorem 2.2. If the function f , the step-size h, and the initial guesses y
(0)
n ,

n = 1, . . . , N , satisfy the following conditions:

(i) [u, v, w, f ] ≤ 0, for all u, v, w ∈ [c, d];
(ii) 0 ≤ m ≤ [u, v, f ] ≤M , for all u, v ∈ [c, d];

(iii) y
(0)
n − h

2 f(y
(0)
n ) < ψn

min;

(iv) y
(0)
n m− f(y

(0)
n ) ≥ 2

h
[c(mh

2 − 1) + ψn
max];

(v) 2
m

≤ h,

then the elements of the sequences (y
(ν)
n )ν≥0, (g(y

(ν)
n ))ν≥0, n = 1, . . . , N , be-

long to the interval [c, d] and the following properties hold:

(j) (y
(ν)
n )ν≥0 is decreasing and convergent;

(jj) (g(y
(ν)
n ))ν≥0 is increasing and convergent;

(jjj) g(y
(ν)
n ) ≤ y∗n ≤ y

(ν)
n , ν = 0, 1, . . .;

(jv) lim
ν→∞

y
(ν)
n = lim

ν→∞
g(y

(ν)
n ) = y∗n;

(v) |y∗n − y
(ν)
n | ≤ |g(y

(ν)
n ) − y

(ν)
n |, ν = 0, 1, . . . .

Theorem 2.3. If the function f , the step-size h and the initial guesses y
(0)
n ,

n = 1, . . . , N , satisfy the following conditions:

(i) [u, v, w, f ] ≥ 0, for all u, v, w ∈ [c, d];
(ii) (m ≤ [u, v, f ] ≤ M ≤ 0, for all u, v ∈ [c, d]) or (0 ≤ m ≤ [u, v, f ] ≤ M ,

for all u, v ∈ [c, d], and h ≤ 2
M

);

(iii) y
(0)
n − h

2 f(y
(0)
n ) > ψn

max;

(iv) y
(0)
n M − f(y

(0)
n ) ≤ 2

h
[c(M h

2 − 1) + ψn
min],

then the elements of the sequences (y
(ν)
n )ν≥0, (g(y

(ν)
n ))ν≥0, n = 1, . . . , N , be-

long to the interval [c, d] and the following properties hold:

(j) (y
(ν)
n )ν≥0 is decreasing and convergent;

(jj) (g(y
(ν)
n ))ν≥0 is increasing and convergent;

(jjj) g(y
(ν)
n ) ≤ y∗n ≤ y

(ν)
n , ν = 0, 1, . . .;

(jv) lim
ν→∞

y
(ν)
n = lim

ν→∞
g(y

(ν)
n ) = y∗n;

(v) |y∗n − y
(ν)
n | ≤ |g(y

(ν)
n ) − y

(ν)
n |, ν = 0, 1, . . . .

Theorem 2.4. If the function f , the step-size h and the initial guesses y
(0)
n ,

n = 1, . . . , N , satisfy the following conditions:
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(i) [u, v, w, f ] ≥ 0, for all u, v, w ∈ [c, d];
(ii) 0 ≤ m ≤ [u, v, f ] ≤M , for all u, v ∈ [c, d];

(iii) y
(0)
n − h

2 f(y
(0)
n ) > ψn

max;

(iv) y
(0)
n m− f(y

(0)
n ) ≤ 2

h
[d(mh

2 − 1) + ψn
min];

(v) 2
m

≤ h,

then the elements of the sequences (y
(ν)
n )ν≥0, (g(y

(ν)
n ))ν≥0, n = 1, . . . , N , be-

long to the interval [c, d] and the following properties hold:

(j) (y
(ν)
n )ν≥0 is increasing and convergent;

(jj) (g(y
(ν)
n ))ν≥0 is decreasing and convergent;

(jjj) y
(ν)
n ≤ y∗n ≤ g(y

(ν)
n ), ν = 0, 1, . . .;

(jv) lim
ν→∞

y
(ν)
n = lim

ν→∞
g(y

(ν)
n ) = y∗n;

(v) |y∗n − y
(ν)
n | ≤ |g(y

(ν)
n ) − y

(ν)
n |, ν = 0, 1, . . . .

3. Numerical example

We consider the autonomous initial value problem:
{

y′(x) = cos2(y(x)), x ∈ [0, 1],

y(0) = 0.
(3.1)

The exact solution is y : [0, 1] → R, y(x) = arctan(x), and it is plotted in
Figure 1(a) with continuous line.

If we use the trapezoidal rule to integrate the above initial value problem
we must solve for each mesh point xn = nh, n = 1, . . . , N , h = 1/N , N ∈ N,
the nonlinear equation:

yn = yn−1 + h
2 (cos2 yn + cos2 yn−1), (3.2)

where x0 = 0 and we choose y0 = 0.
According to the above sections we can write (3.2) in the form

Fn(y) = 0,

where Fn(y)=y− h
2 cos2(y)−ψn, and ψn = yn−1+

h
2 cos2(yn−1), n = 1, . . . , N .

It is easy to show that equation (3.2) has a unique solution y∗n ∈ (0, π
4 ),

n = 1, . . . , N , and we will use a Steffensen type method to obtain a numerical
approximation, ỹn, for this solution.

From F ′
n(y) = 1 + h

2 sin(2y) ≥ 0 and F ′′
n (y) = h cos(2y) ≥ 0, y ∈ [0, π

4 ],
n = 1, . . . , N , we deduce that Fn is increasing and convex. Thus, we can
define the decreasing function g as:

g(y) = y −
Fn(y)

F ′
n(0)

= y − Fn(y) = h
2 cos

2(y) + ψn, n = 1, . . . , N.

Also, from Theorem 2.1, choosing for each n = 1, . . . , N the initial guesses

y
(0)
n such that it verifies the conditions (iii) and (iv) we obtain bilateral

approximations of the solution y∗n and an a posteriori error control.
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The numerical solution, obtained with the method described above, for
the step size h = 0.05 is also plotted in Figure 1(a) with circle marker. The
values of the errors εn = |y(xn) − ỹn|, n = 1, . . . , N , are presented in the
following table. They are also plotted in Figure 1(b). We observe a very good
agreement when we compare the numerical with the analytical solution.
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Figure 1. (a) The exact solution (continuous line) and the
numerical solution (circle marker). (b) The values of the er-
rors

Table 1. The values of the errors

xn εn xn εn

0.05 0.00002068828052 0.55 0.00010932962999
0.1 0.00004056160110 0.6 0.00010478854028
0.15 0.00005887122616 0.65 0.00009889278012
0.2 0.00007499149969 0.7 0.00009200032239
0.25 0.00008845999793 0.75 0.00008443386474
0.3 0.00009899709371 0.8 0.00007647332226
0.35 0.00010650491201 0.85 0.00006835314397
0.4 0.00011104895260 0.9 0.00006026315926
0.45 0.00011282772086 0.95 0.00005235176793
0.5 0.00011213634983 1 0.00004473048874
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[10] Păvăloiu, I., Aitken-Steffensen type methods for nonsmooth functions(III), Rev.
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